Local matching indicators for concave transport costs
Julie Delon, Julien Salomon, A. Sobolevskii

To cite this version:

HAL Id: hal-00437885
https://hal.archives-ouvertes.fr/hal-00437885v3
Submitted on 27 Jul 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Local matching indicators for transport with concave costs

Julie Delon

LTCI CNRS, Télécom ParisTech

Julien Salomon

Université Paris IX/CEREMADE

Andreï Sobolevskiï

A. A. Kharkevich Institute for Information Transmission Problems, Moscow, Russia

Abstract

In this note, we introduce a class of indicators that enable to compute efficiently optimal transport plans associated to arbitrary distributions of N demands and N supplies in \mathbb{R} in the case where the cost function is concave. The computational cost of these indicators is small and independent of N. A hierarchical use of them enables to obtain an efficient algorithm.

*Electronic address: julie.delon@enst.fr
†Electronic address: salomon@ceremade.dauphine.fr
‡Electronic address: ansobol@mccme.ru
§This work is supported by ANR through grant ANR-07-BLAN-0235 OTARIE (http://www.mccme.ru/~ansobol/otarie/); AS thanks the Ministry of National Education of France for supporting his visit to the Observatoire de la Côte d’Azur and to Russian Fund for Basic Research for the partial support via grant RFBR 07-01-92217-CNRSL-a.
I. INTRODUCTION

It is well known that transport problems on the line involving convex cost functions have explicit solutions, consisting in a monotone rearrangement. Recently, an efficient method has been introduced to tackle this issue on the circle \[4\]. In this note we introduce an algorithm that enables to tackle optimal transport problems on the line (but actually also on the circle) with concave costs. Our algorithm complements the method suggested by McCann \[2\]. McCann considers general real values of supply and demand and shows how the problem can be reduced to convex optimization somewhat similar to the simplex method in linear programming. Our approach as presented here is developed for the case of unit masses and is closer to the purely combinatorial approach of \[1\], but extends it to a general concave cost function. The extension to integer masses will be presented in \[3\].

The method we propose is based on a class of local indicators, that allow to detect consecutive points that are matched in an optimal transport plan. Thanks to the low number of evaluations of the cost function required to apply the indicators, we derive an algorithm that finds an optimal transport plan in \(n^2\) operations in the worst case. In practice, the computational cost of this method appears to behave linearly with respect to \(n\).

Since the indicators apply locally, the algorithm can be massively parallelized and also allows to treat optimal transport problems on the circle. In this way, it extends the work of Aggarwal et al. \[1\] in which cost functions have a linear dependence in the distance.

II. SETTING OF THE PROBLEM

For \(N_0 \in \mathbb{N}^*\), consider \(P = (p_i)_{i=1,\ldots,N_0}\) and \(Q = (q_i)_{i=1,\ldots,N_0}\) two sets of points in \(\mathbb{R}\) that represent respectively demand and supply locations. The problem we consider in this note consists in minimizing the transport cost

\[
C(\sigma) = \sum_{i,j} c(p_i, q_{\sigma(i)}),
\]

where \(\sigma\) is a permutation of \(\{1, \ldots, N_0\}\). This permutation forms a transport plan. We focus on the case where the function \(c\) involves a concave function as stated in
the next definition. The cost function in (1) is defined on \mathbb{R} by $c(p, q) = g(|p - q|)$ with $p, q \in \mathbb{R}$, where $g(\cdot)$ is a concave non-decreasing real-valued function of a real positive variable such that $g(0) := \lim_{x \to 0} g(x) \geq -\infty$. Some examples of such costs are given by $g(x) = \log(x)$ with $g(0) = -\infty$, and $g(x) = \sqrt{x}$ or $g(x) = |x|$ is with $g(0) = 0$.

Finally, we denote by σ^* the permutation associated to a given optimal transport plan between P and Q: for all permutation σ of $\{1, ..., N_0\}$, $C(\sigma^*) \leq C(\sigma)$.

III. CHAINS

In this section, we present a way to build a particular partition of the set $P \cup Q$. Consider two pairs of matched points $(p_i, q_{\sigma^*(i)})$ and $(p_{i'}, q_{\sigma^*(i')})$, say e.g. $p_i \leq q_{\sigma^*(i)}$, $p_{i'} \leq q_{\sigma^*(i')}$.

It is easy to prove that the following alternative holds:

1. $[p_i, q_{\sigma^*(i)}] \cap [p_{i'}, q_{\sigma^*(i')}] = \emptyset$,

2. $[p_i, q_{\sigma^*(i)}] \subset [p_{i'}, q_{\sigma^*(i')}]$ or $[p_{i'}, q_{\sigma^*(i')}] \subset [p_i, q_{\sigma^*(i)}]$.

This remark is a direct consequence of the concavity of the cost function and is often denominated as ”the non-crossing rule” [1, 2]. In the next section, we show how it allows decompose the initial situation in sub-problems where supply and demand points are alternated.

Because of the non-crossing rule in an optimal plan there are as many supply points as demand points between any pair of matched points p_i and $q_{\sigma(i)}$. For a given demand point p_i, define its left neighbor q'_i as the nearest supply point on the left of p_i such that the numbers of supply and demand points between q'_i and p_i are equal; define the right neighbor q''_i of p_i in a similar way. Then define a chain as a maximal alternating sequence of supply and demand points $(p_i, q_j, p_k, ..., q_m)$ or $(q_j, p_k, ..., p_{i+1})$ such that each q_i is the right neighbor of p_i and the left neighbor of p_{i+1}. An extension of the proof of Lemma 3 of [1] shows that the collection of chains forms a partition of the set $P \cup Q$. An simple example of such a partition is shown on Fig. 1. Note that construction of this collection only depends on relative positions of supply and demand points and does not involve any evaluation of the cost function. It can be done in $O(N_0)$ operations.
FIG. 1: Example of chains.

The non-crossing rule implies that all matched pairs of points in an optimal transport plan must belong to the same chain. We therefore restrict ourselves in the sequel, without loss of generality, to the case of a single chain

\[p_1 < q_1 < \ldots < p_i < q_i < p_{i+1} < q_{i+1} < \ldots < p_N < q_N, \]

for \(N \in \mathbb{N}^* \) and keep these last notations throughout the rest of this paper.

IV. LOCAL MATCHING INDICATORS

Thanks to the non-crossing rule, one knows that there exists at least two consecutive points \((p_i, q_i)\) or \((q_i, p_{i+1})\) that are matched in any optimal transport plan. Starting from this remark, we take advantage of the structure of a chain to introduce a class of indicators that enable to detect a priori such pairs of points. We define

\[
I_k^p(i) = c(p_i, q_{i+k}) + \sum_{\ell=0}^{k-1} c(p_{i+\ell+1}, q_{i+\ell}) - \sum_{\ell=0}^{k} c(p_{i+\ell}, q_{i+\ell}),
\]

where \(k, i \) are such that \(1 \leq k \leq N - 1 \) and \(1 \leq i \leq N - k \), and

\[
I_k^q(i) = c(p_{i+k+1}, q_i) + \sum_{\ell=1}^{k} c(p_{i+\ell}, q_{i+\ell}) - \sum_{\ell=0}^{k} c(p_{i+\ell+1}, q_{i+\ell}),
\]

for \(k, i \in \mathbb{N} \), such that \(1 \leq k \leq N - 2 \) and \(1 \leq i \leq N - k - 1 \). The interest of these functions lies in the next result.

Theorem 1 Let \(k_0 \in \mathbb{N} \) with \(1 \leq k_0 \leq N - 1 \) and \(i_0 \in \mathbb{N} \) (resp. \(i'_0 \in \mathbb{N} \)), such that \(1 \leq i_0 \leq N - k_0 \) (resp. \(1 \leq i'_0 \leq N - k_0 - 1 \)). Assume that
FIG. 2: Schematic representation of the result stated in Thm. in the case where \(k = 1 \).

1. \(I_k^p(i) \geq 0 \) for \(k = 1, \ldots, k_0 - 1, \ 1 \leq i \leq N - k \),

2. \(I_k^q(i') \geq 0 \) for \(k = 1, \ldots, k_0 - 1, \ 1 \leq i' \leq N - k - 1 \),

3. \(I_{k_0}^p(i_0) < 0 \) (resp. \(I_{k_0}^q(i'_0) < 0 \)).

Then any permutation \(\sigma^* \) associated to an optimal transport plan satisfies \(\sigma^*(i) = i - 1 \) for \(i = i_0 + 1, \ldots, i_0 + k_0 \) (resp. \(\sigma^*(i) = i \) for \(i = i_0 + 1, \ldots, i_0 + k_0 \)).

In practice, these indicators allow to find pairs of neighbors that are matched in an optimal transport plan. This result is illustrated on Fig. 2.

Before giving the proof, we state a basic result.

Lemma 2 We keep the previous notations. Define

\[
\varphi_{k,i}^p(x, y) = g(x + y + p_{i+k} - q_i) + \sum_{\ell=0}^{k-1} c(p_{i+\ell+1}, q_{i+\ell}) - g(x) - g(y) - \sum_{\ell=1}^{k-1} c(p_{i+\ell}, q_{i+\ell}),
\]

for \(k, i \in \mathbb{N} \), such that \(1 \leq k \leq N - 1 \) and \(1 \leq i \leq N - k \), and

\[
\varphi_{k,i}^q(x, y) = g(x + y + p_{i+k+1} - q_i) + \sum_{\ell=1}^{k} c(p_{i+\ell}, q_{i+\ell}) - g(x) - g(y) - \sum_{\ell=1}^{k-1} c(p_{i+\ell+1}, q_{i+\ell}),
\]

for \(k, i \in \mathbb{N} \), such that \(1 \leq k \leq N - 2 \) and \(1 \leq i \leq N - k - 1 \). Both functions \(\varphi_{k,i}^p(x, y) \) and \(\varphi_{k,i}^q(x, y) \) are decreasing with respect to each of their two variables.
This lemma is a direct consequence of the concavity of the function \(g \). We are now in the position to give the sketch of the proof of Theorem 1.

Proof of Theorem 1: We consider the case where \(I_{k_0}^D(i_0) < 0 \). The case \(I_{k_0}^D(i_0) < 0 \) can be treated the same way.

The proof consists in proving that Assumptions (1) imply that neither demand nor supply points located between \(p_{i_0} \) and \(p_{i_0+k_0+1} \) can be matched with points located outside this interval, i.e. that the set \(S_{i_0} = \{p_i, i_0+1 \leq i \leq i_0+k_0\} \cup \{q_i, i_0 \leq i \leq i_0+k_0-1\} \) is stable by an optimal transport plan. In this case, the result follows from Assumption (1).

Suppose that \(S_{i_0} \) is not preserved by an optimal transport plan \(\sigma^* \). Three cases can occur:

a) There exists \(i_1 \in N \), such that \(1 \leq i_1 \leq i_0 \) and \(i_0 \leq \sigma^*(i_1) \leq i_0 + k_0 - 1 \) and there exists \(i_1' \in N \), such that \(\sigma^*(i_1) + 1 \leq i_1' \leq i_0 + k_0 \) and \(i_0 + k_0 \leq \sigma^*(i_1') \leq N \).

b) There exists \(i_2 \in N \), with \(i_0 + 1 \leq i_2 \leq i_0 + k_0 \) such that \(1 \leq \sigma^*(i_2) \leq i_0 - 1 \).

c) There exists \(i_2 \in N \), with \(i_0 + k_0 < i_2 \leq N \) such that \(i_0 \leq \sigma^*(i_2) < i_0 + k_0 \).

We first prove that Case (a) cannot occur.

In Case (a), one can assume without loss of generality that \(\sigma^*(i_1) \) is the largest index such that \(1 \leq i_1 \leq i_0 \), \(i_0 \leq \sigma^*(i_1) \leq i_0 + k_0 - 1 \) and that \(i_1' \) is the smallest index such that \(\sigma^*(i_1) + 1 \leq i_1' \leq i_0 + k_0 \), \(i_0 + k_0 \leq \sigma^*(i_1') \leq N \). With such assumptions, the (possibly empty) subset \(\{p_i, \sigma^*(i_1) + 1 \leq i \leq i_1' - 1\} \cup \{q_i, \sigma^*(i_1) + 1 \leq i \leq i_1' - 1\} \) is stable by \(\sigma^* \). Because of Assumptions (1), no nesting can occur in this subset, and \(\sigma^*(i) = i \) for \(i = \sigma^*(i_1) + 1, \ldots, i_1' - 1 \).

On the other hand, since \(\sigma^* \) is supposed to be optimal, one has:

\[
c(p_{i_1}, q_{\sigma^*(i_1)}) + c(p_{i_1'}, q_{\sigma^*(i_1')}) + \sum_{i=\sigma^*(i_1)+1}^{i_1'-1} c(p_i, q_i) \leq c(p_{i_1}, q_{\sigma^*(i_1')}) + \sum_{i=\sigma^*(i_1)}^{i_1'-1} c(p_i, q_i).
\]

Thanks to Lemma 2, one deduces from this last inequality that:

\[
c(p_{i_0}, q_{\sigma^*(i_1)}) + c(p_{i_0}, q_{i_0+k_0}) + \sum_{i=\sigma^*(i_1)+1}^{i_1'-1} c(p_i, q_i) \leq c(p_{i_0}, q_{i_0+k_0}) + \sum_{i=\sigma^*(i_1)}^{i_1'-1} c(p_i, q_i),
\]

and this concludes the proof of Case (a).
and then:

\[
\begin{align*}
&c(p_{i_0}, q_{\sigma^*(i_1)}) + \sum_{i=i_0}^{\sigma^*(i_1)-1} c(p_{i+1}, q_i) + c(p_{i_1'}, q_{i_0+k_0}) + \sum_{i=i_1'}^{i_0+k_0-1} c(p_{i+1}, q_i) \\
&+ \sum_{i=\sigma^*(i_1)+1}^{i_1' - 1} c(p_i, q_i) \leq c(p_{i_0}, q_{i_0+k_0}) + \sum_{i=i_0}^{i_0+k_0-1} c(p_{i+1}, q_i). \tag{3}
\end{align*}
\]

According to Assumption (1), \(P_{\sigma^*(i_1)-i_0}(i_0) \geq 0 \) and \(P_{i_0+k_0-i_1'}(i_1') \geq 0 \), so that:

\[
\begin{align*}
&\sum_{i=i_0}^{\sigma^*(i_1)-1} c(p_i, q_i) \leq c(p_{i_0}, q_{\sigma^*(i_1)}) + \sum_{i=i_0}^{\sigma^*(i_1)-1} c(p_{i+1}, q_i) \\
&\sum_{i=i_1'}^{i_0+k_0} c(p_i, q_i) \leq c(p_{i_1'}, q_{i_0+k_0}) + \sum_{i=i_1'}^{i_0+k_0-1} c(p_{i+1}, q_i).
\end{align*}
\]

Combining these last inequalities with (3) one finds that:

\[
\sum_{i=i_0}^{i_0+k_0} c(p_i, q_i) \leq c(p_{i_0}, q_{i_0+k_0}) + \sum_{i=i_0}^{i_0+k_0-1} c(p_{i+1}, q_i),
\]

which contradicts Assumption (3).

Let us now prove that Cases (b) and (c) contradict the assumptions. Cases (b) and (c) can be treated in the same way. Consider Case (b). Without loss of generality, one can assume that \(i_2 \) is the smallest index such that \(i_0 + 1 \leq i_2 \leq i_0 + k_0 \) and \(\sigma^*(i_2) \leq i_0 - 1 \). Because there are necessarily as much demands as supplies between \(q_{i_0} \) and \(p_{i_2} \), there exists one and only one index \(i_2' \) such that \(i_0 \leq \sigma^*(i_2') \leq i_2 - 1 \) and \(1 \leq i_2' \leq i_0 \). Consequently, the (possibly empty) subsets \(\{p_i, i_0 + 1 \leq i \leq \sigma^*(i_2')\} \cup \{q_i, i_0 \leq i \leq \sigma^*(i_2')-1\} \) and \(\{p_i, \sigma^*(i_2') + 1 \leq i \leq i_2 - 1\} \cup \{q_i, \sigma^*(i_2') + 1 \leq i \leq i_2 - 1\} \) are stable by an optimal transport plan. Because of Assumptions (1,2), no nesting can occur in these subsets, and \(\sigma^*(i) = i - 1 \) for \(i = i_0 + 1, \ldots, \sigma^*(i_2') \) and \(\sigma^*(i) = i \) for \(i = \sigma^*(i_2') + 1, \ldots, i_2 - 1 \).

On the other hand, since \(\sigma^* \) is supposed to be optimal, one has

\[
\begin{align*}
c(p_{i_2}, q_{\sigma^*(i_2)}) + c(p_{i_2'}, q_{\sigma^*(i_2')}) + \sum_{i=i_0+1}^{\sigma^*(i_2')} c(p_i, q_{i-1}) + \sum_{i=\sigma^*(i_2') + 1}^{i_2-1} c(p_i, q_i) \\
\leq c(p_{i_2'}, q_{\sigma^*(i_2')}) + \sum_{i=i_0+1}^{i_2} c(p_i, q_{i-1}).
\end{align*}
\]
Thanks to Lemma 2 one deduces from this last inequality that:

\[
 c(p_{i_0}, q_{\sigma^*(i_2)}) + c(p_{i_0}, q_{\sigma^*(i_2')}) + \sum_{i=i_0+1}^{\sigma^*(i_2')} c(p_i, q_{i-1}) + \sum_{i=\sigma^*(i_2')} c(p_i, q_i)
 \leq c(p_{i_0}, q_{\sigma^*(i_2)}) + \sum_{i=i_0+1}^{i_2} c(p_i, q_{i-1}).
\]

(4)

Because the cost is supposed to be increasing with respect to the distance, one finds that \(c(p_{i_0}, q_{\sigma^*(i_2)}) \leq c(p_{i_2}, q_{\sigma(i_2)})\), so that (1) implies:

\[
 c(p_{i_0}, q_{\sigma^*(i_2')}) + \sum_{i=i_0+1}^{\sigma^*(i_2')} c(p_i, q_{i-1}) + \sum_{i=\sigma^*(i_2')} c(p_i, q_i) \leq \sum_{i=i_0+1}^{i_2} c(p_i, q_{i-1}),
\]

and then:

\[
 c(p_{i_0}, q_{\sigma^*(i_2')}) + \sum_{i=i_0+1}^{\sigma^*(i_2')} c(p_i, q_{i-1}) + \sum_{i=\sigma^*(i_2')} c(p_i, q_i) + \sum_{i=i_0+k_0}^{i_0+k_0} c(p_i, q_{i-1})
 \leq \sum_{i=i_0+1}^{i_0+k_0} c(p_i, q_{i-1}).
\]

(5)

According to Assumption (1) \(J_{\sigma^*(i_2')}^{\ell^p} (i_0) \geq 0\), so that:

\[
 \sum_{i=i_0}^{\sigma^*(i_2')} c(p_i, q_i) \leq c(p_{i_0}, q_{\sigma^*(i_2')}) + \sum_{i=i_0}^{\sigma^*(i_2')-1} c(p_{i+1}, q_i).
\]

Combining these last inequalities with (5) one finds that:

\[
 \sum_{i=i_0+k_0}^{i_0+k_0} c(p_i, q_i) \leq c(p_{i_0}, q_{i_0+k_0}) + \sum_{i=i_0}^{i_0+k_0-1} c(p_{i+1}, q_i),
\]

which contradicts Assumption (3).

We have then shown that neither demand nor supply points located between \(p_{i_0}\) and \(q_{i_0+k_0+1}\) can be matched with located outside this interval. The set \(S_{i_0}\) is then stable by an optimal transport plan. According to Assumption (1, 2), no nesting can occur in \(S_{i_0}\). The result follows.

\(\square\)

V. AN ALGORITHM FOR BALANCED CHAINS

The recursive use of our indicators is on the basis of the next algorithm.

Algorithm: Set \(\mathcal{P} = \{p_1, ..., p_N, q_1, ..., q_N\}\), \(\ell^P = (1, ..., N)\), \(\ell^q = (1, ..., N)\), and
\[k = 1. \]

While \(\mathcal{P} \neq \emptyset \) and \(k \leq N - 1 \) do

1. Compute \(I_p^k(i) \) and \(I_q^k(i') \) for \(i = 1, \ldots, N - k \) and \(i' = 1, \ldots, N - k - 1 \).

2. Define

\[
\mathcal{I}_p^k = \{ i_0, 1 \leq i_0 \leq N - k, I_p^k(i_0) < 0 \},
\]

\[
\mathcal{I}_q^k = \{ i_0, 1 \leq i_0 \leq N - k - 1, I_q^k(i_0) < 0 \},
\]

and do

(a) If \(\mathcal{I}_p^k = \emptyset \) and \(\mathcal{I}_q^k = \emptyset \), set \(k = k + 1 \).

(b) Else do

- for all \(i_0 \) in \(\mathcal{I}_p^k \) and for \(i = i_0 + 1, \ldots, i_0 + k \), do
 - define \(\sigma^*(\ell_p^i) = \ell_q^{i-1} \),
 - remove \(\{ p_{\ell_p^i}, q_{\ell_q^{i-1}} \} \) from \(\mathcal{P} \),
 - remove \(\ell_p^i \) and \(\ell_q^{i-1} \) from \(\ell_p \) and \(\ell_q \) respectively.

- for all \(i'_0 \) in \(\mathcal{I}_q^k \) and for \(i = i'_0 + 1, \ldots, i'_0 + k \), do
 - define \(\sigma^*(\ell_q^{i'_0}) = \ell_q^i \),
 - remove \(\{ p_{\ell_p^i}, q_{\ell_q^{i'_0}} \} \) from \(\mathcal{P} \),
 - remove \(\ell_p^i \) and \(\ell_q^{i'_0} \) from \(\ell_p \) and \(\ell_q \) respectively.

- set \(N = \frac{1}{2} \text{Card}(\mathcal{P}) \), and rename the points in \(\mathcal{P} \) such that \(\mathcal{P} = \{ p_1, \ldots, p_N, q_1, \ldots, q_N \} \),

\[
p_1 < q_1 < \ldots < p_i < q_i < p_{i+1} < q_{i+1} < \ldots < p_N < q_N.
\]

- set \(k = 1 \).

If \(k = N - 1 \), for \(i = 1, \ldots, N \) set \(\sigma^*(\ell_p^i) = \ell_q^i \).

To test the efficiency of our algorithm, we have applied it to an increasing number \(N \) of pairs of points. For a fixed value of \(N \), 100 samples of points have been chosen randomly in [0, 1], and the mean of the number of evaluations of \(g \) has been computed. The results are shown on Fig. 3.
The best case consists in finding a negative indicator at each step, and the worst corresponds to the case where all the indicators are positive. These two cases require respectively \(N - 1 \) and \((N - 1)^2 \) evaluations of \(g \).

![Diagram](image_url)

FIG. 3: Number of in-line evaluations with respect to the number of pairs, for various cost functions. The number \(\alpha \) is the slope of the log-log graphs.

