]. D. Aro67, . Aronsonbal90-]-v, and . Bally, Bounds for the fundamental solution of a parabolic equation On the connection between the Malliavin covariance matrix and Hörmander's condition, Bas97] R. F. Bass. Diusions and Elliptic Operators, p.890896219255, 1967.

V. Bally, A. B. Kohatsu-higa-[-bl91-]-g, R. Arous, . [. Léandre, L. Bodineau et al., Lower bounds for densities of Asian typestochastic dierential equations Décroissance exponentielle du noyau de la chaleur sur la diagonale Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats, BP07] U. Boscain and S. Polidoro. Gaussian estimates for hypoelliptic operators via optimal control, pp.377-402127333, 1991.

E. Barucci, S. Polidoro, and V. Vespri, Some results on partial dierential equations and asian options [Cat90] P. Cattiaux. Calcul stochastique et opérateurs dégénérés du second ordre -I. Résolvantes, théorème de Hörmander et applications, CM02] P. Cattiaux and L. Mesnager. Hypoelliptic non-homogeneous diffusions . Prob. Th. Rel. FieldsCor07] J.-M. Coron. Control and nonlinearity. Mathematical Surveys and Monographs, p.475497421462453483, 1990.

J. Eckmann, C. Pillet, and L. Rey-bellet, Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at dierent temperatures On a class of degenerate parabolic equations of kolmogorov type, Comm. Math. Phys. Applied Mathematics Research eXpress, vol.3, pp.657-69777116, 1999.

M. , D. Francesco, S. Polidorofri64, and ]. A. Friedman, Schauder estimates, Harnack inequality and Gaussian lower bound for kolmogorov-type operators in non-divergence form Partial dierential equations of parabolic type Freidlin and A. Wentzell. Random Perturbations of Dynamical Systems Hérau and F. Nier. Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Adv. Dierential Equations Arch. Ration. Mech. Anal. Acta. Math, vol.11, issue.119, p.12611320151218147171, 1964.

A. M. Il-'in, A. S. Kalashnikov, O. A. Oleinik, H. Ishii, and P. Lions, Second-order linear equations of parabolic type Viscosity solutions of fully nonlinear second-order elliptic partial dierential equations, Uspehi Mat. NaukKM00] V. Konakov and E. Mammen. Local limit theorems for transition densities of Markov chains converging to diusions. Prob. Th. Rel. Fields, pp.3-1462678551587, 1962.

V. Konakov, S. Menozzi, and S. Molchanov, Explicit parametrix and local limit theorems for some degenerate diusion processes Zufällige Bewegungen (zur Theorie der Brownschen Bewegung) Ann. of Math, North-Holland Math. LibraryKS87] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. III. J. Fac. Sci. Univ. Tokyo Sect. IA Math, pp.2-35271306176391442, 1934.
DOI : 10.1214/09-aihp207

URL : http://arxiv.org/abs/0802.2229

]. P. Mal78a, . Malliavinmal78b-]-p, . [. Malliavin, J. Ma, and . Zhang, Academic Press Stochastic calculus of variation and hypoelliptic operators [Mal97] P. Malliavin. Stochastic analysis Curvature and the eigenvalues of the Laplacian Weak solutions for forward-backward SDEsa martingale problem approach, Stochastic analysis (Proc. Internat. Conf., Northwestern Univ Proceedings of the International Symposium on Stochastic Dierential Equations (Res. Inst. Math. Sci., Kyoto Univ., Kyoto The Malliavin calculus and related topics. Probability and its ApplicationsPol94] S. Polidoro. On a class of ultraparabolic operators of Kolmogorov- Fokker-Planck type. Le MatematichePP06] A. Pascucci and S. Polidoro. Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators. Trans. Amer. Math. Soc, p.4369209221255310548734893, 1967.

L. Rey-bellet, L. E. Lawrence, M. Revuz, . J. Yorshe91-]-s, and . Sheu, Asymptotic behavior of thermal nonequilibrium steady states for a driven chain of anharmonic oscillators Continuous martingales and Brownian motion Some estimates of the transition density of a nondegenerate diusion Markov process [Soi94] C. Soize. The Fokker-Planck equation for stochastic dynamical systems and its explicit steady state solutions, Series on Advances in Mathematics for Applied Sciences, p.124538561, 1991.

. Teor, . Verojatnost, ]. E. Primenenson98, . W. Sontagstr83-]-d, and . Stroock, Mathematical control theory Some applications of stochastic calculus to partial dierential equations In: Eleventh Saint Flour probability summer school1981 (Saint Flour Multidimensional diusion processes, Tal02] D. Talay. Stochastic Hamiltonian dissipative systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Processes and Related Fields, pp.540547-267382163198, 1967.

M. Weber, The fundamental solution of a degenerate partial differential equation of parabolic type, Transactions of the American Mathematical Society, vol.71, issue.1, p.2437, 1951.
DOI : 10.1090/S0002-9947-1951-0042035-0