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Ecole des Mines de Paris, 60 bd Saint-Michel, FF23R2aris Cedex 06, France.

Abstract. Self-Organizing Maps (SOM) are very powerfublto for data
mining, in particular for visualizing the distriboh of the data in very high-
dimensional data sets. Moreover, the 2D map pratlbgeSOM can be used for
unsupervised partitioning of the original data iséd categories, provided that
this map is somehow adequately segmented in custdris is usually done
either manually by visual inspection, or by applyia classical clustering
technique (such as agglomerative clustering) to #®¢ of prototypes
corresponding to the map.

In this paper, we present a new approach for ttgmestation of Self-
Organizing Maps after training, which is both vesiynple and efficient. Our
algorithm is based on a post-processing of the ttfixdhe matrix of distances
between adjacent map units), which is directly \a&ti from an elementary
image-processing technique. It is shown on someillated data sets that our
partitioning algorithm appears to give very goodsufes in terms of
segmentation quality. Preliminary results on a deah set also seem to indicate
that our algorithm can produce meaningful clusterseal data.

1. Introduction

Self-Organizing Maps (SOM, invented by T. Kohoneri 981 [7, 8]) have turned out
to be very powerful for gaining insight into dagpartition [5, 10, 12]. Indeed, SOM
can provide a very valuable human-interpretabl@aligation of the distribution of
very high dimensional data: it determines a sgtrofotypes that represent the data,
and are organized in a way that achieves a topgbogserving projection from the
data space onto a low-dimensional space (geneaa®® grid). This grid provides a
useful and directly interpretable view of some eleteristics of the analyzed data set,
in particular its cluster structure [15, 16].

Moreover, SOM can be used not only as a powerfth dat visual inspection
device, but as a tool for partitioning the datainategories (i.e. identifying separate
clusters in the input space). This is theoreticallyite simple to do: visual
identification of groups of prototypes on the ob&al map is fairly easy, and it is then
absolutely straightforward to deduce a partitiordfighe data set from the determined
clusters of prototypes. One of the advantages aigu$OM segmentation for
clustering is that no a priori hypothesis on thenbar of clusters is required.
However, it is highly desirable to automate thensegtation of the map into clusters
instead of having to rely on a visual and manudindmon of the groups of
prototypes.



Vesanto and Alhoniemi [14] proposed and used withes success the application
of classical hierarchical agglomerative and paditlustering techniques to the SOM
prototypes. As pointed out in [14], this approadlbves to reduce significantly the
computation time as compared to applying the ctimgealgorithm directly to the
original data, since the number of prototypes ésdize of the map, which is normally
much less than the number of data points. F. Marif8ghas proposed an even more
efficient variant, which consists in applying a tiguoity-constrained clustering
algorithm, taking thus advantage of the neighbodhoglations between map units.
Nevertheless, all these techniques require the atatipn of a significant number of
within-cluster or inter-cluster distances (for angexity analysis, see for instance
[3]), whose computation cost is also proportiomathte dimension of the input data.
This could become problematic when applied to \@gh dimensional data such as
those used in text-mining (see [11]).

In this paper, we propose an alternative technfqueegmenting Self-Organizing
Maps, which is both very simple and efficient. Qaigorithm also takes full
advantage of the neighborhood relations betweetofymes by computing only the
distances between neighboring prototypes (and lpating them only once).

2. TheAlgorithm

The basic idea of our SOM segmentation algorithritoiapply a simple area-filling
algorithm to the U-matrix of the SOM (i.e. the nmatof distances between adjacent
map units [12]). More precisely, for every protayp; of the SOM (placed at thej]
position on the SOM grid), we first compute the iwthowing distances:

* eastDist; = dist(piyj \ pwl)

* southDist =diSt(pi,j, pi+1,j)

wheredist(p; , p. is the euclidian distance in input space betwgeandp, m
The initial variant of our algorithm considers ontiie mean distance of each
prototypep; to its four neighbors on the map ;, P, Pij1, aNAdP;ji:

meanDist; = (eastDist ;_, + eastDist ; + southDist_, ; + southDist ; )/4

We then determine the frontiers of each visualbntified cluster ¢ on the SOM
grid with the following region-growing algorithm,irdctly adapted from standard
area-filling techniques:
- define a threshold distandenin, for cluster G
- start from any prototyppg;, which is clearly inside the clusteg C
- apply to(i0,j0, dmin, k) the following recursive procedure:
floodFillMoy(i, j, dmin, k) {
if (i,j) is inside the SOM grid range, then:
if (0i; is not tagged as member af)@nd (meanDisf; < dmin,), then do:
- tagy,; as member of C
floodFillMoy(i+1,j,dmin,k)
- floodFillMoy(i-1,j,dmin,k)
- floodFillMoy(i,j-1,dmin,k)
- floodFillMoy(i,j+1,dmin,Kk)



3. Experimentsand resultson artificial data sets

We conducted various tests on simulated data setstich the desired result of the
clustering was obvious. Some of them containedratwery well separated convex
clusters of points (such as the one presented forofiefig.1). Others were more
sophisticated clustering benchmarks such as thairidmk" example proposed by
[13], which consists of two intertwined 3D ringgésright of fig.1).

Figure 1: An example of 2D simulated data set)leftd an example of 3D simulated data set,
consisting of two 3D rings intertwined as a chankkleft).

For the SOM algorithm, we used a gaussian kernghberhood and a linearly
decreasing learning rate. After the algorithm r@sverged, we compute the U-matrix
of the map, and visualize the "mean distance tghteirs" as defined in 82 (see left
of figures 2 and 3). Then we apply our region-grogvalgorithm separately to each
visually-identified cluster, using for each of thendifferent threshold chosen as the
maximum possible value that does not induce a aten to other clusters. We thus
obtain a segmentation of the map, where each regisaparated from the others by
some "no man's land" (or "frontier") units (seaufigs 2 and 3).
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Figure 2: Visualization of the typical "mean distato neighbors" matrix for the SOM
obtained on the 2D data set of fig.1 (left). Cor@sging segmentation of the SOM produced
by our algorithm (middle). Clustering result (rightjo points are affected to the wrong cluster,
and only a few "border" points end up unclassifiei Gtars).

Once the segmentation is done, we attribute acpdati label to each region of the
map, and simply tag every original data point vtfta label of its best matching unit
(BMU). Of course, since some units do not belongaby region, any data point
whose BMU is a frontier unit will have a specifigriclassified" tag. We then analyze
the labeled data points, in order to assess thitygoathe obtained clustering. In our
tests, there was nearly never any misclassificatien nearly no data point was
erroneously labeled as part of a cluster it dogsbetong to. However, as expected,
some data points were left "unclassified", but ¢heere very few of them and most
were on the border of the clusters, as illustrai@the rightmost part of figure 2.
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Figure 3: Visualization of the typical “U-matrix"dr the SOM obtained on the "chain link" 3D
data set (left), and corresponding segmentatioth@fSOM produced by our algorithm (right).

For our experiments on the "chain link" data s8g% of the points were classified in

the correct cluster. For the 2D data set presemtefijures 1 and 2, there was usually
no misclassified points, and the typical numbetufclassified" points was 20 to 30

on a total of 2000, which is a very small propart{@% or 2%).

4. Preliminary resultson real data sets

In order to evaluate if our algorithm produces niegiul clusters on real data sets,
we began to try it on a few of them. We first ufeel famous Fisher’s iris data set [4].
This real 4-dimensional data set contains 50 exampbr each of 3 iris flower
classes. It is a very popular benchmark for clasgibn and clustering techniques.

Depending on the SOM parameters used, we obtaieegebn 2 and 4 clusters.
One of the clusters always nearly coincided with 8etosa iris species (which is
linearly separable from the two other classes),thedthers generally made sense as
compared to the 3 iris categories (see exampliblas 1 and 2).

Cluster 1 Cluster 2| Cluster 3| Cluster 4| Outside clusters
Iris Setosa 49 0 0 0 1
Iris Versicolor 0 33 1 0 14
Iris Virginica 0 3 34 8 7

Table 1: Example of clustering obtained on the didga set, each column showing the class
membership distribution of the points of one ofifmduced clusters. Nearly all points of each
given cluster belong to the same iris class. HoweRirises are outside all 4 clusters.

Cluster 1 Cluster 2| Cluster 3 Outside clusters
Iris Setosa 0 50 0 0
Iris Versicolor 27 0 1 22
Iris Virginica 6 0 35 9

Table 2: A second example of clustering obtainetheriris data set, in which the number of
clusters is exactly the number of iris classes. Hanecluster #1 significantly overlaps 2
different iris classes, and 31 irises do not beltm@ny of the 3 obtained clusters.

The global typical outcome of our algorithm on itie data set compares favorably to
partitions obtained, for instance, by Blatt et.vath various other clustering methods
(see [2]), or with those reported in [6] or in [1].

Other very preliminary tests conducted on bigget mmore complex real data sets
also seem encouraging, but require further analysis



5. Computational cost

As can be seen in [14], the computational costafitfoning a SOM is not always
negligible compared to that of the SOM trainingp@sally when k-means clustering
is used). Moreover, as pointed out in [3], stand@edarchical clustering techniques
have an over-all computational complexity of atste®(rflogn) where n is the
number of elements to cluster. In the case of S@¥hrentation, n is the number of
units on the map, which is normally much lower thha original data set size N.
However, since the complexity of SOM training isOiin), it is clear that for a given
data set size N, thelative computational cost of the segmentation increaséscly
with the map size n. And when one wants to usdrtired SOM for non-parametric
clustering by a posteriori segmentation of the nitais, desirable to use relatively big
maps (i.e. with n values of a few hundreds)... Ferdlgorithm we propose here, it is
straightforward to deduce from its description @& at it is in O(n), and that the
essential cost is the computation of the 2*n adjaoeit distances required to obtain
the U-matrix. Therefore, contrary to most SOM segtaion techniques, the
computational cost of our partitioning procedwetative to that of the SOM training
should always remain negligible, whatever the chapél size.

6. Conclusion, discussion and perspectives

In this paper we presented a new algorithm for sedimg Self-Organizing Maps
after training, in order to use the SOM as a chistetechnique for the input data.
Our algorithm, directly adapted from standard diiag techniques, is extremely
simple, but appears to produce very good clustegsglts, at least on the simulated
data sets on which we tested it (see 83). Prelipinasults a few real data sets are
also encouraging, as illustrated in 84 on the chs$ésher's iris data set. Compared to
usual SOM partitioning techniques, our algorithreoahas the advantage to have an
extremely low computational cost. It thus has tbéeptial to be a powerful tool for
automating the discovery of meaningful categoneiig data sets.

More thorough tests on other and more complicatedl data sets are necessary
and currently underway. Also, one drawback of oOiVSsegmentation approach in
its current form, is that the threshold value ltabdé manually determined by trial and
error for each visually-identified cluster, makifigsemi-automatic rather than fully
automated. However, we are currently improving pracedure in order to overcome
this problem without impairing its computationalfieiency. Another ongoing
improvement consists in taking better advantagthefU-matrix by propagating the
area-filling differently in each direction, by talj into account the vector of distances
to adjacent units instead on simply relying onrieandistance to the four neighbors.
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