Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case

Abstract : We complete the known results on the local Cauchy problem in Sobolev spaces for the KdV-Burgers equation by proving that this equation is well-posed in $ H^{-1}(\R) $ with a solution-map that is analytic from $H^{-1}(\R) $ to $C([0,T];H^{-1}(\R))$ whereas it is ill-posed in $ H^s(\R) $, as soon as $ s<-1 $, in the sense that the flow-map $u_0\mapsto u(t) $ cannot be continuous from $ H^s(\R) $ to even ${\cal D}'(\R) $ at any fixed $ t>0 $ small enough. As far as we know, this is the first result of this type for a dispersive-dissipative equation. The framework we develop here should be very useful to prove similar results for other dispersive-dissipative models
Type de document :
Article dans une revue
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Scuola Normale Superiore 2011, 10 (3), pp.531-560
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00436652
Contributeur : Luc Molinet <>
Soumis le : jeudi 31 décembre 2009 - 10:56:31
Dernière modification le : jeudi 7 février 2019 - 17:48:24
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 11:38:55

Fichiers

critical_kdvb-5.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00436652, version 2
  • ARXIV : 0911.5256

Citation

Luc Molinet, Stéphane Vento. Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Scuola Normale Superiore 2011, 10 (3), pp.531-560. 〈hal-00436652v2〉

Partager

Métriques

Consultations de la notice

427

Téléchargements de fichiers

140