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Multilayer Space-Time Error Correcting Codes

Mohamad Sayed Hassan, Karine Amis

A new approach is presented for the design of full-diversity 
multilayer space-time error correcting codes (STECCs), for two 
transmitters. In addition to the linearity which is exploited to 
transmit linear combinations of forward error correcting (FEC) 
codewords, the proposed approach uses space-time threading 
concepts to obtain high diversity and coding gain on each block-
fading multiple-input multiple-output channel corresponding to a 
space-time codeword. We present in this paper the construction of 
2×3 multilayer STECCs, which outperform the previously known 
ones.

I. INTRODUCTION

Space-time block (STB) code designs have recently at-

tracted considerable attention since they improve the reliability

of communication systems over fading channels. Tarokh et

al. [1] developed some criteria for designing STB codes (for

the high SNR regime), in order to minimize the pairwise

error probability. Different designs were proposed based on

these criteria as orthogonal space-time block (OSTB) codes,

introduced by Alamouti [2] and generalized by Tarokh [3],

which attracted a lot of interest due to their low optimal

decoding complexity. However, OSTB codes have limited

rates, thus they do not exploit the full potential of a multiple

input multiple output (MIMO) system. Recognizing that OSTB

codes do not achieve full-channel capacity in MIMO channels

(except for the Alamouti scheme with 2 transmit and 1 receive

antennas), Hassibi et al. proposed the linear dispersion codes

(LDCs) [4] that maximize the mutual information between

transmitted and received signals in order to achieve the full-

ergodic capacity of the equivalent MIMO system.

Subsequent work designed full-rate and full-diversity STB

codes, using the threaded layering concept, like the threaded

algebraic space-time (TAST) codes [5]. The main idea of

these codes is that, they are constructed such that threads

in the structure are lied in different algebraic subspace to

be “transparent” to each others, and each one exploits all

the channel spatial diversity in the absence of the others.

Further work [6], [7] produced full-rate and full-diversity

algebraic STB codes with threaded/multilayer structure with

nonvanishing determinant, in order to achieve the diversity-

multiplexing gain (D-MG) tradeoff [8]. Another family of full-

rate, full-diversity STB codes with nonvanishing determinant,

based on the cyclic division algebra, was proposed in [9], [10],

[11]. These codes achieve an optimum compromise between

the transmission quality and its throughput. It is shown how

to construct such codes for any number of transmit antennas.

However, the entire above schemes do not take conjointly

into account the FEC techniques, which are added to sig-

nificantly increase the transmission diversity (transmission

quality). A joint design of error control coding, modulation

and space-time scheme has been considered in [1] in order to

construct the space-time trellis codes (STTCs) that provide a

substantial coding gain and a high diversity. These codes have

a better performance than STB codes, but since STTCs are

based on trellis codes they have a high decoding complexity.

In [12], a new family of space-time codes, with low decoding

complexity, that tend to incorporate the FEC technique in the

design of space-time codes has been proposed. It was shown

for this family that using the FEC linearity to transmit linear

combinations of FEC codewords, gives a good performance

with respect to structures applying the space-time coding and

error correcting codes separately, which means that this family

of space-time codes seems more adapted than other ones to

be concatenated with FEC codes. In this paper, definitions of

[12] are slightly modified and we use the term STECCs to

represent only the STB codes based on linear combinations

of bits, without taking into acount the FEC code applied to

binary data, in order to reveal more the ability of this family

to correct errors due to the transmission. We refer also to

the serial concatenation of both STECCs and FEC codes as

concatenated STECCs. We show that STECCs proposed in

[12] does not benefit from space-time techniques, to obtain

high diversity and coding gain on a block fading channel.

The main purpose of this paper is to combine the threaded

layering concept with the STECCs proposed in [12]. In

addition to linear combinations used in the construction of

these structures to create space-time redundancy, this approach

uses the rank and determinant criteria [1], [13], to optimize the

space-time design, in order to increase the diversity and the

coding gain of the STECCs without increasing the complexity

at the receiver. This paper is organized as follows. In section II,

we recall the space-time code design criteria for coherent block

fading channels, where the channel state information (CSI) is

available only at the receiver. Moreover, we demonstrate that

the STECCs presented in [12] do not verify the space-time

code design criteria. In section III, we present the principle of

threaded layering concept to construct a 2 × 3 full diversity

rectangular space-time structure. Furthermore, we apply this

concept to the STECCs, and we explain how one can relax
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constraints on space-time code constructions, thanks to the

redundancy generated by linear combinations. In section IV,

we present the performance of the resulting full-diversity

multilayer STECC in comparison with the STECC. Finally,

section V presents our conclusions.

II. COHERENT SPACE TIME CODING

A. System Model and Notations

In the following, boldface lower case letters will denote

vectors and boldface capital letters will denote matrices.

Letters Aj,. and A.,j represent the jth row and the jth column

of the matrix A, respectively. I represents the identity matrix, Z

and C denote, respectively, the ring of rational integers and the

field of complex numbers. The imaginary number is denoted

by i �
√
−1, and Z[i] denotes the ring of complex integers.

Finally, diag(a1, . . . , an) represents a diagonal matrix where

aj , j = 1, . . . , n, are its diagonal elements.

We consider a coherent system over a nt ×nr non frequency-

selective block fading channel, where the CSI is perfectly

estimated at the receiver. The nr × T received signal is

Y = HX + N (1)

where X is the nt ×T transmitted codeword, H is the nr ×nt

channel matrix with independent and identically distributed

(i.i.d) zero-mean complex Gaussian entries and N is assumed

to be the nr × T i.i.d zero-mean complex Gaussian noise.

B. Space-Time Code Design Criteria

It has been shown in [13] that in a coherent scenario

using a maximum likelihood (ML) decoding, the space-time

code design criteria to minimize the maximum pairwise error

probability (PEP) of estimating a codeword X̂ �= X at the

receiver while X has been sent, can be summarized as

• The rank criterion: Maximize the minimum rank r of

matrix A(X, X̂) = (X − X̂)(X − X̂)H.

• The determinant criterion: Maximize the minimum prod-

uct of the non-zero eigenvalues, (
r

∏

j=1

λj), of matrix

A(X, X̂). This criterion maximizes the coding gain.

It clearly appears that the maximum diversity advantage in

this context is nt × nr. Space-time codes that achieve such a

diversity are called full-diversity codes [1], [13].

C. 2×3 STECCs [12] : Theoretical Analysis

A 2×3 STECC is a 2×3 rectangular STB code based on

linear combinations between information bits to create a space-

time redundancy. The goal of this subsection is to verify that

the STECC extracted from [12] does not satisfy the space-time

design criteria.

By considering a M -ary quadrature amplitude modulation

(M -QAM), where M = 2mb so that mb is the modulation

efficiency, the 2×3 STECC is defined as

X =

[

x1 x2 x3

x2⊕3 x1⊕3 x1⊕2

]

(2)

where xj , 1 ≤ j ≤ 3 represents the M -QAM symbol

associated to the jth binary mb-uplet denoted by cj and xl⊕j ,

1 ≤ j ≤ 3, 1 ≤ l ≤ 3, j �= l represents the M -QAM symbol

associated to the binary mb-uplet denoted by cl⊕j = cj ⊕ cl,

⊕ stands for the mod-2 addition. This 2×3 STECC does not

satisfy the rank criterion as it is possible to define another

space-time error correcting codeword X̂ different from X by

X̂ =

[

x1 x3 x2

x2⊕3 x1⊕2 x1⊕3

]

such that the difference codeword matrix B(X, X̂) = X − X̂,

represented below, has a rank of 1 inferior to the maximum

possible rank r = nt = 2.

B(X, X̂) =

[

0 x2 − x3 x3 − x2

0 x1⊕3 − x1⊕2 x1⊕2 − x1⊕3

]

III. MULTILAYER STECCS

Our multilayer STECC is based on the threaded layering

concept, developed by Gamal et al. [5], to construct full-

diversity coherent space-time codes. For the sake of self-

completeness, the next subsection will describe in details how

to construct a 2×3 rectangular space-time structure to achieve

full diversity and maximize the coding gain using this concept.

A. Construction of a 2×3 Rectangular Space-Time Code

Based on the Threaded Layering Concept

The space-time threading [5] consists in designing a lay-

ered structure where each layer is active during all of the

available symbol transmission intervals, and uses each of the

nt antennas equally often over time. The key principle of this

universal framework is that each layer achieves a full diversity,

when other thread elements are set to zero. Furthermore,

threads must be “transparent” to each others which can be

realized by introducing numbers for making each thread in a

different algebraic subspace. These numbers are referred to as

“Diophantine numbers” [5]. In general, the number of threads

is less than or equal to the number of transmit antennas.

In our case, we take two layers. The threaded layering set

L = {ℓ1, ℓ2} is defined as

ℓj =
{(

⌊t + j − 1⌋nt
+ 1, t

)

: 0 ≤ t < T = 3
}

1 ≤ j ≤ 2,
where ⌊.⌋nt

denotes the mod-nt operation. Table.1 shows the

threaded layering for a 2×3 structure using 2 threads.

Each layer can be represented by a 3×1 vector, where each

entry is a linear combination of QAM symbols. Denote by y

and z two 3×1 vectors representing the first and the second

layer, respectively.

y =

⎡

⎣

y1

y2

y3

⎤

⎦ = M

⎡

⎣

u1

u2

u3

⎤

⎦ and z =

⎡

⎣

z1

z2

z3

⎤

⎦ = M

⎡

⎣

u4

u5

u6

⎤

⎦

where uT = [u1, . . . , u6] is the information symbol vector

such that, each component uj , 1 ≤ j ≤ 6 belongs to a

QAM constellation. M is a 3×3 complex rotation matrix.

Then, the space-time codeword takes the following form

X =

[

y1 φz2 y3

φz1 y2 φz3

]

where φ is a complex number

chosen to ensure full diversity and maximize the coding gain

for the composite space-time code. φ is a Diophantine number.
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1 2 1

2 1 2

TABLE I
THE THREADED LAYERING IN COHERENT SCENARIO USING 2 LAYERS. THE

NUMBERS REFER TO THREAD INDEXES. THE VERTICAL AND HORIZONTAL AXES

CORRESPOND TO THE SPATIAL AND TEMPORAL DIMENSIONS, RESPECTIVELY.

Denote by R =

⎡

⎣

M1,. 01×3

01×3 M2,.

M3,. 01×3

⎤

⎦ and Ŕ =

⎡

⎣

01×3 M1,.

M2,. 01×3

01×3 M3,.

⎤

⎦

two 3×6 matrices, then the space-time codeword X can be

represented by X =

[

(

diag(1, φ, 1)Ru
)T

(

diag(φ, 1, φ)Ŕu
)T

]

.

Thanks to the linearity of STB codes, we can reformulate

the rank criterion saying that the code is fully diverse if
∣

∣det(BBH)
∣

∣ �= 0, where B = X-X̂ �= 0 represents a codeword

difference matrix. Let s = u− û be the difference information

vector, where û is an information symbol vector different

from u (û �= u), thus each component sj , 1 ≤ j ≤ 6,

belongs to Z [i]-lattice, since QAM symbols are finite subsets

of Z [i]. Then B can be written as B =

[

(w1)
T

(w2)
T

]

where

w1 = diag(1, φ, 1)Rs and w2 = diag(φ, 1, φ)Ŕs.

Therefore, by calculating the determinant of BBH , we obtain

det(BBH) = ‖w1‖2 ‖w2‖2 − |< w1|w2 >|2 ≥ 0 (3)

and a necessary and sufficient condition to obtain a full

diversity is that
(

diag(1, φ, 1)R − α diag(φ, 1, φ)Ŕ
)

s �= 0

∀ α ∈ C,∀ s �= 0 ∈ Z [i]
6
-lattice. Denote s1 and s2 two 3×1

vectors belonging to Z [i]
3

where sT = [s1 s2] �= 0. We can

demonstrate that a full diversity is equivalent to

{

M1,.s1 �= 0 ∀ s1 �= 0

M2,.s2 �= 0 ∀ s2 �= 0
and

φM1,.s2

M1,.s1
�= M2,.s1

φM2,.s2
(4)

Or
{

M2,.s2 �= 0 ∀ s2 �= 0

M3,.s1 �= 0 ∀ s1 �= 0
and

φM3,.s2

M3,.s1
�= M2,.s1

φM2,.s2
(5)

One can see that equation (4) (resp. (5)) implies that the first

and the second column (resp. the second and the third column)

of a difference codeword matrix are linearly independent. We

note that, by using the threaded layering concept we can

not guarantee that the first and the third column are linearly

independent. When the full diversity is ensured, we maximize

the coding gain by applying the determinant criterion.

B. Full-diversity Multilayer STECC

In this subsection, we apply the threaded layering concept

to the STECC extracted from [12] and defined in equation

(2) in order to increase the diversity and maximize the coding

gain. The key principle of our approach is to benefit from

the linear combinations of {cj}1≤j≤3, to relax constraints on

the rotation matrix and the Diophantine number. Moreover,

we keep properties of STECC defined in equation (2), i.e,

each entry of a space-time codeword matrix is composed of

one M -QAM symbol. In addition, we assign the information

symbols to the first layer ℓ1 and the redundancy symbols to

the second one ℓ2. In this case, we have an identity rotation

matrix and constraints imposed by equations (4) and (5) are

greatly reduced since the two layers are dependent.

A proper arrangement of redundancy symbols associated to

ℓ2 with respect to information symbols, and a judicious choice

of φ must be done in order to ensure that we have always

in a difference codeword matrix 2 columns that are linearly

independent (full diversity), and also in order to maximize the

coding gain. Thanks to linear combinations, difference space-

time symbols verify these 2 properties

1) if sj = 0, sl �= 0 ⇒ sj⊕l �= 0.

2) if sj = 0, sl = 0 ⇒ sj⊕l = 0.

where j, l ∈ {1, 2, 3}, and j �= l. Thus, the first row of

the codeword matrix must include a redundancy symbol xj⊕l

such that, xj and xl are assigned to 2 different layers. As the

information and the redundancy symbols belong to a subset

of Z[i], then it is easy to verify that φ2 /∈ Z[i] is a sufficient

condition to ensure a full diversity taking into account a

proper arrangement of redundancy symbols. Therefore, we

obtain 2 different arrangement possibilities to construct a full

diversity space-time code. We can thus define the full-diversity

multilayer STECC as

X =

[

x1 φx5 x3

φx4 x2 φx6

]

(6)

where (x4, x5, x6) ∈
{

(x1⊕3, x1⊕2, x2⊕3), (x2⊕3, x1⊕2, x1⊕3)
}

,

whatever φ2 /∈ Z[i]. Additionally, to ensure an energy

efficiency we introduce the shaping constraint [10] that can

be achieved by taking |φ| = 1 ⇒ φ = eiθ. This constraint

ensures that both layers consumes the same energy and both

transmit antennas radiate the same energy. Moreover, to

maximize the coding gain, the determinant criterion must be

realized, we can demonstrate in our case that maximizing the

coding gain is equivalent to find θoptimal such that

θoptimal = arg max
0<θ<2π

θ �= π
2 [π

2 ]

min
(s1,s2,s3)∈S3

(s1,s2,s3) �=(0,0,0)

det(BBH), (7)

where det(BBH) =
∣

∣s1s2 − φ2s4s5

∣

∣

2
+ |s1s6 − s4s3|2 +

∣

∣φ2s5s6 − s2s3

∣

∣

2
, and S, a finite subset of Z[i], contains the

difference modulation symbols. One can see that the coding

gain for the 2 space-time possibilities are equal. In addition, for

Gray-mapped 4-QAM constellation, we demonstrate (see the

Appendix A) that the minimum of the determinant of BBH is

equal to 16 and is independent of the choice of θ, 0 ≤ θ < 2π.

We verify also by computer search that θoptimal = 0 maximize

the coding gain for Gray-mapped 16-QAM constellation.

C. 2×3 Concatenated Multilayer STECCs

Let C(n,L) be a linear FEC code, where n denotes the

code length, L its dimension and C the codeword set. The

2×3 concatenated multilayer STECC (resp. 2×3 concatenated

STECC) is the 2×3 multilayer STECC (resp. 2×3 STECC)
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defined in equation (2) (resp. (6)) where cj ∈ C , 1 ≤ j ≤ 3
is an information codeword provided by a FEC encoder and

cj⊕l = cj⊕cl, j �= l, 1 ≤ l ≤ 3 the linear combinations from

these information codewords. Therefore, using a 2mb -QAM for

the concatenated multilayer STECC, we obtain
n

mb

multilayer

space-time error correcting codewords. At the receiver side, a

lower-complexity turbo-like receiver such as the one described

in [14], [15] has to be preferred, due to the high performance

of such a receiver and its low complexity in comparison with

the exponential one of the optimal receiver. This turbo-like

receiver with an interference canceller, optimized according

to the minimum mean square error (MMSE) criterion [15], is

based on the cooperation of two entities: a MMSE equalizer

that exchanges reliable information with a soft input soft out-

put (SISO) channel decoder according to the turbo principle.

In the case of an iterative decoding we can demonstrate

that the asymptotic coding gain [16] of the 2×3 concatenated

multilayer STECC is independent of the parameter φ, and thus

φ must only satisfy φ2 /∈ Z[i]. We note that this demonstration

is not provided here due to the limited number of pages.

Additionally, the concatenated multilayer STECC is flexible

enough, like the concatenated STECC [12], to use puncturing

upon it. In order to increase the spectral efficiency, on the

price of reducing the transmission diversity, 2 entire FEC

codewords can be erased from the proposed structure without

any loss of useful information. The puncturing technique must

be smartly done so that the receiver can recover the erased FEC

codewords by linear combinations of the remaining ones.

IV. SIMULATION RESULTS

In this section, we present simulation results for two receive

antennas using the Gray-mapped 2mb -QAM constellations.

The channel is assumed to be Rayleigh block fading, constant

over τ modulation symbol durations.

A. Performance of Multilayer STECC

In this subsection, we compare the proposed multilayer

STECC with the STECC presented in [12]. In that case, a

ML detection is considered at the receiver. Fig.1 shows that

the slop of the multilayer STECC is equal to nt.nr = 4 for

high SNR, which confirms the full diversity of this structure.

On the other hand, one can see that the STECC does not

ensure a full diversity as was theoretically proved in section

II. Note that the computation cost remains the same as for the

STECC. For τ = 3 a gain of 5.3 dB is achieved at a BER

of 10−4. Moreover, the multilayer STECC performs 0.5 dB

worse compared to the Alamouti scheme which is satisfactory

as it is obtained without taking into account the FEC coding.

Simulation results verify also that for τ = 2, this structure

benefits from the diversity of the channel and outperforms by

0.7 dB, at a BER=10−5, the Alamouti scheme.

B. Performance of Concatenated Multilayer STECC

In this case, we assume that τ = 3 and we consider both 4-

QAM and 16-QAM Gray-mapped constellations. Fig.2 shows

the performance of the concatenated multilayer STECC with
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Fig. 1. Performance of the new structure compared to those of [2], [12].
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Fig. 2. Turbo Equalizer. L=510. nr = 2. τ = 3.

respect to the concatenated STECC using the convolutional

codes CC(7, 5)oct and CC(13, 15)oct. At the reception, the

lower complexity turbo-like receiver with an interference can-

celler optimized according to the MMSE criterion is adopted

and convolutional codes are decoded using the SISO BCJR

algorithm [17]. Fig.2 shows that the concatenated multilayer

STECC performs better than the concatenated STECC for

the same complexity. At a BER of 10−4 and for Gray-

mapped 4-QAM and 16-QAM constellations the gain of the

proposed structure is roughly equal to 0.7 dB and 0.5 dB using

CC(7, 5)oct and CC(13, 15)oct respectively. By comparison

to the 5.3 dB gain obtained when no FEC was applied, the gain

is less significant which is due to the diversity improvement

resulting from the FEC application.

V. CONCLUSIONS

In this paper, we presented the application of threaded

layering concept to modify the STECC, presented in [12], in

order to increase its diversity. The multilayer STECC proposed

for 2 transmit antennas benefits from the space-time code

designs in order to increase the diversity and the coding gain

of the STECC. We demonstrated that the proposed multilayer

STECC achieves the maximum diversity. Simulation results

that demonstrate the gain offered by the concatenated multi-

4



layer STECC with respect to the concatenated STECC were

also presented. As a result constructing a full-diversity space-

time code, which has an error protection at the center of its

design, improves the transmission quality since the space-time

code will be more adapted to be concatenated with a FEC code

without increasing the receiver complexity.

Further works will thus consider a generalization of this

approach to nt transmit antennas (nt > 2), and will try to

reduce the redundancy in order to increase the code rate.

APPENDIX A

We demonstrate that for Gray-mapped 4-QAM constellation,

the minimum determinant of BBH is independent of the

choice of φ = eiθ. We have

B =

[

s1 φs5 = φs1⊕2 s3

φs4 = φs1⊕3 s2 φs6 = φs2⊕3

]

where s = [s1, . . . , s6]
T and sj ∈ {0,±2,±2i,±2 ± 2i},

1 ≤ j ≤ 6, thus |sj | ∈ {0, m = 2, M = 2
√

2}. By

developping the determinant of BBH , we obtain

det(BBH) = |s1|2 (|s2|2 + |s6|2) + |s5|2 (|s4|2 + |s6|2)
+ |s3|2 (|s4|2 + |s2|2) − 2 Re{s1s

∗
3s

∗
4s6}

− 2 Re{(φ2)∗s2s
∗
5(s1s

∗
4 + s3s

∗
6)}

where Re{z} denotes the real part of the complex number

z. We consider that (s1, s2, s3) �= (0, 0, 0). Remind that if

sj = 0, sl �= 0 ⇒ sj⊕l �= 0, j, l ∈ {1, 2, 3}, j �= l, thus the

minimum of det(BBH) can be determined by considering 2

cases :

1)
6
∏

j=1

|sj | = 0, ∃ k, 1 ≤ k ≤ 3, |sk| �= 0

If s2s5 = 0

det(BBH) ≥ |s2|2 (|s1|2 + |s3|2) + |s5|2 |s4|2

+ |s6|2 |s5|2 + (|s1| |s6| − |s3| |s4|)2

If s1s
∗
3s

∗
4s6 = 0

⇒ det(BBH) ≥ (|s4| |s5| − |s1| |s2|)2 + |s3|2 |s4|2

+ |s1|2 |s6|2 + (|s2| |s3| − |s5| |s6|)2

⇒ in this case det(BBH) ≥ m4.

2)
6
∏

j=1

|sj | �= 0

For a 4-QAM, sj , 1 ≤ j ≤ 6 is constructed from 4 binary

numbers, {cjl}, {ćjl}, 1 ≤ l ≤ 2. Taking into account the

following binary relation

cjl⊕ckl = ćjl⊕ćkl ⇔ ∀ ǫ ∈ {0, 1}, cjl = ćjl⊕ǫ, ckl = ćkl⊕ǫ

We demonstrate that for Gray-mapped symbols

If sjsk �= 0, sj⊕k �= 0 ⇔ ∃ l ∈ {1, 2}, ∃! p ∈ {j, k}, cpl �= ćpl

As a consequence, we conclude that

• |sj | |sk| |sj⊕k| = m2M j, k ∈ {1, 2, 3} and j �= k, each

couple constructed from {sj , sk, sj⊕k} is constituted of

2 elements which are linearly independent.

•

3
∏

j=1

|sj | = m2M

Thus we conclude that
6
∏

j=1

|sj | �= 0 ⇐⇒ ∃ j, k, p ∈

{1, 2, 3} j �= k �= p |sj | = M, |sk| |sp| = m2, |sk⊕p| =
M, |sj⊕k| |sj⊕p| = m2. Therefore three possibilities are

taken into account to lower bound the minimum determi-

nant of BBH . Note that Re{(φ2)∗s2s
∗
5(s1s

∗
4 + s3s

∗
6)} ≤

|s2| |s5| (|s1| |s4| + |s3| |s6|) and M =
√

2m.

• |s1| = M , |Re{s1s
∗
3s

∗
4s6}| ≤ |s1| |s3| |s4| |s6|

⇒ det(BBH) ≥ (7 − 4
√

2)m4 > m4

• |s2| = M , |Re{s1s
∗
3s

∗
4s6}| =

√
2

2
|s1| |s3| |s4| |s6|

⇒ det(BBH) ≥ (4 − 2
√

2)m4 > m4

• |s3| = M , |Re{s1s
∗
3s

∗
4s6}| =

√
2

2
|s1| |s3| |s4| |s6|

⇒ det(BBH) ≥ (4 − 2
√

2)m4 > m4

As a result from the whole above discusion we demonstrate

that the minimum determinant of BBH is equal to m4 and is

attained for (s1, s2, s3) = (0, 0, 2).
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