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Temporal DNS of short-wave instabilities in vortex
pairs with axial flow

By Nathanaël Schaeffer1, Clément Roy1, Stéphane Le Dizès1 and Mark
Thompson2

1IRPHE, CNRS, 49 rue F. Joliot Curie, F-13013 Marseille
2FLAIR, Department of Mechanical Engineering, Monash University, Melbourne, Victoria 3800, Australia

(Received 15 mai 2008)

In this study, the temporal evolution of the short-wavelength elliptic instability is analysed by

direct numerical simulations for configurations with or without axial flow. The three-dimensional

linear temporal stability properties of a flow composed of two co-rotating Batchelor vortices are

first considered. As for the corresponding counter-rotating case, when the axial flow parameter

is increased, different instability modes are observed and identified as a combination of resonant

Kelvin modes of azimuthal wavenumbers m and m+2 within each vortex. In particular, we show

that the sinuous mode, which is the dominant instability mode without axial flow, is stabilized

in the presence of a moderate axial flow. The effects of Reynolds number and vortex separation

distance on the growth rate parameter map are also considered. The nonlinear dynamics of the

elliptic instability in the configurations without axial flow of a single strained vortex and of

a system of two counter-rotating vortices is then analyzed. We show that although a weakly

nonlinear regime associated with a limit cycle is possible, the nonlinear evolution far from the

instability threshold is in general much more catastrophic for the vortex. In both configurations,

we put forward some evidence of a universal nonlinear transition involving shear layer formation

and vortex loops ejection leading to a strong alteration and attenuation of the vortex. Finally,

the effect of axial flow on the nonlinear evolution of the elliptic instability is considered. We

show that axial flow tends to weaken the nonlinear dynamics of the elliptic instability. For co-

rotating vortex pairs, the impact of the elliptic instability on merging is analyzed. With or without

axial flow, we demonstrate that elliptic instability always favors merging and makes the resulting

vortex weaker and larger. Moreover, we show that for large separation distances, the effect of the

elliptic instability without axial flow on merging is stronger.

1. Introduction
Large commercial aircrafts are known to create multiple trailing-vortex systems. These vor-

tices can induce large turning moments on aircraft following, which can be particularly dangerous

during takeoff and landing. Given the vortex strength scales with aircraft size, the imminent intro-

duction of several new and much larger passenger aircraft, means that this problem is worsening

over time, and must be explicitly taken into account of in air-traffic scheduling. From a purely

scientific point-of-view, the component vortices take part in a complex dynamical evolution in-

cluding merging, and the end result is generally a pair of counter-rotating vortices in the far wake.

The two co-rotating vortices generated by the tip of the wing and the outer flap constitute the pro-

totype vortex system that provides one motivation for the analysis presented here, although the

focus of this study is mainly theoretical. The goal is to provide the three-dimensional instability
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characteristics when the two vortices are identical co-rotating Batchelor vortices including axial

flow in their cores (q-vortices) and to determine the impact of the instability on vortex merging.

The two-dimensional large Reynolds number dynamics of co-rotating vortex pairs is now well-

understood. When the vortices are far-apart, their dynamics is well-described by the point vortex

approach (Saffman 1992) ; the two vortices remain in equilibrium with each other, and their cores

are elliptically deformed owing to the strain field induced by the other vortex (Le Dizès & Verga

2002). When they are positioned closer to each other, equilibrium is no longer possible and the

two vortices merge to form a single vortex (e.g. Meunier et al. 2005). When the Reynolds num-

ber is large, the two-dimensional dynamics is affected by the development of three-dimensional

instabilities. Meunier & Leweke (2005) observed experimentally that a sinuous deformation of

each vortex core develops and modifies the merging process. This instability is due to the el-

liptic character of the streamlines and has been observed in several other systems (see Kerswell

2002, for a review and references). A model has been developed for a vortex pair without axial

flow by Le Dizès & Laporte (2002). It was demonstrated that the sinuous deformation corres-

ponds to the resonant combination of two stationary Kelvin modes of azimuthal wavenumbers

m = 1 and m = −1. Subsequently, the effect of axial flow on counter-rotating vortices was ana-

lyzed in Lacaze et al. (2005, 2007). Lacaze et al. (2007) considered a pair of counter-rotating

Batchelor vortices. They demonstrated that other instability modes with different azimuthal and

temporal characteristics were excited when axial flow was added. They were able to show that

each instability mode corresponds to a resonant combination of two Kelvin modes of azimuthal

wavenumbers m and m+2.

The first part of this work naturally follows on from that investigation of the stability of a

pair of equi-strength counter-rotating vortices (Lacaze et al. 2007) ; however, it extends that ana-

lysis in a number of ways. First, the choice of co-rotating vortices means that the individual

vortices undergo rotation about their centroid, rather than the pure self-induced translation of the

counter-rotating case. The addition of the associated centrifugal/Coriolis terms to the equations

of motion complicate the theoretical stability analysis considerably, which is yet to be comple-

ted. The present paper investigates the problem using numerical stability analysis, and explicitly

investigates the effect of these terms on the stability characteristics. Second, while the theore-

tical analysis focuses on the resonance between particular pairs of Kelvin modes, at moderate

strain rates most of the wavenumber-axial flow parameter space leads to positive growth ; this

aspect was not explored. In particular, as pointed out by (Lacaze et al. 2007), the theoretical

analysis does not take into account the deviations from ellipticity of the vortices or the loss of

proportionality of the axial flow and vorticity in the region between the vortices for higher strain

rates, which is automatically accounted for by the numerical stability analysis. Surprising the

background growth rate can be almost as high as the growth rate corresponding to identifiable

resonant interactions. Third, modes with substantial growth in the critical layer are identified.

The nonlinear dynamics of the elliptic instability is not well known. It constitutes the subject

of the second part of the present report. Weakly nonlinear theories exist for a single vortex in

a strain field (Sipp 2000), and for rotating flow in a cylinder (Waleffe 1989; Eloy et al. 2003;

Racz & Scott 2008). In an inviscid framework, these theories predict that the nonlinearity should

detune the phase of the instability mode and make its amplitude go back to zero. In a cylinder,

viscosity changes this picture as fixed point, limit cycle, chaos, or unbounded growth have been

shown to become possible dynamical behaviors (Racz & Scott 2008). For a vortex in a strain

field, no such predictions are available. For this reason, we first analyze the nonlinear dynamics

of the elliptic instability without axial flow in two simple situations : (1) a single vortex in an

imposed strain field, (2) two parallel counter-rotating vortices. Our objectives are to understand

the nonlinear regime in the first idealized configuration for which linear and weakly nonlinear

theories have been developed and then to extend the results to a vortex configuration directly

useful for practical applications. The effect of an axial flow on the nonlinear development of the
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elliptic instability is analyzed at the end of the report. In addition to the two previously mentio-

ned configurations, we also consider the case of co-rotating vortices in order to characterize the

dynamics of vortex merging in the presence of the instability.

The first section of this report has been submitted for publication by the authors of this report

(Roy et al. 2008). The second section on the nonlinear dynamics has been performed by N.

Schaeffer & S. Le Dizès. A part of this work has also been submitted for publication (Schaeffer

& Le Dizès 2008).

2. Linear stability of co-rotating vortex pairs
2.1. Formulation

2.1.1. Base flow

The formulation mainly follows the numerical part of Lacaze et al. (2007), except that here we

consider co-rotating vortices instead of counter-rotating vortices. We consider as the base flow,

the z-independent flow obtained from the two-dimensional interaction of two co-rotating Batche-

lor vortices. Each Batchelor vortex taken alone is a solution of the Navier-Stokes equations. Its

axial velocity and axial vorticity can be written in cylindrical coordinates as

ωz =
Γ

πa2
e−(r/a)2

; Uz =
ξa2

0

a2
e−(r/a)2

, (2.1)

where the circulation Γ, the axial velocity strength ξ and initial core radius a0 are constants. The

radius a(t) evolves owing to viscous diffusion according to

a(t) =
√

4νt +a2
0 , (2.2)

where ν is the kinematic viscosity.

The sum of two co-rotating Batchelor vortices is not a solution. As explained in Le Dizès &

Verga (2002), in the two-dimensional dynamics, there is first a rapid relaxation process during

which each vortex equilibrates with the other. In the frame rotating at the angular speed of the

two vortices, a quasi-steady solution is reached which subsequently slowly evolves due to vis-

cous diffusion. As long as the system is far from the merging threshold (a/b < 0.23), the two

vortices remains separated by a constant distance b and rotate around each other at a constant

angular speed Ω = Γ/(πb2). Each vortex also feels the strain field induced by the presence of

the other vortex. Its streamlines are deformed elliptically at leading order and this makes each

vortex sensitive to the elliptic instability. The two-dimensional simulation is necessary to obtain a

correct estimate of the strain field within each vortex. In particular, as noted in Le Dizès & Verga

(2002), the strain rate at the vortex center is twice as large as obtained from summing the contri-

butions from the two separate Gaussian vortices. What is remarkable is that after the relaxation

process (and before merging) the vortex system is mainly characterized by a single parameter

a/b where the vortex radius a evolves according to (2.2) as predicted for a single vortex.

The presence of axial flow does not modify these results because the axial flow and axial vorti-

city dynamics decouple. Moreover, as the axial flow satisfies the same advection-diffusion equa-

tion, it remains proportional to the axial vorticity during the whole two-dimensional evolution. In

practice, we perform the two-dimensional simulation without axial flow and then add, after the

completion of the relaxation process, an axial velocity component such that Uz(x,y) = W0
2 ωz(x,y).

After the relaxation period, the radius of each vortex has slightly evolved. It is this new value

of a which is taken as the characteristic length scale for the stability analysis. The base flow is

then characterized by 3 parameters, a/b, W0 and the Reynolds number Re = Γ/ν, although the

base flow is mainly independent of this last parameter.

We shall consider a continuous range of W0 between 0 and 0.6 for three couples of parameters
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(Re = 14000,a/b = 0.14), (Re = 14000,a/b = 0.18) and (Re = 31400,a/b = 0.168), and pro-

vide some selected results for a few other combinations. For these values of W0, the Batchelor

vortex can be considered as stable. Weakly unstable center modes exist but their growth rate is so

small (see Fabre & Jacquin 2004) that they never become dominant over the elliptic instability

mode.

2.1.2. Perturbation analysis

The stability of three-dimensional modes is examined by linearizing the Navier-Stokes equa-

tions written in the frame rotating with the vortices around the frozen base flow. As the base

flow is assumed homogeneous in the axial direction, and because the perturbation equations are

linear and independent of z for the axial derivatives, the axial dependence can be represented as

a Fourier series. Linearity allows the stability of each wavelength, λ = 2π/k, to be determined

separately. In practice, for a given axial wavelength, the perturbation equations are integrated in

time with a random field as an initial condition. The characteristics of the most unstable mode

are obtained by integrating for a sufficiently long time. For each set of base flow parameters and

each wavenumber k, we obtain the growth rate, the rotation frequency and the spatial structure

of the most unstable mode.

2.1.3. Numerical codes

For the linear study, two different numerical codes have been used. The first one was used for

a similar study of counter-rotating vortices in Lacaze et al. (2007). It is based on a high-order

spectral element technique which has been described in Thompson et al. (1996) and applied to

various related problems (e.g. Thompson et al. 2001; Ryan et al. 2005). The same code parame-

ters and simulation domain as in Lacaze et al. (2007) are used here.

The second code has been developed for the present linear study and the nonlinear analysis

presented in the next parts. It is a pseudo-spectral code, periodic in the three spatial Cartesian

directions. Such a code is classical (Vincent & Meneguzzi 1991) and has already been used for

similar studies (Billant et al. 1999; Otheguy et al. 2006). Because the code is fully spectral, it is

very fast, but is in principle limited to flows with zero total circulation (Pradeep & Hussain 2004).

A trick has then to be used to simulate co-rotating vortex pairs for which the circulation is 2Γ :

a solid body rotation Ω0ez has to be subtracted from the base flow so that the global circulation

at the boundary of the domain is zero (see Otheguy et al. 2006, for details). Time integration

is performed using an Adams-Bashforth temporal scheme. For determining the 2D base flow,

the size L of the square domain has been chosen sufficiently large to reduce the influence of

image vortices. Typically, we have taken L/b between 5 and 6. A smaller domain with L′/b ≈
2.5, centered on the vortex pair has been taken for the simulation of the linear Navier-Stokes

equations. This is possible because the perturbations are localized in the center of each vortex

and decrease very fast to zero away from the vortices. Thus, there is no difficulty in considering

the perturbations periodic on a smaller domain.

The two numerical codes have been compared and validated for a configuration without axial

flow. In figure 1 is plotted the growth rate of the perturbations obtained by the two different

codes, together with the theoretical formula† given in Le Dizès & Laporte (2002). As it can be

seen, the two codes provide the same results for the first three modes. The relative error between

the two codes is generally only a few percent. This difference was traced to a slight sensitivity

of the growth rate predictions to the time allowed for quasi-equilibrium to be reached before

freezing the base flow, which was slightly different for the two cases. On the other hand, the

large underestimation of the growth rate by the theoretical formula is due to a incorrect estimate

of the damping rate associated with viscous effects. In the theory, the damping rate is based on

† Note that there is a misprint in formula (6.1a) in Le Dizès & Laporte (2002) : b2/a2
1 should be b4/a4

1.
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FIG. 1. Comparison of the growth rate computed with the 2 codes for Re = 14000 and a/b = 0.14. Circles
and crosses are data obtained with the fully spectral code and with the spectral-element code respectively.
Theoretical predictions are in solid line [formula (6.1a) from Le Dizès & Laporte (2002)], and in dashed
line [same formula with a viscous damping term computed by the global approach (see text)].

a local approach. If a global estimate is computed using the method of Lacaze et al. (2007),

the viscous damping is found to be significantly smaller (Lacaze, private communication) and

a much better estimate is obtained. The adjusted theoretical predictions are also shown on this

figure by the dashed lines. Note that even this estimate loses accuracy for the higher wavelength

mode.

2.2. Mode map

Using the procedure explained above, we have first explored a large part of the parameter

space for a fixed Reynolds number Re = 14000 and a/b = 0.14, with a resolution step for W0

and k of 0.002 and 0.1 respectively. The growth rate contours of the most unstable modes are

displayed in figure 2. Only the growth rates (normalized by the turn-over time of the vortex pair)

in excess of 0.5 have been indicated in this figure. It demonstrates the existence of several islands

of instability. Each island corresponds to a specific instability mode. These modes are localized in

the core of each vortex and have the same spatial structure in each vortex. Their spatial structure

is shown in figure 3. The characteristics of each mode are also provided in table 1.

The first point to note is that the instability map shown in figure 2 is very similar to the map

obtained for equal strength counter-rotating vortices (see figure 11 in Lacaze et al. 2007). The

first three modes, labeled 1, 2, 3, which have maximum growth rates for no axial flow but persist

for small W0, are the well-known sinuous modes of the elliptic instability (Meunier & Leweke

2005). They correspond to the resonant combination of two Kelvin modes of azimuthal wave-

number m = 1 and m = −1. Here, the functional dependence of the Kelvin modes is written as

exp(imθ + ikz− iωt) where m and k are the azimuthal and axial wavenumbers, and ω the fre-

quency. Moreover, we assume that k is positive. For W0 = 0, the sinuous modes are stationary

(ω = 0) and have been called “principal modes” as they are formed from two Kelvin modes with

the same (broad) radial structure. The radial structure of the Kelvin mode can be identified by a

label specifying the number of zeros of the radial velocity component of the mode in the vortex

core (Lacaze et al. 2007). Principal modes are denoted by (m1,m2,n) where m1 and m2 are the

azimuthal mode numbers of the two resonant Kelvin modes and n their common (radial) label.

It is possible to identify other resonant modes as combinations of Kelvin modes with different
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FIG. 2. Contours of instability growth rate in the (W0,ka) plane for a/b = 0.14 and Re = 14000. A number
has been provided to each important unstable mode and is used hereafter to refer to each of them.

Re = 14000, a/b = 0.14 Re = 14000, a/b = 0.18 Re = 31400, a/b = 0.168

mode m n W0
2πa
λ

2π2b2ω
Γ

2π2b2σ
Γ W0

2πa
λ

2π2b2ω
Γ

2π2b2σ
Γ W0

2πa
λ

2π2b2ω
Γ

2π2b2σ
Γ

1 -1,1 1 0 2.00 0 4.04 0 1.76 0 5.21 0 1.8 0 5.08
2 -1,1 2 0 3.52 0 2.64 0 3.12 0 4.99 0 3.2 0 4.83
3 -1,1 3 0 4.88 0 0.611 0 4.48 0 4.73 0 4.6 0 4.45
4 0,-2 1 0.56 1.76 -28.8 2.85 0.58 1.68 -15.7 4.81 0.58 1.65 -20.7 4.84
5 0,-2 2 0.28 2.96 -39.1 2.71 0.3 2.88 -20.1 3.74 0.28 2.88 -26.0 4.11
6 0,-2 3 0.18 4.32 -42.3 0.868 0.19 4.11 -27.0 3.39
7 -1,-3 1 0.52 3.12 -84.7 2.88 0.54 3.04 -46.4 3.81 0.55 3 -53.95 4.21
8 -1,-3 2 0.36 4.16 -91.16 0.30 0.37 4.0 -59.8 2.85
9 -2,-4 1 0.52 4.40 -141 1.23 0.53 4.21 -93.6 3.49

10 -1,1 1,2 0.14 2.56 -7.53 1.63 0.1 2.32 -0.59 4.50 0.1 2.4 -0.78 3.42
11 0,-2 1,2 0.54 2.40 -26.3 1.30 0.56 2.24 -15.2 3.06 0.6 2.2 -15.97 3.0
12 0,-2 3,2 0.28 3.68 -37.0 1.21 0.305 3.47 -21.9 3.24
13 -1,-3 1,2 0.52 3.60 -79.1 1.20 0.56 3.4 -48.4 2.84

TAB. 1. Parameters of the modes identified in figures 2, 6 and 7.

radial dependence, in which case the mode is denoted by (m1,m2, [n1,n2]). Examples of these

mixed modes can be found in Lacaze et al. (2007).

The modes 1, 2 and 3 of figure 2 are the principal modes (−1,1,1), (−1,1,2) and (−1,1,3)
respectively. Their spatial structures shown in figures 3(a,b,c) have 1, 2 and 3 radial oscillations

as indicated by their radial mode numbers.

For W0 = 0, the numerical growth rate for these modes is in good agreement with the theory



8 N. Schaeffer, C. Roy, S. Le Dizès, M. Thompson

(a) 1 (b) 2 (c) 3 (d) 4

(e) 5 (f) 6 (g) 7 (h) 8

(i) 9 (j) 10 (k) 11 (l) 12

(m) 13

FIG. 3. Axial vorticity perturbation fields resulting from the elliptical instability for Re = 14000 and
a/b = 0.14. Each plot is associated with a number corresponding to one point identified in figure 2. Contours
are linear and symmetric around 0. The dashed line is a circle of radius a centered on the vortex center.

[see figure 1]. As the axial flow is progressively increased, these modes are progressively stabili-

zed, as also predicted for counter-rotating vortex configurations (Lacaze et al. 2007). As explai-

ned in Lacaze et al. (2007), this phenomenon has two different causes. First, as soon as an axial

flow is present, the symmetry between the m = 1 modes and the m = −1 modes is broken. The

resonance between the two helical modes becomes less efficient because their radial structures

are no longer perfectly in phase. Moreover, the symmetry breaking creates a small detuning in

the resonant frequency with respect to the frequency which maximizes the local instability in the

vortex center. The strength of the local elliptic instability in the vortex center is thus also less

important. The second cause is the damping of the Kelvin mode m = −1. The damping of this

mode is due to the appearance of a viscous critical layer in its radial structure (Le Dizès 2004;

Fabre et al. 2006). When the damping rate of the mode is greater than the growth rate associated

with the resonance, the instability mode disappears.

The other instability modes which are destabilized for larger values of W0 are no longer sta-
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(a) (b) (c)

FIG. 4. Azimuthal decomposition of the instability mode 5 : axial vorticity in a section perpendicular to the
vortex axis. (a) Axisymmetric component (m = 0), (b) m = ±2 component, (c) Superposition of m = 0 and
m = ±2 components. The circle (solid line) in figures (a) and (b) indicates the position of the turning point
rt (see text).

tionary sinuous modes. The mode labeled 5, corresponds to the principal mode (−2,0,2) which

has also been observed in the numerical simulation of counter-rotating vortices. This mode is

here the most unstable for W0 ≈ 0.3 and ka ≈ 3. The label of the mode can be obtained by loo-

king at the azimuthal decomposition of the instability mode in one of the vortices as shown in

figure 4 for mode 5. The figures 4(a) and 4(b) show the m = 0 and the m = ±2 contribution to

this instability mode while figure 4(c) is the superposition of these two contributions alone. We

clearly see that the eigenmode shown in figure 3(e) is well reproduced, confirming that mode 5

is mainly a combination of the azimuthal wavenumbers m = 0 and m = ±2. The time evolution

and the three-dimensional structure of the mode, which are shown in figures 5(a) and (b) res-

pectively, provide further information on the characteristics of the Kelvin modes involved in the

construction of mode 5. We observe that the helical structure is right-hand oriented and rotates

anti-clockwise. This indicates that the axial and azimuthal wavenumbers are of opposite sign,

and the frequency and azimuthal wavenumber are of the same sign. Thus, our choice of positive

k, m = −2 and ω < 0 (as indicated in table 1).

The label n of the Kelvin mode involved in the resonance can be obtained by looking at the

radial variation of each azimuthal component. Le Dizès & Lacaze (2005) have shown that the

label corresponds to the number of radial oscillations between the origin and a turning point

rt which delimits the region where the mode is localized. As explained in Le Dizès & Lacaze

(2005), the radial location rt can be computed from the vortex profile and the characteristics of

the mode. The turning point rt has been indicated for the m = 0 and m =−2 components of mode

5 in figures 4(a) and 4(b), respectively.

Using a similar azimuthal decomposition and by comparing the figures with the theoretical

plot of Lacaze et al. (2007), the principal modes (−2,0,1), (−2,0,3), (−3,−1,1), (−3,−1,2)
and (−4,−2,1) can be identified with the modes 4, 6, 7, 8 and 9 of figure 2 (see figure 3). Note

that an m =±2 structure is clearly visible on modes 4 and 6, m =±3 structure on modes 7 and 8,

and m =±4 on mode 9. As expected, the maximum growth rate of the principal modes decreases

as their axial wavenumber increases. Other instability modes are also visible in figure 2. They are

not principal modes, which means that they involve Kelvin modes with different radial labels.

A few of them have been illustrated in figure 3. By looking at the number of oscillations of the

main azimuthal components, labels have been tentatively given for each of these modes in table

1.

2.3. Effects of Reynolds number and vortex separation distance variations

Similar contour plots to figure 2 are displayed in figures 6 and 7(a) for a/b increased from

0.14 to 0.18 (closer vortices) and a larger Reynolds number (Re increased from 14000 to 31400),

respectively. A corresponding set of instability modes as shown in figure 2 have also been iden-
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(a)

(b)

FIG. 5. (a) Temporal evolution of the axial vorticity of the instability mode 5 during half a period. Times
correspond to 0, T/8, 2T/8, 4T/8, respectively. (b) Three-dimensional visualization showing an vorticity
isosurface indicating the deformation induced by mode 5. Here, the maximum vorticity of the instability
mode is 0.4 times the maximum vorticity of the base flow.

tified in these figures. Their characteristics are given in table 1. When a/b is increased, the peaks

associated with the main modes move slightly owing to the variation of the mean rotation (a/b)2

of the pair which modifies the conditions of resonance. In particular, the resonant mode posi-

tions are shifted to occur at slightly higher axial flow velocities and smaller wavenumbers. For

example, for mode 4, an approximately 30% increase in a/b from 0.14 to 0.18, results in a shift

in (ka, W0) coordinates from (1.76, 0.56) to (1.68, 0.58). The relative shift is not uniform across

all modes however ; the 30% change in a/b typically leads to approximately a 10% change in ka
but only a few percent change in W0. The position of the peaks is by contrast almost unaffected

by variations of the Reynolds number. This is also clearly seen in figure 8(b) where growth rate

variations are displayed for a fixed W0 = 0.29 and for various Reynolds numbers.

An important feature of figures 6 and 7(a) is the global increase in the growth rate when either

a/b or Re increases. For the range of parameters of these figures, almost the whole parameter

space considered is now unstable. However, there are differences between increasing Reynolds

number and increasing a/b. When the Reynolds number is increased, the growth rate peaks

remain distinct : more modes become unstable but they can still be identified. Note in particular

that mode 8, displayed in figure 3(h) and which corresponds to the principal mode (−1,−3,2),
is now unstable, whereas it was almost stable for the parameters of figure 2. When a/b increases,

the tendency is different. The peaks of the modes for large ka tend to disappear : the growth

rate increases almost uniformly as ka increases. The trend is demonstrated in figure 8(a) for a

fixed value of W0 = 0.29 for a/b = 0.18. In addition, figure 11 shows the behavior for the zero

axial velocity case. The growth rate ultimately decreases for large ka, but what is important is

that there is no dominant mode selection in that case. Again, this is clearly indicated in figure

6, which shows specific modes are virtually indistinguishable from the background noise for

ka � 3.5 for a/b = 0.18. The modes for ka � 3.5 are apparently mixed and most of them have a

spiral-like structure as illustrated in figures 9(a-c).
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FIG. 6. Same as figure 2 for a/b = 0.18 and Re = 14000.

The spiral structure is probably associated with a critical layer in one of the resonant modes

(Lacaze et al. 2007). This critical layer is known to be responsible for the stabilization of some

modes, such as the mode (−1,1,1) for increasing W0. However, for increasing a/b this stabili-

zing effect becomes less important. Moreover, the instability band also becomes wider and the

frequency detuning between modes less important when a/b grows. Thus, we expect that more

and more modes would become unstable in larger and larger overlapping instability regions. The

consequence is that the growth rate possesses a large growth envelope with no sharp peaks.

2.4. Comparison of the stability of co- and counter-rotating vortex pairs

Le Dizès & Laporte (2002) compared the dominant instability modes for co- and counter-

rotating vortices for the case without axial flow. In general, the growth rates of instabilities for

counter-rotating vortices are lower than for co-rotating vortices and the corresponding wavenum-

bers of the modes lie between those of the other case. Figure 10 shows growth rate curves for

the case without axial flow for a/b = 0.168 at Re = 31400, which highlights both effects. These

predictions are consistent with the analytical and numerical predictions in Le Dizès & Laporte

(2002). For the case with axial flow, for which an analytical theory is yet to be developed, figures

7(a) and (b) display the instability maps for the co- and counter-rotating cases for Re = 31400

and a/b = 0.168. This allows an explicit, albeit numerical, determination of the effect of the

added Coriolis force on the stability of co-rotating vortex pairs. As previously mentioned, this

difference from the counter-rotating case appears because of the mutually-induced rotation of the

each vortex about their centroid, meaning that they appear quasi-stationary in a rotating frame.

There are both similarities and differences between the stability maps. The first point is that

a similar set of identifiable modes corresponding to the same Kelvin mode interactions appear

on each map in roughly the same locations. However, the actual positions of the modes for the

co-rotating vortex map are shifted to approximately 20% higher axial velocities. Another key
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FIG. 7. As for figure 2 for a/b = 0.168 and Re = 31400 : (a) co-rotating vortices ; (b) counter-rotating
vortices
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(a)

(b)

FIG. 8. Instability growth rate versus axial wavenumber for W0 = 0.29. (a) Vortex separation distance
dependence for Re = 14000. (b) Reynolds number dependence for a/b = 0.14.

difference is the background growth rate between identifiable modes. This is very much larger in

the co-rotating case, which is also clear from figure 11 at zero axial flow, which explicitly shows

the slow falloff of the growth rate for high wavenumbers.. Indeed, as discussed in the previous

section, as a/b is increased to 0.18, the background growth rate virtually swamps the growth

rate of local resonant Kelvin mode interactions for higher wavenumbers and may even dominate

co-rotating vortex evolution for close vortex cores at particular axial core velocities. This effect
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(a) S1 (b) S2 (c) S3

FIG. 9. Instability modes with a critical layer (see fig. 6).

FIG. 10. Comparison of growth rates for equal strength co- and counter-rotating vortices with zero axial
velocity for a/b = 0.168 and Re = 31400.

occurs at separations well under the merging limit for co-rotating vortices of a/b� 0.23 (Meunier

et al. 2005).

3. Nonlinear dynamics of the elliptic instability
3.1. A single vortex in a strain field and counter-rotating vortices without axial flow

The nonlinear dynamics of the elliptic instability is examined in this section for two confi-

gurations without axial flow : (1) a single vortex in a strain field ; (2) Counter-rotating vortices.

For both cases, the nonlinear development of the instability is simulated with the 3D pseudo-

spectral Cartesian code which has been used for the linear study. The spatial resolution is typi-

cally 256×256×48 in the (x,y,z) directions where 0z is the vortex axis.

The base flow of case (1) is computed using a two-dimensional Navier-Stokes code in cylindri-

cal geometry (finite difference scheme in radial direction and Fourier decomposition in azimuthal

direction). This code allows us to impose a fixed strain field for large radial coordinates (fixed

here at R = 15a0). Starting as initial condition from the axisymmetric Lamb-Oseen vortex plus

a uniform strain field of strain rate ε, the flow is found to relax on a non-viscous time scale to
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FIG. 11. Growth rate as a function of wavenumber for the case with no axial flow for Re = 14000 and
a/b = 0.18.

the quasi-steady strained vortex solution obtained by Jiménez et al. (1996). The good quality of

this solution is then checked by comparing the numerical strain rate at the vortex center with the

theoretical prediction (Jiménez et al. 1996; Eloy & Le Dizès 1999). This 2D solution slightly

evolves owing to viscous diffusion. This effect is known to influence the development of the el-

liptic instability (Eloy & Le Dizès 1999). For case (1), we have chosen to freeze artificially the

base flow in order to identify more clearly the nonlinear effects on the instability. This choice is

also motivated by applications of the results to larger Reynolds number flows for which viscous

diffusion is negligible. Nevertheless, this assumption will be relaxed for the 2 counter-rotating

vortex case. It will permit to check that it does not significantly influence the nonlinear dynamics

of the instability.

For case (1), two sets of parameter are considered : ε = 0.005, Re = Γ/ν = 6300 and ε = 0.01,

Re = 10000. The nonlinear development of the elliptic instability is computed by simulating the

Navier-Stokes equations for the perturbations using the 3D pseudo-spectral code. The size of the

box along the vortex axis is such that it corresponds to a single wavelength of the most unstable

linear mode. This mode is obtained from white noise by turning off the non-linear terms until the

growth rate converges, and is then scaled to a small amplitude such that the linear growth of the

instability is always observed before non-linear effects become significant.

For ε = 0.005, the onset of the elliptic instability is at Re = 5416. The first computation at

Re = 6300 is performed close to the stability threshold in order to look at a weakly nonlinear re-

gime. The linear growth rate at this Reynolds number is σ = 1.910−3. The evolution of the shape

of the most unstable mode kz = 2.25 is displayed in figure 13(a,b). While the linear eigenmode is

perfectly aligned with the stretching axis (fig. 13(a)), the nonlinear effects cause a slight rotation

of the structure, as predicted by the weakly nonlinear theory (Sipp 2000). The mode structure is

almost not modified during this dynamics. The dynamics of the angle φ as defined in fig. 13(b)

can be analyzed as the amplitude of the mode increases and is plotted in fig. 12. We observe a li-

mit cycle with a small frequency approximatively equal to 8.610−3. This behavior was predicted

by Racz & Scott (2008) for the weakly nonlinear evolution of a similar instability in a cylin-
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FIG. 12. Evolution of the angle (in degrees) and amplitude of the instability mode in the two cases. Solid
line : ε = 0.005, Re = 6300. Dashed line : ε = 0.01, Re = 10000. The axial vorticity structure of the
instability mode at the circles is shown in fig. 13.

φ

FIG. 13. Contour plot of the vorticity perturbation of the most unstable mode (kz = 2.25) in the linear regime
(a), t = 960 in case ε = 0.005, Re = 6300 (b), t = 200 in case ε = 0.01, Re = 10000 (c) corresponding to the
angle and amplitude circled in fig. 12. Continuous line and dashed lines are positive and negative isovorticity
contours respectively. The two circles indicate the maximum and minimum of each mode from which the
angle φ is computed.

der, but it is observed for the first time in the case of the elliptic instability of a strained vortex.

Note that in the inviscid framework, no limit cycle is expected in the weakly nonlinear regime :

the angle should rotate toward the direction of compression of the strain field and the amplitude

should return to zero (Sipp 2000). The time-evolution of the mean axial vorticity profile (z- and

θ-averaged) is shown in fig. 14. The slow periodic oscillation associated with the limit cycle can

be seen on this plot. Note also that the only effect of the perturbation is to flatten the mean profile

near the vortex center. No effects are visible outside the vortex core contrarily to what we will

now observe for the second set of parameters.

In the second simulation of case (1), we are much above threshold. The linear growth rate is

now σ = 1.08 10−2, that is about 6 times higher than the previous case. The evolution of the

energy of the different modes is plotted in figure 15. The unstable mode is growing as predicted

by the linear theory (Le Dizès & Laporte 2002), and there is no visible departure from the linear

growth until t � 120, but the mode structure is not observed to rotate as in the previous case. The

orientation angle slightly increases instead of decreasing as the amplitude grows (see fig. 12).

This behavior was demonstrated as a possible weakly nonlinear regime(Racz & Scott 2008) but

here it may also be due to the fact that we are far from threshold. Indeed, the mode structure is ra-

pidly strongly modified (fig. 13(c)) such that the weakly nonlinear theory hypothesis is no longer
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FIG. 14. Mean vorticity profiles (z and θ averaged) at different instants for the Lamb-Oseen vortex in a
small strain field for ε = 0.005, Re = 6300. Profiles are separated by Δt = 200 (turnover time) and shifted
by Δr = 1. (exception : between 4,5 and 6, Δt = 100). The first profile on the left is at t = 0 and the
unperturbed profile is repeated in dotted style for reference.
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FIG. 15. Energy of the first seven modes as a function of time, showing the linear growth and saturation
of the elliptic instability. The energy of the fundamental mode kz = 2.25 and its successive harmonics are
given by the plain black line and the gray-scale lines respectively ; the dotted line represents the energy
of the kz = 0 perturbation and the dashed line gives the slope of the linear growth. Case (1) for ε = 0.01,
Re = 10000.

satisfied. The evolution becomes strongly nonlinear as illustrated in fig. 16 suggesting there is

no saturation mechanism. In these snapshots, we clearly observe the formation of secondary vor-

tex structures around the main vortex. These structures which resemble vortex loops move away

from the vortex axis and become unstable. Small scales are then created but they are quickly

damped by viscosity. After this disordered regime, the main vortex reforms, but because some

vorticity has moved away from the initial vortex core, it is now much larger and has a weaker

vorticity peak. This evolution can also be seen in fig. 17 where is displayed the mean vorticity

profile as a function of time. Note that the formation of a thin layer on the mean vorticity pro-

file is clearly visible on the fifth profile at t = 240. The trace of the expelled vortex structures

observed in figs. 16(c,d) can also be associated with the secondary peak seen on the sixth profile.

The simulations of the two counter-rotating vortex system have been performed to check the

robustness of the nonlinear scenario observed for case (1). In that case, the strain field responsible

for the elliptic instability in each vortex is generated by the other vortex. Both the 2D simulations

to obtain the basic flow and the 3D simulations of the perturbation equations have been perfor-

med with the 3D pseudo-spectral code. The 2D simulation was initialized by a field composed of
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FIG. 16. Axially averaged vorticity contours in a plane perpendicular to the vortex axis (top) and total
vorticity maps in longitudinal planes containing the vortex axis oriented along the direction of compression
(middle) and of stretching (bottom) at different times (from left to right : t = 120, 200, 240, 280, 360).
In the top snapshots, the spatial scale is the same for all snapshots, so is the color map which maps zero
vorticity to white and ω = 2 to black. The contours are equidistant vorticity levels ranging from minimum
to maximum vorticity of each snapshot. For every longitudinal cuts, the color map (white for ω = 0 to black
for ω > 3) and the spatial scale are the same.
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FIG. 17. Same as fig. 14 but for ε = 0.01 and Re = 10000. Profiles are here separated by Δt = 40 (turnover
time) and shifted by Δr = 1.5. The first profile on the left is at t = 80.

two Lamb-Oseen vortices of opposite circulation ±Γ, same radius a and separated by a distance

b such that Re = 6300 and b/a = 5 at the end of the computation. For these parameters, the

equivalent external strain rate is ε = (a/b)2 = 0.04 and the linear growth rate is σ = 4.2 10−2,

so that we are far from the instability threshold and strongly nonlinear evolution as in case (1) is

expected. Counter-rotating vortex pairs are known to be also unstable to a long-wavelength insta-

bility (Crow instability). This instability is responsible for the formation of vortex rings (Leweke

& Williamson 1998) and is expected to grow simultaneously with the short-wavelength elliptic

instability we are interested in. Here Crow instability is filtered out by considering periodic boxes

of small axial length. No interactions between both instabilities are therefore taken into account.

Contrarily to case (1), the base flow is now allowed to diffuse by viscosity during the nonlinear

evolution of the perturbations. The 3D simulations are however initialized by the most unstable

linear eigenmode of the base flow obtained at the end of the 2D simulation with a small amplitude
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FIG. 18. Elliptic instability in vortex pairs. Total vorticity maps in the plane containing both vortex axes at
different times (from left to right, top to bottom : t = 22, t = 42, t = 62, t = 78, t = 88, t = 100). The color
scale goes from white (ω = 0) to black (ω > 5) and is the same in each snapshot.

FIG. 19. Mean vorticity profiles (z and θ averaged) after 100 turnover times, obtained by diffusion only or
with the action of elliptic instability, in the case of counter-rotating vortices. The profiles of the two vortices
are almost the same.

(1%). The time-evolution of the total vorticity in the plane containing the vortex axes is shown in

fig. 18. We can see that the nonlinear dynamics is qualitatively similar to what has been plotted

in fig. 16. Thin layers of vorticity are formed at the periphery of the vortex and vortex loops are

ejected from the vortex core (compare for example fig. 16(c) with figs. 18(c,d)). These secondary

vorticity structures are then destabilized and dissipated by viscosity. The new vortices which

form after this nonlinear evolution are, as for the single vortex case, larger and weaker (fig. 19).
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The average profiles of the last snapshot (t = 100) are shown in figure 19 for each vortex. The

vortex circulation is conserved but the radius computed from the second order moment of the

distribution, gives a = 1.68 while a purely diffusive evolution would give adi f f = 1.18 at this

Reynolds number. Alternatively, it would require 460 turnover times instead of 100 in order to

obtain the same radius by diffusion only.

Other sets of parameters far above threshold have been considered for both the strained vortex

and the two vortex configurations. They have all provided similar evolutions demonstrating the

universality of the nonlinear dynamics of the elliptic instability without axial flow. Experiments

for the two vortex system have been performed by Leweke & Williamson (1998) (see also La-

porte & Leweke 2002). Unfortunately, they have not performed vorticity measurement in the

late nonlinear regime. But their die visualizations (see fig. 19 of Leweke & Williamson (1998))

exhibit mushroom-like structures which resemble the expelled vorticity structure observed in

fig. 18(d,e).

3.2. Co-rotating vortices and merging

In this section, we study the influence of the elliptic instability on the merging of two identical

co-rotating vortices.

To quantify the influence of the instability, we have compared the merging of a purely 2D flow

with that of a 3D flow with elliptic instability with and without axial jet. Values of the axial jet

parameter corresponding to highly unstable modes have been chosen. The same numerical tools

as before are used for the simulations and for each case, we use the following protocol :

(a) The two dimensional base flow is computed starting with two Gaussian vortices, separated

by a large distance and we let the system evolve until the desired (b/a)0 is obtained. The length

scale is set to the new core size, so that we now have a = 1.

(b) From random noise, we let the most unstable mode evolve for 100 turnover times.

(c) The energy of the most unstable mode obtained by the previous step is set to A2 = 4.10−4

times the energy of the base flow.

(d) The full non-linear evolution of the flow is computed.

Although several values of W0, Re and (b/a)0 have been simulated, we document here only a few

typical cases for Re = 12500. Two values of (b/a)0, (b/a)0 = 5 and (b/a)0 = 7, corresponding to

close vortices and distant vortices respectively, have been analyzed. And for each value of (b/a)0,

two or three values of W0 have been computed and compared to the 3D simulation without axial

flow and to the 2D simulation. For each 3D simulation, a particular axial wavelength close to the

most unstable wavelength has been chosen. For example, for the simulations with (b/a)0 = 5,

we have taken kza = 1.8,3.0,1.6 for W0 = 0,0.3,0.6 respectively. Typically, we have used the

following spatial resolution for the 3D simulations. In the (x,y) plane, the grid spacing has been

fixed to Δ = 0.07 with 256× 256 points, and on the z-axis we have used 5 harmonics of the

most unstable mode (with a 2/3 rule anti-aliasing). We have checked on a few typical cases by

using a much higher resolution along the z-axis, that the simulations performed with one mode

with 5 harmonics were enough to capture correctly the main features of the nonlinear dynamics.

Finally, note that we have also used a domain twice as large for the kz = 0 flow (512×512 points)

to avoid virtual images problems.

Let us first consider the configuration of close vortices ((b/a)0 = 5). For this value of (b/a)0,

the temporal evolutions of the z-averaged vorticity profiles are displayed in the appendix A for

the 2D case (left row), the 3D case with W0 = 0 (middle row) and the 3D case with W0 = 0.6
(right row). It is clearly seen in these snapshots that the dynamics of merging is different for each

case. In the presence of the instability, merging occurs earlier than in the 2D case. This is also

seen in figure 20 which shows the evolution of the separation distance b as a function of time. In
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FIG. 20. Separation distance b between the two co-rotating vortices as a function of time, for Re = 12500,
(b/a)0 = 5.
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FIG. 21. Separation distance b between the two co-rotating vortices as a function of time, for Re = 12500,
W0 = 0.6 and different initial amplitudes A of the perturbation. Here b0 = 5 and a0 = 1.

this figure, we observe that the 3D merging with or without axial flow stars approximatively at

the same time. We shall see below that this is related to the short initial separation distance of the

vortices which is close to the 2D merging threshold. For short separation distances, we suspect

that the linear growth of the instability which is comparable for both cases W0 = 0 and W0 = 0.6
is sufficient to initiate the merging process. However, if the amplitude of the perturbations at t = 0

is varied, the time to merging also changes. And as expected, merging happens earlier when the

perturbation amplitude is larger (see fig. 21).

In the dynamics of wake vortices, it is also useful to analyze the shape of the vortex obtained

after merging. Figure 22 shows that the merging with elliptic instability leads to weaker and

wider vortices than the purely 2D merging. However, the variation of the final vortex profile

does not vary monotonically with respect to the axial parameter. This is not surprising as the
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FIG. 22. Azimuthal velocity uφ and axial vorticity ω profiles obtained after merging at t = 500, for
Re = 12500, (b/a)0 = 5.

instability characteristic does not vary that way either. The cases W0 = 0 and W0 = 0.6 are more

unstable than the case W0 = 0.3 (see fig. 2 for instance) which could explain the weaker effect of

the instability for W0 = 0.3.
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W0 b/a a/b Re kza σ2πa2/Γ tmΓ/(2πa2) tmσ

0 7 0.143 10000 2.0 5.010−2 260 13

8 0.125 12500 2.1 3.310−2 460 15

9 0.111 12500 2.1 2.510−2 850 21

0.55 7 0.143 12500 1.75 5.610−2 520 29

0.53 8 0.125 12500 1.75 4.010−2 > 850 > 34

0.28 7 0.143 12500 2.96 3.610−2 > 850 > 30

TAB. 2. Frozen base flow simulations for different unstable modes and different separation distances. W0 is
the axial flow parameter, kza is the axial wavelength of the computed main mode (computation also includes
its harmonics), σ is the energy growth rate in the linear regime. tm is the time at which merging starts.

Viscous diffusion, for the Reynolds numbers we are able to simulate, is important. It makes

the vortex cores grow and therefore it always leads to merging, even when the elliptic instability

is not present. In order to characterize more precisely the sole effect of the elliptic instability on

merging, we have chosen to perform a few simulations in which the viscous diffusion of the base

flow is turned off by freezing the base flow. By doing so, we also think that we are closer to the

situations of aeronautical interest for which viscous diffusion is indeed negligible.

In the “frozen base flow” simulations, the merging when it occurs can only be due to the

elliptic instability. In particular, when no instability develops, the flow remains unchanged and

no merging can ever occur. However, when the instability is present, it may or may not lead

to merging according to the nonlinear evolution of the instability. The simulations which are

shown in the appendix B correspond to simulations with a frozen base flow. The initial separation

distance is (b/a)0 = 7. We are therefore far from the 2D merging threshold a/b ≈ 0.23 , that is

b/a ≈ 4.35. As no base flow diffusion is considered, the 2D case never merges. We can see in

the snapshots shown in the appendix B that in the presence of the instability merging does occur.

However, by contrast with the previous case, merging is clearly different for the three cases

W0 = 0, W0 = 0.3 and W0 = 0.6. In particular, merging is faster without axial flow. This has been

observed for all the cases with (b/a)0 ≥ 7 we have simulated (see table 2). This can be linked

to the fact that the growth of the core radius by the elliptic instability without axial flow is much

more efficient than with axial flow.

This particular property has been analyzed by considering the development of the instability

in a single frozen strained vortex. Typical results are displayed in figure 23 which shows the

time evolution of the vortex radius for a few cases. We can note that the core radius of the case

without jet can increase by more than 20% by the instability before saturating, whereas the radius

increases by less than 10% for the case with jet, even for a strain field 3 times larger. After the

relaminarization of the vortex, the instability can grow again, leading to a further increase of the

vortex radius. This is what we observe for the case without jet in figure 23. It would have been

also observed for the other cases if the simulations could have been performed up to longer times.

In the snapshots shown in the appendix B, we can see that a single instability growth is enough

to start an early vortex merging for the case without axial flow. However, this is not the same for

the case with axial jet. Note for instance that for the case W0 = 0.5, the instability grows up to

t ≈ 150, then the vortices relaminarize near t ≈ 250, and the instability starts again at t ≈ 450

and modifies sufficiently the vortices to initiate the merging.
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FIG. 23. Evolution of the vortex radius of a single vortex in a strain field due to the elliptic instability.
Frozen base flow simulations.
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FIG. 24. Azimuthal velocity (left) and axial vorticity (right) profiles of the vortex obtained after merging
for Re = 12500 and (b/a)0 = 7, at t = 700. Frozen base flow simulations.

The final vortex profiles obtained after merging for the cases W0 = 0 and W0 = 0.5 are shown

in figure 24. We can also see in this figure that the effect of the elliptic instability without jet is

stronger. This has also been observed when viscous diffusion of the base flow was included as

soon as the initial separation distance was sufficiently large. (Recall that no such difference was

visible for (b/a)0 = 5.) We have attributed this difference to the weaker growth of each vortex

core by the elliptic instability in the presence of the axial flow.

Note finally that there is a second effect that could decrease the impact of the elliptic instability

with axial jet : the axial flow parameter varies during the dynamics. For this reason, we may

move from a value of W0 for which the instability is favored to another for which the instability

disappears or is weaker. This is never the case without axial flow, as W0 remains null and thus

always corresponds to a local peak of instability.

4. Conclusions
In the first part of this work, we have analyzed the linear stability of a co-rotating vortex

pair with axial flow. We have demonstrated that new elliptic instability modes are destabilized
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by axial flow. For small Reynolds numbers and small a/b, we have shown that the instability

diagram resembles the theoretical prediction for counter-rotating vortices (Lacaze et al. 2007),

although there are some explicit differences between these cases. When axial flow is progressi-

vely increased, the principal modes (combination of Kelvin modes of same radial branch label)

of azimuthal wavenumbers (−1,1) are stabilized and replace by other principal modes (−2,0),
(−3,−1) and (−4,−2). For large Reynolds numbers or large a/b, other instability modes have

been observed and associated with a combination of Kelvin modes with different labels. These

other modes are less unstable than the principal modes, whose characteristics are almost inva-

riant. But they make the vortex pair unstable in a large wavenumber band whatever the axial

flow.

In the second part of this work, we have demonstrated that without axial flow both weakly

nonlinear and strongly nonlinear evolution of the elliptic instability were possible. The weakly

nonlinear dynamics which has been observed very close to threshold is characterized by a limit

cycle behavior. The strongly nonlinear dynamics, which has been obtained in most simulations,

is much more violent but possesses some universal characteristic features. We have shown that

it always follows the following steps : (1) concentration of the vorticity in thin layers at the

periphery of the vortex, (2) expulsion of vortex loops, (3) breakdown of the whole structure, (4)

relaminarisation process leading to the reformation of a weaker and larger vortex. We claim that

this evolution is universal in high Reynolds number flows.

Naturally we have seen that this catastrophic evolution of the elliptic instability has a strong

influence on merging for the case of co-rotating vortices. We have shown that vortex merging can

be obtained thanks to the elliptic instability for a/b as small as 0.12. With axial flow, we have

observed that the nonlinear dynamics of the elliptic instability is less violent. The growth of the

vortex core size by the instability is also less important. As a consequence, co-rotating vortices

with axial flow will merge sooner than 2D vortices but later than vortices without axial flow,

especially if the initial separation distance is large. Moreover, the vortex obtained after merging

is wider and weaker than the one obtained in 2D but thiner and stronger than in 3D without axial

flow.
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Annexe A. Temporal evolution of vortex merging for (b/a)0 = 5 and Re = 12500.

In the following pages, the dynamics of merging of two identical vortices is represented as a

series of pictures, for Re = 12500 and an initial separation distance (b/a)0 = 5. Each line is a

different time, and each row a different simulation. The 2D simulation shown on the left row, is

compared to the 3D cases without axial flow (middle row) and with W0 = 0.6 (right row). Time

is normalized by the characteristic time scale of each vortex : 2πa2
0/Γ.



28 N. Schaeffer, C. Roy, S. Le Dizès, M. Thompson



Temporal DNS of short-wave instabilities in vortex pairs with axial flow 29



30 N. Schaeffer, C. Roy, S. Le Dizès, M. Thompson



Temporal DNS of short-wave instabilities in vortex pairs with axial flow 31



32 N. Schaeffer, C. Roy, S. Le Dizès, M. Thompson

Annexe B. Temporal evolution of vortex merging with a frozen base flow for
(b/a) = 7 and Re = 12500.

In the following pages, the dynamics of merging of two identical vortices is displayed in a

series of pictures for Re = 12500 and an initial separation distance (b/a)0 = 7. The viscous

diffusion of the base flow has been artificially suppressed. As above, each line is a different time,

and each row a different simulation corresponding to a specific value of W0.
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