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Abstract.    Self-Organizing Maps (SOM) are very powerful tools for data 
mining, in particular for visualizing the distribution of the data in very high-
dimensional data sets. Moreover, the 2D map produced by SOM can be used for 
unsupervised partitioning of the original data set into categories, provided that 
this map is somehow adequately segmented in clusters. This is usually done 
either manually by visual inspection, or by applying a classical clustering 
technique (such as agglomerative clustering) to the set of prototypes 
corresponding to the map. 
In this paper, we present a new approach for the segmentation of Self-
Organizing Maps after training, which is both very simple and efficient. Our 
algorithm is based on a post-processing of the U-matrix (the matrix of distances 
between adjacent map units), which is directly derived from an elementary 
image-processing technique. It is shown on some simulated data sets that our 
partitioning algorithm appears to give very good results in terms of 
segmentation quality. Preliminary results on a real data set also seem to indicate 
that our algorithm can produce meaningful clusters on real data. 
 
 

1. Introduction 
 
Self-Organizing Maps (SOM, invented by T. Kohonen in 1981 [7, 8]) have turned out 
to be very powerful for gaining insight into data repartition [5, 10, 12]. Indeed, SOM 
can provide a very valuable human-interpretable visualization of the distribution of 
very high dimensional data: it determines a set of prototypes that represent the data, 
and are organized in a way that achieves a topology-preserving projection from the 
data space onto a low-dimensional space (generally a 2D grid). This grid provides a 
useful and directly interpretable view of some characteristics of the analyzed data set, 
in particular its cluster structure [15, 16]. 

Moreover, SOM can be used not only as a powerful data set visual inspection 
device, but as a tool for partitioning the data into categories (i.e. identifying separate 
clusters in the input space). This is theoretically quite simple to do: visual 
identification of groups of prototypes on the obtained map is fairly easy, and it is then 
absolutely straightforward to deduce a partitioning of the data set from the determined 
clusters of prototypes. One of the advantages of using SOM segmentation for 
clustering is that no a priori hypothesis on the number of clusters is required. 
However, it is highly desirable to automate the segmentation of the map into clusters 
instead of having to rely on a visual and manual definition of the groups of 
prototypes.  



Vesanto and Alhoniemi [14] proposed and used with some success the application 
of classical hierarchical agglomerative and partitive clustering techniques to the SOM 
prototypes. As pointed out in [14], this approach allows to reduce significantly the 
computation time as compared to applying the clustering algorithm directly to the 
original data, since the number of prototypes is the size of the map, which is normally 
much less than the number of data points. F. Murtagh [9] has proposed an even more 
efficient variant, which consists in applying a contiguity-constrained clustering 
algorithm, taking thus advantage of the neighborhood relations between map units. 
Nevertheless, all these techniques require the computation of a significant number of 
within-cluster or inter-cluster distances (for a complexity analysis, see for instance 
[3]), whose computation cost is also proportional to the dimension of the input data. 
This could become problematic when applied to very high dimensional data such as 
those used in text-mining (see [11]). 

In this paper, we propose an alternative technique for segmenting Self-Organizing 
Maps, which is both very simple and efficient. Our algorithm also takes full 
advantage of the neighborhood relations between prototypes by computing only the 
distances between neighboring prototypes (and by computing them only once).  
 
 

2. The Algorithm 
 
The basic idea of our SOM segmentation algorithm is to apply a simple area-filling 
algorithm to the U-matrix of the SOM (i.e. the matrix of distances between adjacent 
map units [12]). More precisely, for every prototype pi,j of the SOM (placed at the (i,j) 
position on the SOM grid), we first compute the two following distances:  

• ( )1,,, , += jijiji ppdisteastDist   

• ( )jijiji ppdistsouthDist ,1,, , +=  

where dist(pi,j , pn,m) is the euclidian distance in input space between pi,j and pn,m. 
The initial variant of our algorithm considers only the mean distance of each 
prototype pi,j to its four neighbors on the map pi-1,j, pi+1,j, pi,j-1, and pi,j+1:  

( ) 4/,,1,1,, jijijijiji southDistsouthDisteastDisteastDistmeanDist +++= −−  

We then determine the frontiers of each visually-identified cluster Ck on the SOM 
grid with the following region-growing algorithm, directly adapted from standard 
area-filling techniques: 

- define a threshold distance dmink for cluster Ck 
- start from any prototype pi0,j0 which is clearly inside the cluster Ck  
- apply to (i0,j0, dmink, k) the following recursive procedure: 

floodFillMoy(i, j, dmink, k) { 
   if (i,j) is inside the SOM grid range, then: 
      if (pi,j is not tagged as member of Ck) and (meanDisti,j < dmink), then do: 
           - tag pi,j as member of Ck 
           - floodFillMoy(i+1,j,dmink,k) 
           - floodFillMoy(i-1,j,dmink,k) 
           - floodFillMoy(i,j-1,dmink,k) 
           - floodFillMoy(i,j+1,dmink,k) 
} 



3. Experiments and results on artificial data sets 
 
We conducted various tests on simulated data sets for which the desired result of the 
clustering was obvious. Some of them contained several very well separated convex 
clusters of points (such as the one presented on left of fig.1). Others were more 
sophisticated clustering benchmarks such as the "chain link" example proposed by 
[13], which consists of two intertwined 3D rings (see right of fig.1). 

                 
Figure 1: An example of 2D simulated data set (left), and an example of 3D simulated data set, 

consisting of two 3D rings intertwined as a chain link (left). 

For the SOM algorithm, we used a gaussian kernel neighborhood and a linearly 
decreasing learning rate. After the algorithm has converged, we compute the U-matrix 
of the map, and visualize the "mean distance to neighbors" as defined in §2 (see left 
of figures 2 and 3). Then we apply our region-growing algorithm separately to each 
visually-identified cluster, using for each of them a different threshold chosen as the 
maximum possible value that does not induce a propagation to other clusters. We thus 
obtain a segmentation of the map, where each region is separated from the others by 
some "no man's land" (or "frontier") units (see figures 2 and 3). 

  
Figure 2: Visualization of the typical "mean distance to neighbors" matrix for the SOM 

obtained on the 2D data set of fig.1 (left). Corresponding segmentation of the SOM produced 
by our algorithm (middle). Clustering result (right): no points are affected to the wrong cluster, 

and only a few "border" points end up unclassified (big stars). 

Once the segmentation is done, we attribute a particular label to each region of the 
map, and simply tag every original data point with the label of its best matching unit 
(BMU). Of course, since some units do not belong to any region, any data point 
whose BMU is a frontier unit will have a specific "unclassified" tag. We then analyze 
the labeled data points, in order to assess the quality of the obtained clustering. In our 
tests, there was nearly never any misclassification, i.e. nearly no data point was 
erroneously labeled as part of a cluster it does not belong to. However, as expected, 
some data points were left "unclassified", but there were very few of them and most 
were on the border of the clusters, as illustrated on the rightmost part of figure 2. 



         
Figure 3: Visualization of the typical “U-matrix” for the SOM obtained on the "chain link" 3D 
data set (left), and corresponding segmentation of the SOM produced by our algorithm (right). 

For our experiments on the "chain link" data set, 100% of the points were classified in 
the correct cluster. For the 2D data set presented on figures 1 and 2, there was usually 
no misclassified points, and the typical number of "unclassified" points was 20 to 30 
on a total of 2000, which is a very small proportion (1% or 2%). 
 
 

4. Preliminary results on real data sets 
 
In order to evaluate if our algorithm produces meaningful clusters on real data sets, 
we began to try it on a few of them. We first used the famous Fisher’s iris data set [4]. 
This real 4-dimensional data set contains 50 examples for each of 3 iris flower 
classes. It is a very popular benchmark for classification and clustering techniques.  

Depending on the SOM parameters used, we obtained between 2 and 4 clusters. 
One of the clusters always nearly coincided with the Setosa iris species (which is 
linearly separable from the two other classes), and the others generally made sense as 
compared to the 3 iris categories (see examples in tables 1 and 2).  

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Outside clusters 

 Iris Setosa 49 0 0 0 1 

 Iris Versicolor 0 33 1 0 14 

 Iris Virginica 0 3 34 8 7 

Table 1: Example of clustering obtained on the iris data set, each column showing the class 
membership distribution of the points of one of the produced clusters. Nearly all points of each 

given cluster belong to the same iris class. However, 22 irises are outside all 4 clusters.  

  Cluster 1 Cluster 2 Cluster 3 Outside clusters 
 Iris Setosa 0 50 0 0 
 Iris Versicolor 27 0 1 22 
 Iris Virginica 6 0 35 9 

Table 2: A second example of clustering obtained on the iris data set, in which the number of 
clusters is exactly the number of iris classes. However, cluster #1 significantly overlaps 2 

different iris classes, and 31 irises do not belong to any of the 3 obtained clusters. 

The global typical outcome of our algorithm on the iris data set compares favorably to 
partitions obtained, for instance, by Blatt et. al. with various other clustering methods 
(see [2]), or with those reported in [6] or in [1].  

Other very preliminary tests conducted on bigger and more complex real data sets 
also seem encouraging, but require further analysis. 
 



 

5. Computational cost 
 
As can be seen in [14], the computational cost of partitioning a SOM is not always 
negligible compared to that of the SOM training (especially when k-means clustering 
is used). Moreover, as pointed out in [3], standard hierarchical clustering techniques 
have an over-all computational complexity of at least O(n2logn) where n is the 
number of elements to cluster. In the case of SOM segmentation, n is the number of 
units on the map, which is normally much lower than the original data set size N. 
However, since the complexity of SOM training is in O(n), it is clear that for a given 
data set size N, the relative computational cost of the segmentation increases quickly 
with the map size n. And when one wants to use the trained SOM for non-parametric 
clustering by a posteriori segmentation of the map, it is desirable to use relatively big 
maps (i.e. with n values of a few hundreds)… For the algorithm we propose here, it is 
straightforward to deduce from its description in §2 that it is in O(n), and that the 
essential cost is the computation of the 2*n adjacent unit distances required to obtain 
the U-matrix. Therefore, contrary to most SOM segmentation techniques, the 
computational cost of our partitioning procedure relative to that of the SOM training 
should always remain negligible, whatever the chosen grid size. 
 
 

6. Conclusion, discussion and perspectives 
 
In this paper we presented a new algorithm for segmenting Self-Organizing Maps 
after training, in order to use the SOM as a clustering technique for the input data. 
Our algorithm, directly adapted from standard area-filling techniques, is extremely 
simple, but appears to produce very good clustering results, at least on the simulated 
data sets on which we tested it (see §3). Preliminary results a few real data sets are 
also encouraging, as illustrated in §4 on the case of Fisher's iris data set. Compared to 
usual SOM partitioning techniques, our algorithm also has the advantage to have an 
extremely low computational cost. It thus has the potential to be a powerful tool for 
automating the discovery of meaningful categories in big data sets. 

More thorough tests on other and more complicated real data sets are necessary 
and currently underway. Also, one drawback of our SOM segmentation approach in 
its current form, is that the threshold value has to be manually determined by trial and 
error for each visually-identified cluster, making it semi-automatic rather than fully 
automated. However, we are currently improving our procedure in order to overcome 
this problem without impairing its computational efficiency. Another ongoing 
improvement consists in taking better advantage of the U-matrix by propagating the 
area-filling differently in each direction, by taking into account the vector of distances 
to adjacent units instead on simply relying on the mean distance to the four neighbors.  
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