
HAL Id: hal-00434307
https://hal.science/hal-00434307

Preprint submitted on 27 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Newton’s method and FFT trading
Joris van der Hoeven

To cite this version:

Joris van der Hoeven. Newton’s method and FFT trading. 2009. �hal-00434307�

https://hal.science/hal-00434307
https://hal.archives-ouvertes.fr


Newton’s method and FFT trading
∗

Joris van der Hoeven

Dépt. de Mathématiques (Bât. 425)
CNRS, Université Paris-Sud

91405 Orsay Cedex
France

Email: joris@texmacs.org

November 22, 2009

Let C[[z]] be the ring of power series over an effective ring C. In [BK78], it was
first shown that differential equations over C[[z]] may be solved in an asymptotically
efficient way using Newton’s method. More precisely, if M(n) denotes the complexity
for multiplying two polynomials of degree < n over C, then the first n coefficients of
the solution can be computed in time O(M(n)). However, this complexity does not
take into account the dependency on the order r of the equation, which is exponential
for the original method [vdH02a] and quadratic for a recent improvement [BCO+07].
In this paper, we present a technique to further improve the dependency on r, by
applying Newton’s method up to a lower order, such as n/r, and trading the remaining
Newton steps against a lazy or relaxed algorithm in a suitable FFT model. The
technique leads to improved asymptotic complexities for several basic operations
on formal power series, such as division, exponentiation and the resolution of more
general linear and non-linear systems of equations.

Keywords: power series, Newton’s method, differential equation, FFT

A.M.S. subject classification: 68W25, 37M99, 90C53, 42-04, 68W30, 33F05

1. Introduction

Let C[[z]] be the ring of power series over an effective ring C. It will be convenient to assume
that C ⊇Q. In fact, it will suffice that all natural numbers up to the desired series expansion
order can be inverted in C. In this paper, we are concerned with the efficient resolution of
implicit equations over C[[z]]. Such an equation may be presented in fixed-point form as

F = Φ(F ), (1)

where F is an indeterminate vector in C[[z]]r with r ∈N. The operator Φ is constructed
using classical operations like addition, multiplication, integration or postcomposition with
a series g ∈ C[[z]] with g0 = 0. In addition, we require that the coefficient Φ(F )n of zn

in Φ(F ) depends only on coefficients Fi with i<n, which allows for the recursive determi-
nation of all coefficients.

In particular, linear and algebraic differential equations may be put into the form (1).
Indeed, given a linear differential system

F ′ = A F (2)

F0 = I ∈Cr

∗. This work has been supported by the ANR Gecko and ANR-09-JCJC-0098-01 MaGiX projects. The work

has also been supported by the Digiteo 2009-36HD grant and Région Ile-de-France.

1



where A is an r × r matrix with coefficients in C[[z]], we may take Φ(F ) = I +
∫

A F .
Similarly, if P is a tuple of r polynomials in C[[z]][F ] = C[[z]][F1, 	 , Fr], then the initial
value problem

F ′ = P (F ) (3)

F0 = I ∈Cr

may be put in the form (1) by taking Φ(F ) = I +
∫

P (F ).
For our complexity results, and unless stated otherwise, we will always assume that

polynomials are multiplied using evaluation-interpolation. If C contains all 2p-th roots of
unity with p∈N, then it is classical that two polynomials of degrees < n can be multiplied
using M(n) = O(n log n) operations over C, using the fast Fourier transform [CT65].
In general, such roots of unity can be added artificially [SS71, CK91, vdH02a] and the
complexity becomes M(n)=O(n logn loglogn). We will respectively refer to these two cases
as the standard and the synthetic FFT models. More details about evaluation-interpolation
will be provided in section 2.

Let Mr(C) be the set of r × r matrices over C. It is classical that two matrices
in Mr(C) can be multiplied in time O(rω) with ω < 2.376 [Str69, Pan84, CW87]. We
will denote by MM(n, r) the cost of multiplying two polynomials of degrees < n with
coefficients in Mr(C). When using evaluation-interpolation in the standard FFT model,
one has MM(n, r) = O(n rω + M(n) r2) and MM(n, r)∼M(n) r2 if r = O(logn).

In [BK78], it was shown that Newton’s method may be applied in the power series
context for the computation of the first n coefficients of the solution F to (2) or (3) in
time O(M(n)). However, this complexity does not take into account the dependence on
the order r, which was shown to be exponential in [vdH02a]. Recently [BCO+07], this
dependence in r has been reduced to a quadratic factor. In particular, the first n coefficients
of the solution F to (3) can be computed in time O(MM(n, r)). In fact, the resolution
of (2) in the case when F and I are replaced by matrices in Mr(C[[z]]) resp. Mr(C) can
also be done in time O(MM(n, r)). Taking I = Idr, this corresponds to the computation of
a fundamental system of solutions.

However, the new complexity is not optimal in the case when the matrix A is sparse.
This occurs in particular when a linear differential equation

f (r) =Lr−1 f (r−1) +
 +L0 f. (4)

is rewritten in matrix form. In this case, the method from [BCO+07] for the asymptotically
efficient resolution of the vector version of (4) as a function of n gives rise to an overhead
of O(r), due to the fact that we need to compute a full basis of solutions in order to apply
the Newton iteration.

In [vdH97, vdH02a], the alternative approach of relaxed evaluation was presented in
order to solve equations of the form (1). More precisely, let R(n) be the cost to gradually
compute n terms of the product h = f g of two series f , g ∈ C[[z]]. This means that the
terms of f and g are given one by one, and that we require hi to be returned as soon
as f0, 	 , fi and g0, 	 , gi are known (i = 0, 	 , n − 1). In [vdH97, vdH02a], we proved
that R(n) = O(M(n) log n). In the standard FFT model, this bound was further reduced
in [vdH07a] to R(n)=O(M(n) e2 log2log logn

√
). We also notice that the additional O(logn)

or O(e2 log2log logn
√

) overhead only occurs in FFT models: when using Karatsuba or Toom-
Cook multiplication [KO63, Too63, Coo66], one has R(n) ∼ M(n). One particularly nice
feature of relaxed evaluation is that the mere relaxed evaluation of Φ(F ) provides us with
the solution to (1). Therefore, the complexity of the resolution of systems like (2) or (3)
only depends on the sparse size of Φ as an expression, without any additional overhead in r.

2 Newton’s method and FFT trading



Let L(n, r) denote the complexity of computing the first n coefficients of the solu-
tion to (4). By what precedes, we have both L(n, r) = O(MM(n, r)) and L(n, r) =
O(M(n) r log n). A natural question is whether we may further reduce this bound to
L(n, r)=O(M(n) r) or even L(n, r)∼M(n) r. This would be optimal in the sense that the
cost of resolution would be the same as the cost of the verification that the result is correct.
A similar problem may be stated for the resolution of systems (2) or (3).

In this paper, we present several results in this direction. The idea is as follows. Given
n ∈ N, we first choose a suitable m < n, typically of the order m = n/rα. Then we use
Newton iterations for determining successive blocks of m coefficients of F in terms of
the previous coefficients of F and A F . The product A F is computed using a lazy
or relaxed method, but on FFT-ed blocks of coefficients. Roughly speaking, we apply
Newton’s method up to an order m, where the O(r) overhead of the method is not yet
perceptible. The remaining Newton steps are then traded against an asymptotically less
efficient lazy or relaxed method without the O(r) overhead, but which is actually more
efficient when working on FFT-ed blocks of coefficients.

In fact, FFT trading is already useful in the more elementary case of power series
division. In order to enhance the readability of the paper, we will therefore introduce the
technique on this example in section 3. In the FFT model, this leads to an order n division
algorithm of time complexity D(n) ∼ 5/3 M(n), which improves on the best previously
known bound D(n)∼ 25/12M(n) [HZ04]. Notice that 5/3M(n) should be read (5/3)M(n)
and likewise for other fractions of this kind. Division with remainder of a polynomial
of degree 2 n by a polynomial of degree n can be done in time DR(n) ∼ 2 M(n); the
best previously known bound was DR(n) ∼ 17/6 M(n) (private communication by Paul
Zimmermann).

In sections 4 and 5, we treat the cases of linear and algebraic differential equations.
The main results are summarized in Tables 3 and 4 and analyzed in detail in section 7.
In particular, the exponential of a power series can now be computed at order n in time
E(n)∼ 7/3 M(n) instead of E(n)∼ 17/6 M(n) [Ber00].

In two recent papers [Har09a, Har09b] David Harvey has further improved the tech-
nique of FFT trading. In the standard FFT model, the FFT coincides up to a constant
factor with the inverse of its transpose. This has been exploited in [Har09a] to get better
bounds I(n) ∼ 13/9 M(n) and S(n) ∼ 4/3 M(n) for power series inversion and square
roots. In [Har09b], the complexity for exponentiation has been further improved to E(n)∼
13/6 M(n). In table 1, we have summarized the new results for elementary operations on
power series.

It is well known that FFT multiplication allows for tricks of the above kind, in the case
when a given argument is used in several multiplications. In the case of FFT trading, we
artificially replace an asymptotically fast method by a slower method on FFT-ed blocks,
so as to use this property. We refer to [Ber00] (see also remark 14 below) for a variant
and further applications of this technique (called FFT caching by the author). The central
idea behind [vdH07a] is also similar. In section 6, we outline yet another application to
the truncated multiplication of dense polynomials.

The efficient resolution of differential equations in power series admits several inter-
esting applications, which are discussed in more detail in [vdH02a]. In particular, certified
integration of dynamical systems at high precision is a topic which currently interests
us [Moo66, Loh88, MB96, Loh01, MB04, vdH07b].

Remark 1. This paper is a thoroughly reworked version of an earlier preprint [vdH06],
integrating several helpful remarks by two of the referees and David Harvey.

Joris van der Hoeven 3



Operation Previous bound This paper [Har09a, Har09b]
Inversion ∼ 3/2 M(n) ∼ 13/9 M(n)

Division ∼ 25/12M(n) ∼ 5/3 M(n)
Division+Remainder ∼ 17/6 M(n) ∼ 2M(n)

Square root ∼ 11/6 M(n) ∼ 4/3 M(n)
Exponentiation ∼ 17/6 M(n) ∼ 7/3 M(n) ∼ 13/6 M(n)

Table 1. Table with the best asymptotic time complexities of several operations on power series
with respect to the cost M(n) of multiplication. The first column shows the best previously known
bounds and the latter two columns the best current bounds, which all involve FFT trading. For
simplicity, we assume FFT multiplication. Harvey’s bounds for inversion and square roots also
assume the standard FFT model.

2. Prerequisites

2.1. Evaluation-interpolation schemes

Let C be a ring in which n> 2 is not a zero-divisor and assume that C contains a primitive
n-th root ω of unity. Given a polynomial P ∈C[z] of degree < n, and identifying P with
its vector (P0,	 ,Pn−1) of coefficients, its discrete Fourier transform FFTω(P ) is defined by

FFTω(A) = (A(1), A(ω), A(ω2),	 , A(ωn−1))∈Cn.

If n is a power of two, then the fast Fourier transform [CT65] allows us to perform the
transformation FFTω and its inverse

FFTω
−1 =n−1FFTω−1

using F(n) = O(n log n) operations in C. If P , Q ∈ C[z] are two polynomials with
deg(PQ)<n, then we clearly have (PQ)(ωi)=P (ωi) Q(ωi) for all i, whence FFTω(PQ)=
FFTω(P )FFTω(Q). Consequently, we may compute P Q using

P Q =FFTω
−1(FFTω(P )FFTω(Q)),

where FFTω(P )FFTω(Q) stands for the componentwise product of the vectors FFTω(P )
and FFTω(Q). If n is a power of two, this takes 3F(n)+ 2 n=O(n logn) operations in C.

More generally, let C[z];n denote the set of polynomials of degree < n. Then an eval-
uation-interpolation scheme at degree < n and N(n) points consists of two computable
C-linear mappings

C[z];n 3Eval CN(n)

CN(n) 3Eval−1

C[z];n

with the property that

P Q =Eval−1(Eval(P )Eval(Q))

for all P , Q ∈ C[z] with deg(P Q) < n. We will denote by E(n) the maximum of the time
complexities of Eval and Eval−1. Given P , Q ∈ C[z] with deg(P Q) < n, we may then
compute P Q in time 3 E(n)+ N(n).

An evaluation-interpolation model is a recipe which associates an evaluation-interpola-
tion scheme to any degree n. Most fast multiplication schemes in the literature are actually
based on evaluation-interpolation models. In the sequel, we will therefore assume that the
cost M(n) of multiplying two polynomials of degrees < n is given by

M(n)∼ 3 E(2 n) +N(2 n) (5)

4 Newton’s method and FFT trading



for a suitable evaluation-interpolation model. Similarly, if scalar r × r matrices can be
multiplied in time rω, then we will assume that the cost MM(n, r) of multiplying two r× r

matrices whose entries are polynomials of degrees < n is given by

MM(n, r)∼ 3 E(2 n) r2 + N(2 n) rω. (6)

Notice also that a matrix-vector product takes a time

MV(n, r)∼E(2 n) (r2 +2 r) +N(2 n) r2. (7)

2.2. Classical FFT models

Let C again be a ring in which n=2p∈2N is not a zero-divisor and assume that C contains
a primitive n-th root of unity. Then we have seen that the FFT provides us with an
evaluation-interpolation scheme at degree < n, with

E(n) ≍ n logn

N(n) = n.

In fact, if n/2<m6n, then the truncated Fourier transform [vdH04, vdH05] still provides
us with an evaluation-interpolation scheme with E(n)∼F(n)m/n and N(m)=m. We will
call this evaluation-interpolation model the standard FFT model .

If C does not contain a primitive n-th root of unity, then we may artificially adjoin
a suitable root of unity to C as follows [SS71, CK91]. We first decompose p = p1 + p2,
n1=2p1, n2=2p2, with p1= ⌈p/2⌉ and p2= ⌊p/2⌋. Any polynomial in C[z];n corresponds to
a unique polynomial in C[z]n = C[z]/(zn +1). We will consider the problem of multiplying
in the latter ring. Consider the following sequence:

C[z]n� C[z1]n1
[z]/(zn2− z1)1ι C[z1]n1

[z2];2n2
1FFT (C[z1]n1

)n2.

The first map is a natural identification when setting z1 = zn2. The injection ι corresponds
to writing elements of C[z1]n1

[z]/(zn2−z1) as polynomials in z2 of degrees <n2, and padding
with zeros. Since z1 is a primitive (2n1)-th root of unity and n1=n2 or n1=n2+1, we may
finally perform an FFT in z2 with respect to z1 or z1

2. Each of the arrows can be reversed;
in the case of ι, we take

ι−1(P0 +
 +P2n2−1 z2
2n2−1) = (P0 + z1 Pn2

) +
 +(Pn2−1 + z1 P2n2−1) zn2−1.

In particular, we have P Q = ι−1(FFT−1(FFT(ι(P )) FFT(ι(Q)))) for all P , Q ∈ C[z]n.
Repeating the construction on C[z1]n1

, we end up with an evaluation-interpolation model
with

E(n) = O(n logn log logn)

N(n) = O(n logn).

We will call this model the synthetic FFT model . Using similar ideas to those in [CK91],
the model adapts to the case when 2 is a zero-divisor.

2.3. Classical evaluation-interpolation models

If C is infinite, then we may also use multipoint evaluation and interpolation in order to
construct an evaluation-interpolation scheme at any degree. Using arbitrary points, we
obtain [MB72, Str73, BM74]

E(n) = O(M(n) logn)

N(n) = n.

Joris van der Hoeven 5



If it is possible to take points in a geometric progression, then one even has [BS05]

E(n) = O(M(n))

N(n) = n.

Of course, these evaluation-interpolation models are already based on fast multiplication,
whence they are not suitable for designing the fast multiplication (5). On the other hand,
for large values of r, they may perform better than the synthetic FFT model on matrix
and matrix-vector products (6) and (7).

For small values of n, it is sometimes interesting to use simpler, but asymptotically
slower evaluation-interpolation models. For instance, we may iterate the construction

C[z];n� C[z2];⌈n/2⌉[z];21Kar
C[z2];⌈n/2⌉

3 ,

where

Kar(A0 +A1 z) = (A0, A0 + A1, A1).

This yields an evaluation-interpolation model with

E(n) = O(nlog3/log2)

N(n) = O(nlog3/log2).

This “Karatsuba model” corresponds to even-odd Karatsuba multiplication. In a similar
way, one may construct Toom-Cook models.

A lot of the complexity results for polynomials also hold for integers, by considering
them as the evaluations of polynomials in 2b for a suitable word length b. For integer matrix
multiplications, several evaluation-interpolation models are of interest. First of all, one may
use approximate floating point arithmetic of bit length 2 b +O(logn). Secondly, one may
fit the b-bit coefficients in Fp where Fp has many 2q-th roots of unity (e.g. p=3 · 230+1).
These two models are counterparts of the standard FFT model. One may also use the
Schönhage-Strassen model (which is the counterpart of the synthetic FFTmodel). For large
matrix sizes, one may finally use Chinese remaindering, which is the natural counterpart
of multipoint evaluation.

In practice, operations in C do not have a constant cost. Nevertheless, when computing
with truncations of a power series f ∈ C[[z]], it is usually the case that the bit size of fi

is proportional to i (or a power of i). Consequently, the worst cost of an operation in C
is usually bounded by a constant times the average cost of the same operation over the
complete computation.

2.4. Middle products

Let h= f g be the product of two power series f , g ∈C[[z]]. In order to efficiently compute
only a part hi, 	 , hi+n−1 of h, a useful tool is the so called “middle product” [HQZ04].
Let R, Q∈C[z] be two polynomials with degR < 2 n and deg Q6n. Then we define their
middle product R ⋉n Q (or simply R ⋉ Q if n is clear from the context) by

P =R ⋉ Q =
∑

i<n





∑

j=0

n

Ri+j Qn−j



zi.

6 Newton’s method and FFT trading



Notice that this definition generalizes to the case when A,B and C are arbitrary rings with
a multiplication · :A×B→C, and f ∈A[[z]], g ∈B[[z]]. In matrix form, we have

VP =





P0�
Pn−1



=





Qn 
 Q0 
Qn 
 Q0

















R0�
R2n−1













=TQ VR.

This formula is almost the transposed form of a usual product. More precisely, if R=PQ

with degP <n and deg Q6 n, then we have

VR =













R0�
R2n−1













=













Q0� 
Qn Q0 �

Qn

















P0�
Pn−1



=MQ VP .

In other words, TQ = MRev(Q)
⊤ , where M⊤ denotes the transpose of a matrix M and

Rev(Q)=Revn(Q) = Q0 zn +
 + Qn.
For a fixed evaluation-interpolation scheme, the product MQVP is computed efficiently

using evaluation and interpolation. More precisely, the operator Eval at degree < 2 n,
restricted to polynomials of degree < n corresponds to an N(2 n)×n matrix E:

Eval(P ) =E VP .

Let ∆Q be the diagonal matrix with entries Eval(Q). Then

Eval(P Q) = ∆Q E VP .

Finally, the operator Eval−1 at degree < 2 n corresponds to a (2 n)×N(2 n) matrix Ê :

P Q = Ê ∆Q E VP .

Since this equality holds for all P , it follows that

MQ = Ê ∆Q E

TQ = E⊤∆Rev(Q) Ê
⊤.

Assuming that the algorithms Eval and Eval−1 for evaluation and interpolation only use
C-linear operations, the actions of E⊤ and Ê⊤ on vectors can be computed by the trans-
positions tEval and tEval−1 of these algorithms in time E(2 n) + O(N(2 n)) [Bor56, Ber].
We may thus compute the middle product using

R ⋉ Q= tEval(tEval−1(R)Eval(Rev(Q))) (8)

in time ∼ 3 E(2 n) + O(N(2 n)). In the standard FFT model, the matrix Ê is actually
symmetric and E is the upper half part of a symmetric matrix. Hence, (8) becomes

R ⋉ Q=FFTω(FFTω
−1(R)FFTω(Rev(Q)))mod zn.

One may also use the alternative formula [Har09a]

R ⋉ Q=FFTω
−1(FFTω(R)FFTω(Q)) div zn,

Joris van der Hoeven 7



which is based on the fact that standard FFT multiplication of R and Q really computes
the exact product of R Q modulo z2n − 1. Writing P = P0 + P1 zn + P2 z2n = R Q

with deg Pi < n, we then notice that P1 coincides with the middle product, whereas
P =(P0 + P2) +P1 zn modulo z2n − 1.

3. Division

Given a power series f ∈ C[[z]] (and similarly for vectors or matrices of power series, or
power series of vectors or matrices) and integers 0 6 i 6 j, we will use the notations:

f;i = f0 +
 + fi−1 zi−1

fi;j = fi +
 + fj−1 zj−i−1.

By convention, f;0 =0 and fi;i =0 for all i.

3.1. Blockwise products

Let m ∈ N> be fixed. Any series F ∈ C[[z]] in z may be rewritten blockwise as a power
series F̄ in Z = zm with coefficients F̄i∈C[z], deg F̄i <m:

F̄ = F̄0 + F̄1 Z + F̄2 Z2 +

F̄i = Fim;(i+1)m. (9)

Let us now consider the computation of a product P = A F , where A, F ∈ C[[z]]. The
coefficients of the blockwise product Ā F̄ are polynomials of degrees < 2m instead of < m.
In order to recover the coefficients of P̄ , we define the “contraction operator” Con: given
a series Φ̄∈C[z][[Z ]], whose coefficients are polynomials of degrees < 2 m, we let

Con(Φ̄)i =Φi−1 div zm + Φi mod zm.

Then we have

P̄ =Con(Ā F̄ ). (10)

Alternatively, we may first “extend” the series Ā using

Ext(Ā)i = Āi−1 + Āi z
m

and then compute P̄ using middle products:

P̄ =Ext(Ā) ⋉ F̄ =
∑

i1+i2=i

Ext(Ā)i1 ⋉ F̄i2. (11)

These formulas are illustrated in Figure 1. From now on, and for reasons which are detailed
in remark 2, we will use formula (11) for all product computations.

Assume now that we have fixed an evaluation-interpolation model for polynomials
of degrees < 2 m. Then we may replace the polynomial representations of the blockwise
coefficients Āi and F̄i by their transforms

Āi
∗ = tEval−1(Āi−1 + Āi z

m) (12)

F̄i
∗ = Eval(Rev(F̄i)), (13)

compute convolution products in the transformed model

P̄i
∗ = Āi

∗
⋉ F̄0

∗+
 + Ā0
∗
⋉ F̄i

∗
,

8 Newton’s method and FFT trading



and apply (8) in order to recover the coefficients

P̄i = tEval(P̄i
∗). (14)

In particular, assuming Ā0
∗
, 	 , Āi

∗ and F̄0
∗
, 	 , F̄i

∗ known, we may compute P̄i
∗ using

(i +1) N(2 m) scalar multiplications and P̄i using an additional time E(2m).

Remark 2. It turns out that the formula (11) is slightly more convenient and efficient
than (10): in the applications below, the coefficients F̄i will be computed one by one
as a function of the previous diagonal sums Āi F̄0 + 
 + Ā1 F̄i−1. In particular, when
using (10), the computation of the high part Ā0 F̄i div zm of Ā0 F̄i will need to be done
separately at the next iteration. When using middle products, this computation is naturally
integrated into the product (Āi + Āi+1 zm) ⋉ F̄0 +
 +(Ā0 + Ā1 zm) ⋉ F̄i.

Ā0

Ā1

Ā2

Ā3

F̄0 F̄1 F̄2 F̄3

Ā0

Ā1

Ā2

Ā3

F̄0 F̄1 F̄2 F̄3

Figure 1. Two ways to compute the coefficient P̄3, with P = AF . At the left-hand side, we use

P̄3 = (Ā2 F̄0 + Ā1 F̄1 + Ā0 F̄2) div zm +(Ā3 F̄0 + Ā2 F̄1 + Ā1 F̄2 + Ā0 F̄3)mod zm.

At the right-hand side, we use middle products:

P̄3 = (Ā2 + Ā3 zm) ⋉ F̄0 + (Ā1 + Ā2 zm) ⋉ F̄1 + (Ā0 + Ā1 zm) ⋉ F̄2 + (Ā
−1 + Ā0 zm) ⋉ F̄3.

3.2. Division

Let A, B ∈ C[[z]] be two power series such that A0 is invertible. Assume that we want to
compute the first n=mk coefficients of F =

B

A
. Denoting U =

1

A
, we first compute Ū0 using

a classical Newton iteration [BK78, Sch00]. Given 0 6 i <k, assume that F̄0,	 , F̄i−1 have
been computed, and let

P̄i = (Āi−1 + Āi z
m) ⋉ F̄0 +
 + (Ā0 + Ā1 zm) ⋉ F̄i−1.

Setting Ā−1 =0, we then must have

(AF )i = P̄i + (Ā−1 + Ā0 zm) ⋉ F̄i = B̄i.

It thus suffices to take

F̄i = Ū0 (B̄i − P̄i)mod zn. (15)

Carrying out this iterative method in an evaluation-interpolation model for polynomials
of degrees < 2m yields the following algorithm:

Algorithm divide(B, A, m, k)
Input: two truncated power series A,B∈C[[z]] at order km>0, such that A0 is invertible.

Output: the truncated series F;mk, where F =
B

A
.

Joris van der Hoeven 9



Compute Ū0 and Ū0
∗=Eval(Ū0)

For i =0,	 , k − 1 do
Āi

∗6 tEval−1(Āi−1 + Āi z
m)

F̄i−1
∗ 6 Eval(Rev(F̄i−1))

P̄i
∗6 Āi

∗
F̄0

∗+
 + Ā1
∗
F̄i−1

∗

P̄i6 tEval(P̄i
∗)

∆̄i
∗6 Eval(B̄i − P̄i)

F̄i
∗6 Ūi

∗ ∆̄i
∗

F̄i6 Eval−1(F̄i
∗)mod zn

Return F̄0 + F̄1 zm +
 + F̄k−1 z(k−1)m

Remark 3. In the above algorithm, the coefficients of P̄ = (Ext(Ā)− Ext(Ā)0) ⋉ F̄ are
computed in a naive manner using

P̄i
∗6 Āi

∗
F̄0

∗+
 + Ā1
∗
F̄i−1

∗

Alternatively, we may rewrite (15) as an implicit equation in the transformed model and
use a relaxed algorithm for its resolution [vdH02a, vdH07a]. For this purpose, we first
extend the operators Rev, Eval, etc. blockwise to series S in Z using

Rev(S) = Rev(S0) +Rev(S1) Z +

Eval(S) = Eval(S0)+Eval(S1) Z +
�

Then the equation (15) may be rewritten as

F̄i = [Ū0 (B̄ − (Ext(Ā)−Ext(Ā)0) ⋉ F̄ )mod zn]i,

which leads to the blockwise implicit equation

F̄ = F̄0 + Ū0 (B̄ − (Ext(Ā)−Ext(Ā)0) ⋉ F̄ )mod zn.

In the transformed model, this equation becomes

F̄ = F̄0+Eval−1(Eval(Ū0)Eval(tEval(tEval−1(Ext(Ā)−Ext(Ā)0)Eval(Rev(F̄ )))))modzn,

and we solve it using a relaxed multiplication algorithm.

3.3. Complexity analysis

From now on, it will be convenient to restrict our attention to evaluation-interpolation
models for which E(n)/n and N(n)/n are increasing functions in n and N(n) = o(E(n)).
Given two functions f and g in n, we will write f . g if for any ε > 0 we have f(n) 6

(1 + ε) g(n) for all sufficiently large n.

Theorem 4. The quotient of two power series in C[[z]] can be computed at order n in time

D(n) . 5 E(2 n).

Proof. Let us analyze the complexity of divide. The precomputation of Ū0 can be done in
time 6E(2m)+2N(2m) when using a fast algorithm [HQZ04] based on Newton’s method.
The main loop accounts for

• Five evaluation-interpolations of cost 5 k E(2 m).

• One naive order k product in the transformed model of cost O(
1

2
k (k +1))N(2m).

In view of Remark 3, the naive product may be replaced by a relaxed product, which
leads to a cost R(k) N(2 m).

10 Newton’s method and FFT trading



• k scalar multiplications in the transformed model of cost O(k) N(2 m).

Adding up these costs, the complete division takes a time

D(m,k) . (5 k +7) E(2 m) + (R(k) +O(k))N(2 m). (16)

Choosing k such that 1/k = o(1) and R(k) N(2 n/k) = o(k E(2 n/k)), the theorem follows.
The choice k = ⌊log logn⌋ works both in the standard and the synthetic FFT model. �

Remark 5. In practice, the number k should be chosen not too large, so as to keep
R(k)N(2m) reasonably small. According to (16), we need 5k +7< 25/4k in order to beat
the best previously known division algorithm [HZ04], which happens for k > 28/5.

Remark 6. For small values of k, the fact that we perform more multiplications in the
transformed model is compensated by the fact that the FFTs are computed for smaller
sizes. Let us compare in detail a truncated FFT multiplication at order n and a blockwise
multiplication as in section 3.1 at order n= k m.

For simplicity, we will assume the standard FFT model and naive inner multiplication.
The 2n inner multiplications in the classical FFT multiplication are replaced by (k +1)n

inner multiplications in the blockwise model, accounting for (k−1)n extra multiplications.
Every FFT at size 2 n is replaced by k FFTs of size 2 m, thereby saving approximately
n log2 k multiplications. For k = 4, the blockwise algorithm therefore saves 6 n− 3 n = 3 n

multiplications. For k = 8, we save 9 n− 7 n =2 n multiplications. For k = 16, we perform
15n− 12n= 3 n more multiplications.

Using relaxed Karatsuba multiplication, we only need 81/16n inner multiplications in
the blockwise model for k =16, so we save (9−1/16)n multiplications. We also notice that
the division algorithm requires five FFTs instead of three for multiplication. For k=16 and
naive inner multiplication, this means that we actually “save” 20n− 15n multiplications.
In any case, the analysis shows that blockwise algorithms should perform well for moderate
values of k, at least for the standard FFT model.

Remark 7. For i= k,	 , 2 k − 2, the coefficients

∆̄i = B̄i − (Āk−2 + Āk−1 zm) ⋉ F̄i+1−k −
 − (Āi−k + Āi+1−k zm) ⋉ F̄k−1

can be computed using k−1 additional transforms of cost (k− 1)E(2m) and M(k)N(2m)
additional inner multiplications. This implies that the quotient and the remainder of a divi-
sion of a polynomial V of degree < 2n by a polynomial U of degree n−1 can be computed
in time . 6 E(2 n). Indeed, it suffices to take A(z) = zn−1 U(1/z), B(z) = z2n−1 V (1/z),
and apply the above argument.

Remark 8. The division algorithm should also apply for integers and floating point num-
bers instead of polynomials and truncated power series. Of course, this requires a certain
amount of extra work in order to handle carries correctly. We also expect FFT trading to
be more efficient for standard FFT models (FFT multiplication over complex doubles or
over a field Fp with a large 2q-th root of unity) than for the synthetic model (Schönhage-
Strassen multiplication).

4. Linear differential equations

In order to simplify our exposition, it is convenient to write all differential equations in

terms of the operator δ = z
∂

∂z
. The inverse δ−1 of δ is defined by

δ−1 f =
∑

n>0

fn

n
zn,

Joris van der Hoeven 11



for all f ∈C[[z]] with f0 = 0.

4.1. Newton iteration

Given a matrix A∈Mr(C[[z]]) with A0 =0, the equation

δM =A M (17)

admits a unique solution M ∈Mr(C[[z]]) with M0 = Idr. The main idea of [BCO+07] is to
provide a Newton iteration for the computation of M . More precisely, assume that M;n

and M;n
−1 =(M−1);n are known. Then we have

M;2n6 [M;n − (M;n δ−1 M;n
−1)(δM;n −A;2n M;n)];2n. (18)

Indeed, setting

E = A;2n M;n − δM;n = O(zn)

∆ = (M;n δ−1 M;n
−1) E= O(zn),

we have

(δ −A)∆ = (δM;n) (M;n)
−1 ∆+ (Idr +O(zn)) E−A ∆

= (A M;n +O(zn)) (M;n
−1 +O(zn)) ∆+ (Idr + O(zn)) E−A ∆

= E +O(z2n),

so that (δ − A)(M;n + ∆) = O(z2n) and ∆ = Mn;2n + O(z2n). Computing M;n and M;n
−1

together using (18) and the usual Newton iteration [Sch33, MC79]

M;2n
−1 = [M;n

−1 +M;n
−1 (Idr −M;n M;n

−1)];2n (19)

for inverses yields an algorithm of time complexity O(MM(n,r)). The quantities En;2n and
Mn;2n = ∆n;2n may be computed efficiently using the middle product algorithm.

Instead of doubling the precision at each step, we may also increment the number of
known terms with a fixed number of terms m. More precisely, given n> m > 0, we have

M;n+m6 [M;n − (M;m δ−1 M;m
−1)(δM;n −A;n+m M;n)];n+m. (20)

This relation is proved in a similar way as (18). The same recurrence may also be applied
for computing blocks of coefficients of the unique solution F ∈ C[[z]]r to the vector linear
differential equation

δF =A F (21)

with initial condition F0 = I ∈Cr:

F;n+m6 [F;n − (M;m δ−1 M;m
−1)(δF;n −A;n+m F;n)];n+m,

or

Fn;n+m6 [(M;m δ−1 M;m
−1)((A;n+m F;n)n;n+m zn)]n;n+m. (22)

Both the right-hand sides of the equations (20) and (22) may be computed efficiently using
the middle product algorithm.

4.2. Blockwise resolution

The block notations Ā and F̄ from section 3.1 naturally generalize to series of matrices
and series of vectors. The derivation δ operates in a blockwise fashion:

δ̄(F̄i Z
i) = (δ̄i F̄i) Zi = (i m F̄i,0 +
 +(im +m− 1) F̄i,m−1 zm−1) Zi.

12 Newton’s method and FFT trading



We define the blockwise operator Λ̄, with

Λ̄ P̄ = Λ̄ P̄0 +Λ̄ (P̄1 Z) +
 ,

by

Λ̄ (P̄i Z
i)= (Λ̄i P̄i)Z

i = [(M̄0 δ−1 M̄0
−1)(P̄i Z

i)]i Z
i.

In practice, we may compute Λ̄i P̄i by

X = M̄0
−1 P̄imod zm

Y = δ̄i
−1 X

Λ̄i P̄i = M̄0 Y mod zm.

Now (22) yields a formula for the blockwise resolution of (17):

F̄i = Λ̄i [A (F − F̄i z
im)]i. (23)

= Λ̄i [(Āi−1 + Āi z
m) ⋉ F̄0 +
 +(Ā0 + Ā1 zm) ⋉ F̄i−1].

Assume that we have fixed an evaluation-interpolation scheme at degree < 2m. Replacing
the blockwise coefficients Āi and F̄i by their transforms (12-13) and applying (23), we may
compute Λ̄i P̄i by evaluation-interpolation:

X = Eval−1(Eval(M̄0
−1)Eval(P̄i))mod zm

Y = δ̄i
−1 X

Λ̄i P̄i = Eval−1(Eval(M̄0)Eval(Y ))mod zm.

Of course, Eval(M̄0) and Eval(M̄0
−1) only need to be computed once. This leads to the

following algorithm for the computation of F̄0,	 , F̄k−1:

Algorithm lin_solve(A, I , m, k)
Input: a linear initial value problem (21) and orders m and k

Output: the truncated series F;mk

Compute M̄0, M̄0
−1 and F̄0 as in section 4.1

For i =1,	 , k − 1 do
Āi

∗6 tEval−1(Āi−1 + Āi z
m)

F̄i−1
∗ 6 Eval(Rev(F̄i−1))

P̄i
∗6 Āi

∗
F̄0

∗+
 + Ā1
∗
F̄i−1

∗

P̄i6 tEval(P̄i
∗)

F̄i6 Λ̄i P̄i

Return F̄0 + F̄1 zm +
 + F̄k−1 z(k−1)m

Remark 9. In the above algorithm, the coefficients of P̄ are computed in a naive manner.
In a similar way as in Remark 3, we may use a relaxed algorithm instead. More precisely,
the equation (23) may be rewritten as

F̄i = [Λ̄((Ext(Ā)−Ext(Ā)0) ⋉ F̄ )]i,

which leads to the blockwise implicit equation

F̄ = F̄0 +Λ̄((Ext(Ā)−Ext(Ā)0) ⋉ F̄ ).

In the transformed model, this equation becomes

F̄ = F̄0 +Λ̄ tEval(tEval−1(Ext(Ā)−Ext(Ā)0)Eval(Rev(F̄ ))).

We understand that Λ̄ is computed blockwise in the transformed model.

Joris van der Hoeven 13



4.3. Complexity analysis

Assuming that A has s non-zero entries, we denote by L(n, r, s) the time complexity in
order to compute the truncated solution F;n to (21) at order n.

Theorem 10. Consider the differential equation (21), where A has s non-zero entries.
Assume that rω−1 = o(n) and R(rω−1)/rω−1 = o(E(2 n)/N(2 n)). Then there exists an
algorithm which computes the truncated solution F;n to (21) at order n in time

L(n, r, s). E(2 n) (s+6 r) +O(N(2 n) r2). (24)

Proof. In our algorithm, let φn be a function which increases towards infinity, such that
φn rω−1 = o(n) and R(φn rω−1)/(φn rω−1) = o(E(2 n)/N(2 n)). We take k = ⌊φn rω−1⌋ and
m= ⌈n/k⌉, so that km−n6 k = o(n). Let us carefully examine the cost of our algorithm
for these choices of k and m:

1. By the choice of k, the precomputation of F̄0, M̄0 and M̄0
−1 requires a time

O(MM(m, r)) =O(E(2 m) r2 + N(2 m) rω) =O

(

E(2 n)
rω

k

)

= o(E(2 n) r).

Similarly, the precomputation of Eval(M̄0) and Eval(M̄0
−1) can be done in time

O(E(2 m) r2)= o(E(2 n) r).

2. The computation of the transforms Āi
∗, F̄i

∗ and the inverse transforms P̄i can be
done in time

. E(2 m) k (s+2 r) 6E(2 n) (s+2 r).

3. The computation of O(k2) products Āi
∗
F̄j

∗ in the transformed model requires a time

O(k2 N(2 m) s) =O(N(2 n) k s).

Using a relaxed multiplication algorithm, this cost further reduces to

O(R(k)N(2 m) s) =O

(

N(2 n)
R(k)

k
s

)

.

4. The computation of F̄i=Λ̄i P̄i involves 4(k−1) vectorial evaluations-interpolations,
of cost

. 4 E(2 m) k r 6 4 E(2 n) r

and O(k) matrix-vector multiplications in the transformed model, of cost

O(k N(2 m) r2) =O(N(2 n) r2).

Adding up the different contributions, we obtain the bound

L(n, r, s) .E(2 n) (s+ 6 r) + N(2 n) O

(

R(k)

k
s+ r2

)

.

By construction, N(2 n) R(k)/k = o(E(2 n)), and the result follows. �

Corollary 11. In the standard FFT model, and under the assumption r = o(log n), we
have

L(n, r, s) . (s/3 +2 r) M(n)

L(n, r) . 7/3 r M(n).

14 Newton’s method and FFT trading



The same bounds are obtained in the synthetic FFT model if r = o(log logn).

Remark. Of course, 7/3 r M(n) should be read (7/3) r M(n) and likewise below.

Proof. In the standard FFT model, we have E(2 n)∼M(n)/3, E(2n)/N(2 n)=O(logn)

and R(rω−1)/rω−1 = O(e2 log2log log r
√

log r). If r = o(log n), we may therefore apply the
theorem and the second term in (24) becomes negligible with respect to the first one.

In the synthetic FFT model, we have E(2n)∼M(n)/3, E(2n)/N(2n)=O(log logn) and
R(rω−1)/rω−1 = O((log r)2 log log r). If r = o(log log n), we may again apply the theorem
and the second term in (24) becomes negligible. �

4.4. Further observations

Remark 12. In practice, one should choose φn just sufficiently large such that the pre-
computation has a small cost with respect to the remainder of the computation. This is
already the case for φn close to 1.

Remark 13. The use of middle products was needed in order to achieve the factor s/3+2r

in Corollary 11. As explained in Remark 2, using a more straightforward multiplication
algorithm seems to require one additional transform. This leads to the factor s/3 +7 r/3.

Remark 14. Corollary 11 applies in particular to the exponentiation f = eg of a power
series g. We obtain an algorithm of time complexity L(n, 1) . 7/3 M(n), which yields an
improvement over [Ber00, HZ04]. Notice that FFT trading is a variant of Newton caching
in [Ber00], but not exactly the same: in our case, we use an “order k” Newton iteration,
whereas Bernstein uses classical Newton iterations on block-decomposed series.

Remark 15. With minor changes, the algorithm can be adapted in order to compute the
unique solution of the matrix differential equation δM = M F with M0 = Idr. The unique
solution M corresponds to a fundamental system of solutions to (21). A similar complexity
analysis to the one in the proof of Theorem 10 yields the bound

LM(n, r) . 7 r2 E(2 n) +O(rω N(2 n)).

Under the additional hypotheses of the corollary, we thus get

LM(n, r) . 7/3 r2 M(n).

Remark 16. In the standard FFT model, the conditions of Theorem 10 reduce to

log r = o

(

logn

e2 log2log logn
√

)

. (25)

If s= r, then we obtain

L(n, r)= n rO(logn+ r).

This complexity should be compared to the bound provided by a relaxed approach

L(n, r) =O(R(n) r) =O(n r logn e2 log2log logn
√

).

If r = o(logn), our new approach gains a factor O(e2 log2log logn
√

). On the other hand, the

relaxed approach becomes more efficient for moderate orders logn e2 log2log logn
√

=O(r).
In the case when s= r2, the theorem yields

L(n, r, r2) =O(n r2 logn),

Joris van der Hoeven 15



whereas the relaxed approach yields the bound

L(n, r, r2) =O(R(n) r2) =O(n r2 logn e2 log2log logn
√

).

We thus gain a factor O(e2 log2log logn
√

) under the sole assumption (25).

Remark 17. In the case when C does not admit many 2p-th roots of unity, we have the
choice between the synthetic FFT model and multipoint evaluation-interpolation. In the
synthetic FFT model, the almost optimal bounds from Corollary 11 are reached under
the rather harsh assumption r = o(log log n). This makes the method interesting only for
particularly low orders r 6 3 (maybe r 6 5 for really huge values of n).

If C admits an infinity of points in geometric progression, then we may also use multi-
point evaluation-interpolation with E(2 n)∼ c M(n) and N(n)=n for some constant c > 1.
In a similar way as in Corollary 11, one obtains the bound

L(n, r, s) . cM(n) (s/3+ 2 r)

under the assumption r=o(logn log logn), since E(2n)/N(2n)=O(logn log logn). If s=r2,
then the assumption may even be replaced by (log r)2 log log r = o(log n log log n). Recall
that R(n)=O(M(n) logn) in this context. Therefore, we potentially gain a factor O(logn)
compared to the relaxed approach.

Remark 18. One may wonder whether the technique of FFT trading is useful in asymp-
totically less efficient models such as the Karatsuba model. Recall however that R(n) =
O(M(n)) in any model with M(n)≍nα for α > 1. The Karatsuba model is even essentially
relaxed, in the sense that R(n) = M(n). Therefore, the use of Newton’s method at best
allows for the gain of a constant factor. Moreover, FFT trading also does not help, since
E(n)∼N(n) in such models, so the second term in (24) can never be neglected with respect
to the first term.

Remark 19. It is instructive to compare our complexity bounds with the complexity
bounds if we only use Newton’s method and neither FFT trading nor relaxed computations.
In that case, let T(n, r) denote the complexity of computing both M;n and M;n

−1. One has

T(2 n, r) =T(n, r) + 5 M(n) r2 + O(n rω),

since the product A;n F;n and the formulas (18) and (19) give rise to 1 + 2 + 2 = 5 matrix
multiplications. This yields

T(n, r). 5 M(n) r2.

Notice that we may subtract the cost M(n)r2 if the final Mn
−1 is not needed. It follows that

L(n, r, s) .M(n) (17/6 r2 + s/2 +2/3 r).

Using a trick from [Sch00], one may even prove that

T(n, r) . 9/2 M(n) r2,

which yields

L(n, r, s). M(n) (31/12 r2 + s/2 + 2/3 r).

5. Algebraic differential equations

Assuming that one is able to solve the linearized version of an implicit equation (1), it
is classical that Newton’s method can again be used to solve the equation itself [BK78,
vdH02a, BCO+07]. Before we show how to do this for algebraic systems of differential
equations, let us first give a few definitions for polynomial expressions.

16 Newton’s method and FFT trading



Given a vector F ∈C[[z]]r of series variables, we will represent polynomials in C[[z]][F ]D
C[F ][[z]] =C[[z]][F1,	 , Fr] by dags (directed acyclic graphs), whose leaves are either series
in C[[z]] or variables Fi, and whose inner nodes are additions, subtractions or multipli-
cations. An example of such a dag is shown in Figure 2. We will denote by s1 and s2

the number of nodes which occur as an operand resp. result of a multiplication. We call
s=(s1 + s2)/3 the multiplicative size of the dag and the total number t of nodes the total
size of the dag. Using evaluation-interpolation, one may compute P (F );n in terms of F;n

in time . 3 sE(2 n) + tN(2 n).

+

×

F2

F1ez

× ×

Figure 2. Example of a polynomial expression in C[[z]][F1, F2], represented by a dag. In this
particular example, the multiplicative size of the polynomial is s = 7/3 (since s1 = 4 and s2 = 3)
and its total size 7.

Now assume that we are given an r-dimensional system

δF =P (F ), (26)

with initial condition F0 = I ∈ Cr, and where P (F ) is a tuple of r polynomials in
z C[[z]][F1, 	 , Fr]

r D C[F1, 	 , Fr][[z]]r. Given the unique solution F to this initial value
problem, consider the Jacobian matrix

J =
∂P

∂F
(F ) =









∂P1

∂F1


 ∂P1

∂Fr� �
∂Pr

∂F1


 ∂Pr

∂Fr









(F ).

Assuming that F;m is known, we may compute J;m in time . (2 r + 1) s M(m) + O(r t m)
using the standard differentiation rules. For n> m, we have

P (F;n +Fn;n+m) = P (F;n) +J;m Fn;n+m +O(zn+m)

δF;n+m = P (F;n);n+m +J;m Fn;n+m,

so that

Fn;n+m = [(δ − J;m)−1 (P (F;n)n;n+m zn)]n;n+m. (27)

Let us again adopt the notation (9). We will compute F̄ and Q(F ) for any subexpression
Q(F ) of P (F ) in a relaxed manner. Each series Q(F ) will actually be broken up into its
head Q(F )0 and its tail Q(F )∗ = Q(F ) − Q(F )0, so that sums and products are really
computed using

U(F )+ V (F ) = (U(F )0 +V (F )0) + (U(F )∗+V (F )∗)

U(F ) V (F ) = (U(F )0 V (F )0) + (U(F )0 V (F )∗+ U(F )∗V (F )0 +U(F )∗V (F )∗)

Assume that F̄j and Q(F )j have been evaluated for all j < i and notice that

F;n = F̄0 +
 + F̄i−1 z(i−1)m.

Joris van der Hoeven 17



The advantage of our modified way to compute the Q(F ) is that it also allows us to
efficiently evaluate Q(F;n)i. Indeed, since Q(F;n)− Q(F ) =O(Z i), we have

(U + V )(F;n)i = U(F;n)i +V (F;n)i

(U V )(F;n)i = (U(F;n)i V (F )0 +U(F )0 V (F;n)i + (U(F )∗V (F )∗)i)mod zm +

(U(F ) V (F ))i−1 div zm.

We may finally compute F̄i using

F̄i = Λ̄i P (F;n)i, (28)

where Λ̄ is the blockwise operator which acts on S̄i Z
i by

Λ̄i S̄i = [(δ − J̄0)
−1(S̄i Z

i)]i.

Let us now analyze the time complexity A(n, r, s, t) of the computation of F;n.

Theorem 20. Consider an r-dimensional system (26), where P is a polynomial, given by a
dag of multiplicative size s and total size t. Assume that rω−1 =o(n) and R(rω−1)/rω−1 =
o(E(2 n)/N(2 n)). Then there exists an algorithm which computes F;n in time

A(n, r, s, t) .E(2 n) (6 s+ 4 r)+ O(n t).

Proof. In order to perform all multiplications in the transformed model, we have to
compute both U(F )i

∗
=Eval(U(F )i) and U(F;n)i

∗
=Eval(U(F;n)i) for each argument U(F )

of a multiplicative subexpression of P (F ) and Q(F )i = Eval−1(Q(F )i
∗
) and Q(F;n)i =

Eval−1(Q(F;n)i
∗
) for each multiplicative subexpression Q(F ) of P (F ). This amounts to

a total of 6ks evaluations-interpolations of size 2m, of cost . 6sE(2n). The computations
of the F̄i using (28) induce an additional cost 4r E(2n). The relaxed multiplications in the
transformed model correspond to a cost N(2m)O(sR(k))= o(E(2n) s). The additions are
done in the untransformed model, in time O(n t). The precomputation of J̄0, J̄0

−1 and its
transforms have a negligible cost O(r sM(m) + r tm + r2 E(2 m)+ rω N(2 m)). �

Corollary 21. In the standard FFT model, and assuming that r = o(logn), we have

A(n, r, s, t) . M(n) (2 s+ 4 r/3) +O(n t).

The same bound holds in the synthetic FFT model, assuming that r = o(log logn).

Remark 22. In the case when most multiplications in P (F ) only depend linearly on F ,
it is possible to adapt a similar technique as in the previous section and perform these
multiplications using the middle product. This allows for a reduction of the factor 2 s to
something between s and 2 s.

Remark 23. When solving (26) using Newton’s method [BCO+07] with the optimization
from [Sch00], one obtains the bound

A(n, r, s, t) . (2 r s +2 s+ 13/6 r2 + 4/3 r) M(n) +O(r t n).

However, the factor 2 r s is quite pessimistic. For instance, if the expressions P1(F ), 	 ,

Pr(F ) do not share any common subexpressions, then we may use automatic differentia-
tion [BS83] for the computation of J . The multiplicative size s′= s1

′ + s2
′ for this circuit is

given by s1
′ = s1 + s2 and s2

′ =3 s2, whence s′6 4 s and

A(n, r, s, t) . (6 s+ 13/6 r2 + 4/3 r) M(n) +O(r t n).

18 Newton’s method and FFT trading



6. Truncated multiplication

Assume the standard FFT model. It is well-known that discrete FFTs are most efficient
on blocks of size 2p with p ∈ N. In particular, without taking particular care, one may
lose a factor 2 when computing the product of two polynomials P and Q of degrees < n

with n � 2N. One strategy to remove this problem is to use the TFT (truncated Fourier
transform) as detailed in [vdH04, vdH05]. Another way to smooth the complexity is to
cut P and Q in smaller blocks, and trade superfluous and asymptotically expensive FFTs
against asymptotically less expensive multiplications in the FFT model.

More precisely, we cut P and Q into k = ⌈n/m⌉ parts of size m=2p, where k =o(logn)
grows slowly to infinity with n. With the notation (9), and using FFTs at size 2 m for
evaluation-interpolation, we compute P Q as follows:

1. We first transform P̄i
∗=Eval(P̄i) and Q̄i

∗=Eval(Q̄i) for i < k.

2. We compute the naive product R̄
∗= P̄

∗
Q̄

∗ of the polynomials P̄ and Q̄ in Z.

3. We compute R̄i =Eval−1(R̄i
∗) for i < 2 k − 1 and return R̄0 +
 + R̄2k−2 z(2k−2)m.

Let C be the constant such that M(m)∼ 3E(2m)∼Cm logm for m∈ 2N. Then the above
algorithm requires

4 k E(2 m) + 2 k2 m∼ 4/3 C n logn +2 k n

operations in C. If we only need the truncated product (PQ);n, then we may save k inverse
transforms and half of the inner multiplications, so the complexity reduces to

3 k E(2 m) + k2 m∼C n logn+ k n.

Both complexities depend smoothly on n and admit no major jumps at powers of two.
In this particular case, it turns out that the TFT transform is always better, because

both the full and the truncated product can be computed using only

C n logn+ 2 n

operations in C. However, in the multivariate setting, the TFT also has its pitfalls. More
precisely, consider two multivariate polynomials P , Q ∈ C[z1, 	 , zd] whose supports have
a “dense flavour”. Typically, we may assume the supports to be convex subsets of Nd. In
addition one may consider truncated products, where we are only interested in certain
monomials of the product. In order to apply the TFT, one typically has to require in
addition that the supports of P and Q are initial segments of Nd. Even then, the overhead
for certain types of supports may increase if d gets large.

One particularly interesting case for complexity studies is the computation of the trun-
cated product of two dense polynomials P and Q with total degree < n. This is typically
encountered in the integration of dynamical systems using Taylor models. Although the
TFT is a powerful tool for small dimensions (d 6 4), FFT trading might be an interesting
complement for moderate dimensions (5 6 d 6 8). For even larger dimensions, one may
use [LS03] or [vdH02a, Section 6.3.5]. The idea is again to cut P in blocks

P =
∑

i=(i1,	 ,id)

P̄i Z
i (Zi = Z1

i1
 Zd
id)

P̄i =
∑

j<(m,	 ,m)

Pmi+j zj (zj = z1
j1
 zd

jd)

where k = ⌈n/m⌉ is small (and m preferably a power of two). Each block is then trans-
formed using an FFT (or a suitable TFT, since the supports of the blocks are still initial
segments when restricted to the block). We next compute the truncated product of the
transformed polynomials

∑

P̄i
∗
Zi and

∑

Q̄i
∗
Zi in a naive way and transform back.

Joris van der Hoeven 19



Let us analyze the complexity of this algorithm. The number Mk,d of monomials of
total degree k is given by

Mk,d =
(

k + d− 1
d− 1

)

.

In particular, Md(z) =
∑

k=0
∞

Mk,d zk = (1 − z)−d and M0,d = 1. In order to compute the
monomials in P̄ Q̄ of total degree k, we need

Hk,d = Mk,d M0,d +Mk−1,d M1,d +
 + M0,d Mk,d =
(

k +2 d− 1
2 d− 1

)

,

since Hd(z) =
∑

k
Hk,d zk = Md(z)2 = M2d(z). In total, we thus need

Nk,d = H0,d +
 + Hk−1,d =
(

k +2 d− 1
2 d

)

multiplications of TFT-ed blocks, since Nd(z)=
∑

k
Nk,dzk =

z

1− z
Hd(z)= zM2d+1(z). For

large k, we have

Mk,d ∼
1

(d− 1)!
kd−1

Nk,d ∼
1

(2 d)!
k2d

We may therefore hope for some gain with respect to plain FFT multiplication whenever

Nk,d md∼
Nk,d

kd
nd∼

kd

(2 d)!
nd < d nd logn∼M(nd),

i.e. if

logn >
Nk,d

d kd
∼

kd

d (2 d)!
.

In Table 2, we have shown the values of Nk,d/(d kd) for small values of k and d. It is clear
from the table that FFT trading can be used quite systematically in order to improve
the performance. For larger dimensions, the gain becomes particularly important. This
should not come as a surprise, because naive multiplication is more efficient than FFT
multiplication for k 6 d.

d
k

1 2 3 4 5 6 7 8

1 1.0000 0.50000 0.33333 0.25000 0.20000 0.16667 0.14286 0.12500
2 1.5000 0.62500 0.29167 0.14063 0.068750 0.033854 0.016741 0.0083008
3 2.0000 0.83333 0.34568 0.13889 0.054321 0.020805 0.0078385 0.0029150
4 2.5000 1.0938 0.43750 0.16113 0.055859 0.018514 0.0059291 0.0018482
5 3.0000 1.4000 0.56000 0.19800 0.064064 0.019413 0.0055954 0.0015504
6 3.5000 1.7500 0.71296 0.24826 0.077238 0.022105 0.0059340 0.0015144
7 4.0000 2.1429 0.89796 0.31268 0.095294 0.026299 0.0067236 0.0016179
8 4.5000 2.5781 1.1172 0.39276 0.11870 0.032036 0.0079209 0.0018266
9 5.0000 3.0556 1.3731 0.49040 0.14821 0.039506 0.0095509 0.0021357
10 5.5000 3.5750 1.6683 0.60775 0.18476 0.048988 0.011674 0.0025537
11 6.0000 4.1364 2.0055 0.74718 0.22944 0.060836 0.014378 0.0030975
12 6.5000 4.7396 2.3873 0.91124 0.28350 0.075468 0.017771 0.0037902

Table 2. Numerical values of Nk,d/(d kd) for small d and k.

20 Newton’s method and FFT trading



The main advantage of the above method over other techniques, such as the TFT, is
that the shape of the support is preserved during the reduction

∑

Pi zi →
∑

P̄i Zi (as
well as for the “destination support”). However, the TFT also allows for some additional
tricks [vdH05, Section 9] and it is not yet clear to us which approach is best in practice. Of
course, the above technique becomes even more useful in the case of more general truncated
multiplications for dense supports with shapes which do not allow for TFT multiplication.

For small values of n, we notice that the even/odd version of Karatsuba multiplication
presents the same advantage of geometry preservation (see [HZ02] for the one-dimensional
case). In fact, fast multiplication using FFT trading is quite analogous to this method,
which generalizes for Toom-Cook multiplication. In the context of numerical computations,
the property of geometry preservation is reflected by increased numerical stability.

To finish, we would like to draw the attention of the reader to another advantage of
FFT trading: for really huge values of n, it leads to a reduction in memory usage. Indeed,
when computing the coefficients of a product sequentially R̄ = P̄ Q̄, we only need to store
the transform R̄i

∗ of one coefficient in the result at a time.

7. Conclusion

We have summarized the main results of this paper in Tables 3 and 4. We recall that
R(n) = O(M(n) e2 log2log logn

√
) in the standard FFT model and R(n) = O(M(n) log n)

otherwise. Consequently, the new approach allows at best for a gain O(e2 log2log logn
√

)
in the standard FFT model and O(log n) in the synthetic FFT model. In practice, the
factor O(e2 log2log logn

√
) behaves very much like a constant, so the new algorithms become

interesting only interesting for quite large values of n. As pointed out in remark 18, FFT
trading looses its interest in asymptotically slower evaluation-interpolation models, such
as the Karatsuba model. We plan to come back to practical complexity issues as soon as
implementations of all algorithms will be available in theMathemagix system [vdH+02b].
Notice also that Newton iterations are better suited to parallel computing than is relaxed
evaluation.

Resolution of an r-dimensional system of linear differential equations
Algorithm Fundamental system One solution
Relaxed ∼ R(n) r2 ∼ R(n) s

Newton ∼ 15/4 M(n) r2 ∼M(n) (31/12 r2 + s/2 +2/3 r)

New ∼ 7/3 M(n) r2 ∼M(n) (s/3 +2 r)

Table 3. Complexities for the resolution of an r-dimensional system δF =AF of linear differential
equations up to n terms. We either compute a fundamental system of solutions or a single solution
with a prescribed initial condition. The parameter s stands for the number of non-zero coefficients
of the matrix A (we always have s6 r2). We assume that r = o(log n) in the standard FFT model
and r = o(log log n) in the synthetic FFT model.

Resolution of an r-dimensional system of algebraic differential equations
Algorithm Complexity
Relaxed ∼ R(n) s+O(n t)

Newton ∼M(n) (2 s r + 2 s+ 13/6 r2 + 4/3 r) +O(t r n)
New ∼ M(n) (2 s+4/3 r) +O(t n)

Table 4. Complexities for the resolution of an r-dimensional system δF = P (F ) up to n terms,
where P is a polynomial of multiplicative size s and total size t. For the bottom line, we assume
the standard FFT model and we require that r = o(logn). In the synthetic FFT model, the bound
becomes ∼ M(n) (2 s + 4/3 r) + O(t n log n), under the assumption r = o(log log n).

Joris van der Hoeven 21



One interesting remaining problem is to reduce the cost of computing a fundamental
system of solutions to (4). This would be possible if one can speed up the joint computation

of the FFTs of f , δf ,	 , δ(r−1) f .
Another interesting question is to what extent Newton’s method can be generalized.

Clearly, it is not hard to consider more general equations of the kind

δF =P (F , F (z2),	 , F (zp)),

since the series F (z2),	 , F (zp) merely act as perturbations. However, it seems harder (but
maybe not impossible) to deal with equations of the type

δF =P (F ,F (q z)),

since it is not clear a priori how to generalize the concept of a fundamental system of
solutions and its use in the Newton iteration.

In the case of partial differential equations with initial conditions on a hyperplane, the
fundamental system of solutions generally has infinite dimension, so essentially new ideas
would be needed here. Nevertheless, the strategy of relaxed evaluation applies in all these

cases, with the usual O(log n) overhead in general and O(e2 log2log logn
√

) overhead in the
standard FFT model.

Bibliography

[BCO+07] A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, É. Schost, and A. Sedoglavic. Fast compu-
tation of power series solutions of systems of differential equation, 2007. New Orleans, January 2007.

[Ber] D. Bernstein. The transposition principle. http://cr.yp.to/transposition.html.

[Ber00] D. Bernstein. Removing redundancy in high precision Newton iteration. Available from
http://cr.yp.to/fastnewton.html, 2000.

[BK78] R.P. Brent and H.T. Kung. Fast algorithms for manipulating formal power series. Journal
of the ACM , 25:581–595, 1978.

[BM74] A. Borodin and R.T. Moenck. Fast modular transforms. Journal of Computer and System

Sciences , 8:366–386, 1974.

[Bor56] J. L. Bordewijk. Inter-reciprocity applied to electrical networks. Applied Scientific
Research B: Electrophysics, Acoustics, Optics, Mathematical Methods , 6:1–74, 1956.

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theor. Comput. Sci.,
22:317–330, 1983.

[BS05] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets of points.
Journal of Complexity , 21(4):420–446, August 2005. Festschrift for the 70th Birthday of Arnold
Schönhage.

[CK91] D.G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras.
Acta Informatica , 28:693–701, 1991.

[Coo66] S.A. Cook. On the minimum computation time of functions . PhD thesis, Harvard University,
1966.

[CT65] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier
series. Math. Computat., 19:297–301, 1965.

[CW87] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. In
Proc. of the 19th Annual Symposium on Theory of Computing , pages 1–6, New York City, may 25–
27 1987.

[Har09a] David Harvey. Faster algorithms for the square root and reciprocal of power series, 2009.
http://arxiv.org/abs/0910.1926.

[Har09b] David Harvey. Faster exponentials of power series, 2009.
http://arxiv.org/abs/0911.3110.

22 Newton’s method and FFT trading



[HQZ04] Guillaume Hanrot, Michel Quercia, and Paul Zimmermann. The middle product algo-
rithm I. Speeding up the division and square root of power series. AAECC , 14(6):415–438, 2004.

[HZ02] Guillaume Hanrot and Paul Zimmermann. A long note on Mulders’ short product. Research
Report 4654, INRIA, December 2002. Available from http://www.loria.fr/ hanrot/Papers/mul-

ders.ps.

[HZ04] G. Hanrot and P. Zimmermann. Newton iteration revisited. http://www.loria.fr/ zim-

merma/papers/fastnewton.ps.gz, 2004.

[KO63] A. Karatsuba and J. Ofman. Multiplication of multidigit numbers on automata. Soviet

Physics Doklady , 7:595–596, 1963.

[Loh88] R. Lohner. Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und
Anwendugen . PhD thesis, Universität Karlsruhe, 1988.

[Loh01] R. Lohner. On the ubiquity of the wrapping effect in the computation of error bounds. In
U. Kulisch, R. Lohner, and A. Facius, editors, Perspectives on enclosure methods , pages 201–217,
Wien, New York, 2001. Springer.

[LS03] G. Lecerf and É. Schost. Fast multivariate power series multiplication in characteristic zero.
SADIO Electronic Journal on Informatics and Operations Research , 5(1):1–10, September 2003.

[MB72] R.T. Moenck and A. Borodin. Fast modular transforms via division. In Thirteenth annual

IEEE symposium on switching and automata theory , pages 90–96, Univ. Maryland, College Park,
Md., 1972.

[MB96] K. Makino and M. Berz. Remainder differential algebras and their applications. In M. Berz,
C. Bischof, G. Corliss, and A. Griewank, editors, Computational differentiation: techniques, appli-
cations and tools , pages 63–74, SIAM, Philadelphia, 1996.

[MB04] K. Makino and M. Berz. Suppression of the wrapping effect by Taylor model-based validated
integrators. Technical Report MSU Report MSUHEP 40910, Michigan State University, 2004.

[MC79] R.T. Moenck and J.H. Carter. Approximate algorithms to derive exact solutions to systems
of linear equations. In Symbolic and algebraic computation (EUROSAM ’79, Marseille), volume 72
of LNCS , pages 65–73, Berlin, 1979. Springer.

[Moo66] R.E. Moore. Interval Analysis . Prentice Hall, Englewood Cliffs, N.J., 1966.

[Pan84] V. Pan. How to multiply matrices faster , volume 179 of Lect. Notes in Math. Springer, 1984.

[Sch33] G. Schulz. Iterative Berechnung der reziproken Matrix. Z. Angew. Math. Mech., 13:57–59,
1933.

[Sch00] A. Schönhage. Variations on computing reciprocals of power series. Inform. Process. Lett.,
74:41–46, 2000.

[SS71] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing , 7:281–292,
1971.

[Str69] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:352–356, 1969.

[Str73] V. Strassen. Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von
Interpolationskoeffizienten. Numer. Math., 20:238–251, 1973.

[Too63] A.L. Toom. The complexity of a scheme of functional elements realizing the multiplication
of integers. Soviet Mathematics , 4(2):714–716, 1963.

[vdH97] J. van der Hoeven. Lazy multiplication of formal power series. In W. W. Küchlin, editor,
Proc. ISSAC ’97 , pages 17–20, Maui, Hawaii, July 1997.

[vdH02a] J. van der Hoeven. Relax, but don’t be too lazy. JSC , 34:479–542, 2002.

[vdH+02b] J. van der Hoeven et al. Mathemagix, 2002. http://www.mathemagix.org.

[vdH04] J. van der Hoeven. The truncated Fourier transform and applications. In J. Gutierrez, editor,
Proc. ISSAC 2004 , pages 290–296, Univ. of Cantabria, Santander, Spain, July 4–7 2004.

[vdH05] J. van der Hoeven. Notes on the Truncated Fourier Transform. Technical Report 2005-5,
Université Paris-Sud, Orsay, France, 2005.

[vdH06] J. van der Hoeven. Newton’s method and FFT trading. Technical Report 2006-17, Univ.
Paris-Sud, 2006. http://www.texmacs.org/joris/fnewton/fnewton-abs.html.

Joris van der Hoeven 23



[vdH07a] J. van der Hoeven. New algorithms for relaxed multiplication. JSC , 42(8):792–802, 2007.

[vdH07b] J. van der Hoeven. On effective analytic continuation. MCS , 1(1):111–175, 2007.

24 Newton’s method and FFT trading


