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Abstract The possibility of model reduction using global modes is readdressed, aiming at the con-
trolling of a globally unstable separation bubble induced by a bump geometry. A combined oblique
and orthogonal projection approach is proposed to design an estimator and controller in a Riccati-type
feedback setting. An input-output criterion is used to appropriately select the modes of the projection
basis. The full-state linear instability dynamics is shown to be successfully controlled by the feedback
coupling with controllers of moderate degrees of freedom.
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1 Introduction

Separated boundary layer flows are ubiquitous in both external and internal practical flows, like the
rear of a vehicle or wings at high incidence. They are often associated with strong instabilities with a
broad frequency spectrum which are still not entirely understood, despite a longstanding theoretical,
numerical and experimental effort (see [2], [18]). As an archetype configuration, the backward-facing
step, showing various phenomena associated with flow separation, has been often considered for the
purpose of control. Feedback and instantaneous control strategies have been developed for this flow
case, for instance to reduce the recirculation bubble length in the laminar flow case [6] or to increase
mixing in turbulent flow [12]. In the present paper, a recirculation region created by a boundary layer
encountering a shallow bump is considered. For the same flow geometry the instability behavior has
been analyzed recently in [9], using the numerical global instability setting. This flow configuration
and the associated numerical model is appropriate for feedback control in the context of linear systems
approach to flow control, which has found a lot of attention during the last decade (see the review
[13]).

Given the extensive degrees of freedom of the flow dynamics, control theory can however hardly be
applied to the dynamical system which governs the full flow state and the problem of model reduction
is intimately related to the control issue. Very recently the input-output formulation of flow control
problems has led to promising results with regard to model reduction and it has been successfully
applied to the control of channel flow [11] or the flat-plate boundary layer [3]. The projection basis in
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this approach is close to the optimal reduced-order model, with respect to observability and controlla-
bility for the specific actuators and sensors considered. Some attempts have also been made to exploit
in the model reduction procedure the underlying physical mechanisms of the flow instability and in
particular to use the global modes for projection. This approach has been applied to a shallow cavity
[1] with some success. Very recently, the reliability of model reduction using global modes has been
questioned in [5], considering an open square cavity. The performance of the resulting compensator
obtained via bi-orthogonal projection for this non-normal flow case is shown in [5] to be less efficient,
in comparison with models based on proper orthogonal decomposition and balanced modes. However,
while the latter methods are designed to optimally reproduce the input-output behavior, they necessi-
tate the computation and the approximation in a time-stepping procedure of the Gramians associated
with controllability and observability [19].

In the present work, the possibility of model reduction using global mode subspaces is readdressed
by focusing on an alternative orthogonal projection approach associated with a least-square optimiza-
tion. The control and estimation are designed via Riccati-type feedback and the capability of the
compensator to suppress the global perturbation dynamics of the separation bubble is assessed. The
paper is organized as follows. In section 2 the flow model with the corresponding numerical large-scale
system is provided. The control and estimation issues are introduced in section 3 and the reduced-
order model is assessed by comparing bi-orthogonal and least-square projections onto a set of global
modes. Reduced-order systems of different dimensions are designed, based on a selection criterion for
the model basis. The ability of the compensator to control the full-state flow dynamics is demonstrated
in section 4. Finally, some conclusions are drawn in section 5.

2 Flow configuration and numerical model

The flow geometry in dimensionless variables is 0 ≤ x ≤ L, η(x) ≤ y ≤ H , with η(x) the lower
boundary containing a bump with height h. A boundary-layer flow evolves along the bump geometry
and the displacement thickness δ∗ of the Blasius profile (U(y), 0), imposed at inflow x = 0, has been
chosen as reference length, the Reynolds number being Re = δ∗U∞/ν with U∞ the uniform flow
velocity far from the wall.

The same geometry has been used in [15],[9] and the basic flow state exhibits an elongated recir-
culation bubble at the rear of the bump (cf. figure 1 for a bump height h = 2). The flow states at
increasing Reynolds numbers have been computed as nonlinear equilibrium solutions of the stationary
Navier-Stokes system

f(u, p, Re) =
[
−(u · ∇)u −∇p + (1/Re)∇2u ; ∇ · u

]
= 0, (1)

for the flow velocity u = (u, v) and pressure p. At outflow x = L, homogeneous Neumann boundary
conditions for the flow velocity field u are prescribed, whereas at y = H the upper boundary condition
u = (1, 0) is imposed, which is consistent with uniform flow conditions far outside the boundary layer.
The system has been discretized using Chebyshev collocation in both the streamwise x direction and
wall-normal y direction, together with an algebraic mapping transforming the physical domain into
the Cartesian computational domain [−1, 1] × [−1, 1]. To recover a steady equilibrium state, a quasi-
Newton method together with an arclength continuation procedure has been used. Details about the
solution procedure are provided in [9].

In figure 1, equilibrium states at Re = 590, 690 are depicted and the recirculation length is seen to
increase with the Reynolds number. A critical issue is the appropriate choice of the length and height
of the computational domain, in particular when addressing the stability by computing global modes
spectra of the steady states. In [9] it has been shown that the overall instability dynamics is reproduced
within a range of the parameter values, although definite convergence of the eigenvalue spectrum can
hardly be achieved for the present highly non-normal flow case (see for instance [20] for a general
discussion of non-normal operators). Indeed, the flow dynamics depends on the mutual interaction of
the modes, rather than the individual eigenvalue locations inside the spectrum. The reference case in
[9] has been computed for L = 300, H = 30, for a grid with Nx = 250 collocation points in x and
Ny = 40 collocation points in y. These values have been chosen in the present analysis.

In the following we denote

A(us, Re) = D(u,p)f(us, ps, Re) (2)
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Fig. 1 Streamlines in the vicinity of the wall boundary of steady flow state at (a) R = 590, (b) Re = 690, for
a bump height h = 2.

the Jacobian matrix evaluated at basic equilibrium states (us, ps). The dynamics of linear disturbances
is hence governed by the system

E
d

dt
q = A(us, Re)q, Eq = (u, v, 0), (3)

with q = (u, v, p) the linear flow disturbance. The disturbance flow velocity satisfies the no-slip condi-
tion at the wall and is set to zero at inflow x = 0 and at the upper boundary y = H , where uniform
basic flow is retrieved. At outflow, homogeneous Neumann boundary conditions for the perturbation
flow velocity are prescribed. The vector q contains the discretized flow field as well as the pressure
which gives rise to the differential-algebraic equations (3). The pressure is given implicitly through
the incompressibility condition which is imposed in the interior domain as well as on the boundary.
Spurious pressure modes are inherent when a Chebyshev discretization is used in a rectangular box
[17]. Continuity of the wall-normal pressure gradient is imposed at the four corners and the four re-
maining spurious pressure modes, that is the arbitrary constant and those arising from the Chebyshev
disretization (cf. page 262 in [17]), are eliminated through simple algebraic relations, similar to the
procedure outlined in [8]. The matrix A(us, Re) is hence non singular and E being the projection of the
solution vector q onto the perturbation flow velocity components, system (3) may be integrated using
multistep backward differentiation formulae (BDF), which are appropriate for the time-integration of
differential-algebraic systems [14].

The stability of the basic steady state (us, ps) is computed by considering the two-dimensional
temporal modes

q = q̂(x, y) e−iωt, q̂ = (û, v̂, p̂) (4)

and hence according to (3) the eigenvalues ωj and eigenvectors q̂j are solution of

−iωjEq̂j = Aq̂j (5)

with A the Jacobian matrix (we omit the reference to the basis state us and Reynolds number). The
resulting large eigenvalue problem is solved using large-scale Krylov subspace projections together with
the Arnoldi algorithm and the stability for the recirculation bubble has been assessed in [9].

The unstable part of the spectrum, is depicted in figure 2, for Re = 590, 690, which shows the drastic
increase of the amplification rates ωi > 0 when increasing the Reynolds numbers. The Reynolds number
Re = 590, for a bump height h = 2 is slightly above the threshold for the global dynamics analyzed
in [9]. In this latter work the low-frequency oscillations of the recirculation bubble, which had been
observed in direct numerical simulations [15], has been interpreted in terms of interaction of global
modes.

Here, the goal is to evaluate the possibility of feedback control of the underlying global instability
dynamics.

3 Control, estimation and modal decomposition

The possibility of model reduction, using global modes, in view of feedback flow control has been
explored recently, for incompressible cavity flows considering a smooth shallow geometry in [1] or a
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Fig. 2 Unstable part of the spectrum ; +: Re = 590 (a) R = 590, (b) Re = 690, for a bump height h = 2.
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Fig. 3 Actuator, (a) streamwise component Bx and (b) wall-normal component By .

sharp-edge geometry in [4]. Given the degrees of freedom of real full flow states, only a partial-state
control approach is feasible in general and hence the flow state has to be estimated. A control device
has to be designed which efficiently acts on the flow dynamics and sensors are implemented to measure
significant flow quantities.

In the present work, which aims at reassessing model reduction using global modes rather than
providing realistic flow control, a divergence-free spatially localized volume force B = (Bx, By) has
been chosen as actuator. The actuator has a Gaussian envelope

Bx = −(y − y0) exp

(
−

(x − x0)
2

2σ2
x

−
(y − y0)

2

2σ2
y

)
, (6)

By =
σ2

y

σ2
x

(x − x0) exp

(
−

(x − x0)
2

2σ2
x

−
(y − y0)

2

2σ2
y

)
. (7)

The parameters (x0, y0) fix the location of the actuator in space and (σx, σy) accounts for its spatial
extent. Actuation in the vicinity of the bump is expected to provide efficient response, according to
the shape of the adjoint eigenvectors associated with the most unstable direct modes, one of which
being shown in figure 5 (cf. section 3.1). We have chosen x0 = 40, slightly downstream of the bump,
and y0 = 3. The values σx = 2, σy = 0.5 give rise to an actuator B depicted in figure 3, with a width
and height of approximately 10 and 1.5 units, respectively.
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The sensors are placed at several locations along the plate, starting approximately at the center of
the steady flow recirculation bubble and extending to the outflow region of the computational domain.
They measure the flow skin-friction and the measurements are collected in a vector y with components

yi =

∫ xi+∆x

xi

∂u

∂y
(x, 0)dx, i = 1, · · · 6, (8)

where ∆x = 20 and x1 = 60, x2 = 100, x3 = 140, x4 = 180, x5 = 220, x6 = 260.
In the absence of the full knowledge of the state vector q, a state estimate qe is introduced, which

mimics the unknown state vector: It is governed by the same dynamics, but also forced by a restoring
term L(ye−y) for the real measurements to be followed as exactly as possible. In essence, the estimator
receives the measurements, determines the estimated flow which is fed back by the controller. Adding
the actuator B to system (3) and introducing a measurement operator C, the coupling with the
estimator and the controller gives rise to the system

E
d

dt
q = Aq + B φ, y = Cq, (9)

E
d

dt
qe = Aqe + Be φ + L(ye − y), ye = Cqe, φ = Kqe. (10)

The aim of the control design is to determine the operators K, L, which are called respectively control
gain and estimation gain (see the review [13] and the references therein). The dynamical system (10),
called the compensator, provides feedback control φ when receiving the flow measurement y. At this
stage, note that we are free to choose Be as a model of B, although B = Be is used in many studies.
Only the final coupling of the compensator (10) and the plant (9) will assess the quality of this
modeling. For systems of large size, K and L cannot be determined without resorting to a model
reduction procedure. In our approach we decide to reduce the dynamics of the estimated flow state on
the invariant subspace of a set of eigenmodes, solution of the generalized eigenvalue problem (5).

The operators being real, the eigenvectors are complex conjugate pairs and

Be = E

m∑

i=1

(
βjq̂j + β̄j

¯̂qj

)
(11)

(the variables with the bar being the complex conjugate) with q̂j solutions of (5). The operator Be

may equivalently be written

Be = EVB̂, (12)

for the real vector B̂ = (2β1r,−2β1i, · · · , 2βmr,−2βmi)
T (with βj = βjr + iβji) and the real matrix

V =
(
q̂1r q̂1i · · · q̂mr q̂mi

)
, (13)

the n = 2m columns of which being the real parts q̂jr and imaginary parts q̂jr of the eigenvectors
(for corresponding eigenvalues λj = −iωj with non-zero imaginary parts). The estimated flow state is
expanded into the basis of eigenvectors as well, with

qe = Vx̂e (14)

and the compensator (10) can be written equivalently as the n-dimensional system

d

dt
x̂e = Λx̂e + B̂φ + L̂(ye − y), ye = Ĉx̂e, φ = K̂x̂e. (15)

where Ĉ = CV. Note that in this real vectorspace formulation, the matrix Λ is not diagonal but has
an evident block-like structure with 2 × 2 blocks centered at its diagonal of the form

(
ωji −ωjr

ωjr ωji

)

with λj = −iωj = ωji − iωjr the eigenvalues solution of (5).
Before addressing the projection issue, we briefly outline the main steps to compute the coefficients

K̂ and L̂ of the control gain and estimation gain. Considering the flow dynamics within the subspace
spanned by the chosen set of modes, the reduced state vector is qr = Vx̂ with x̂ solution of

d

dt
x̂ = Λx̂ + B̂φ, φ = K̂x̂. (16)
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In order to determine an optimal control gain K̂, the functional

J =
1

2

∫ T

0

x̂TVT WVx̂ dt +
l2

2

∫ T

0

φ2dt, (17)

is minimized, the first term of the right-hand side being the projected flow energy, with W a diagonal
matrix with the appropriate weights for the numerical quadrature of the integral

∫
(u2 + v2)dxdy in

the flow domain. The parameter l2 puts a bound on the control cost and the value l2 = 108 has been

taken in the present computations. For time-horizon T → ∞, the control gain K̂ can be obtained

as K̂ = −l−2 B̂ Xc, the matrix Xc being solution of an algebraic Riccati equation. Details are not
provided here, the procedure being outlined in the review [13] and it has been used in [4], [3], [1],
among others. The reduced estimation error x̃ = x̂ − x̂e is solution of

d

dt
x̃ = Λ x̃ + L̂ỹ, ỹ = Ĉx̃. (18)

As shown in [13], p. 399, there is a formal analogy between (18) and (16) and the estimation gain L̂

can be written L̂ = −l−2
e XeĈ

T with Xe solution of the Riccati equation

ΛXe + XeΛ
T − l−2

e XeĈ
T ĈXe + Q = 0.

The estimation gain is also called Kalman filter and in a stochastic setting the parameter l−2
e can be

interpreted as a sensor noise variance, whereas the matrix Q in the above equation corresponds to the
covariance matrix of modeled white state noise [10]. No particular disturbance and measurement noise
modeling has been performed here and it is convenient to chose Q = I (cf. [13]), whereas the value
l2e = 108 enforces low-amplitude feedback gain.

3.1 Bi-orthogonal and least-square projection

The conventional projection procedure for non-normal problems uses the bi-orthogonal property

< q̂+
k ,Eq̂j >= δkj (19)

with respect to the Hermitian inner product, the adjoint modes q̂+
k being solution of the generalized

eigenvalue problem

iωkEq̂+
k = AT q̂+

k (20)

of the adjoint system with AT merely the transposed discretized operator. In order to address the
coupling between the large scale plant (9) and the low-dimensional compensator (15), it is convenient
to consider the compensator written in physical space (10), the systems (10) and (15) being equivalent.
Indeed, by making use of the bi-orthogonal property, the expansion (14) may be written equivalently
as

qe =

m∑

i=1

(
αjq̂j + ᾱj

¯̂qj

)
, with αj =< q̂+

j ,Eqe >,

the n = 2m coefficients of x̂e in (14) being given by the real and imaginary parts of αj with x̂e,2j−1 =
2αjr, x̂e,2j = −2αji, j = 1, · · · , m. Hence, one may write x̂e = Pqe for some operator P and hence
the control and estimation gains in (10) and (15) are connected through the relations

K = K̂ P, L = V L̂

with V defined by (13). Subtracting (10) from (9), the error q̃ = q − qe between the real and the
estimated flow state is solution of

E
d

dt
q̃ = Aq̃ + (B − Be) φ + Lỹ, ỹ = Cq̃. (21)

The actuation error

B̃ = B− Be (22)
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depends on the specific expansion coefficients in (11). In the bi-orthogonal projection approach, these
coefficients are provided by the inner products between the adjoint modes and the real actuator and

βj =< q̂+
j ,EB >, j = 1, · · · , m.

This procedure has for instance been used in [1] and it ensures that the actuation error B̃ has no
contributions with respect to the chosen modal subspace. However, as for instance discussed in [5],
there is no guarantee that the error does not excite flow states outside the range of the reduced order
model.

This appears to be a major difficulty in this a priori model reduction approaches, in contrast to
the input-output analysis for flow control based on observability and controllability operators. In this
latter approach, which has recently been applied for instance to the control of channel flow in [11] or
the flat-plate boundary layer in [3], the actuator B enters directly into the construction of the so-called
balanced modes used for reduction.

At this stage, the choice of the direction of projection (either orthogonal or oblique) remains open. In
the present flow case, there are unstable modes, depicted in figure 2, and it appears to be mandatory
to use bi-orthogonal projection for the unstable part of the spectrum. Indeed, it is unlikely that a
control may be achieved, if the actuation error (22) has contributions with regard to unstable modes.
However, concerning the stable part of the spectrum, alternative projection approaches are possible.

The matrix (13) contains the real and imaginary parts of the set of eigenvectors and we separate
the block with the mu unstable eigenvectors from the block containing the ms stable ones, by writing

V =
(
Vu Vs

)
.

The expansion coefficients of Be with respect to the unstable eigenvectors are first determined by
bi-orthogonal projection of B, i.e. βj =< q̂+

j ,EB >, j = 1, · · · , mu, giving rise to

Bu = EVuB̂u. (23)

Note that mu = 15 for the flow state at Re = 590 and mu = 17 for Re = 690. Writing

Be = Bu + Bs (24)

the projection on the stable part of the spectrum Bs = VsB̂s is computed as solution of the least-square
projection, which minimizes the energy norm of the actuation error

||Vs B̂s − (B− Bu)||2 = min
ŷ

||Vs ŷ − (B − Bu)||2. (25)

(Note that the norm ||g||2 = gTWg is the discrete version of the domain integral
∫
(g2

x + g2
y)dxdy for

any volume function g = (gx, gy).) Solving the associated normal equation

VT
s WVs B̂s = VT

s W(B − Bu) (26)

one recovers the solution B̂s of this optimization procedure. With the decomposition (24) the projection
error (22) is orthogonal to the set of stable eigenmodes for the modal subspace considered and it has no
contribution with respect to the unstable eigenmodes. The reduced actuator Be is hence determined,
within the chosen set of eigenvectors, such that it fits optimally the real actuator in the energy norm
measure.

3.2 Projection results and selection of modal basis

The choice of the stable subspace is subject to some arbitrariness. Given the dimension of the large
scale dynamical system (of order 30, 000), Krylov-subspace projection are to be performed to compute
parts of the spectrum. Performing several shifts in the nowadays widely used Arnoldi algorithm (cf.
[16]), large parts of the spectrum have been computed. For each shift, a LU decomposition of the
system matrix is performed to compute the Krylov subspace. Note that we consider rather large
Krylov subspaces, of dimension 1600, and five to six shifts had to be performed to recover the part
of the spectrum shown in figure 4. Exploring the complex frequency plane, 1000 modes in the half
plane ωr > 0 are depicted in 4, for the basic state at Re = 590. There are unstable eigenvalues with
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Fig. 4 Spectrum in the half plane ωr > 0 with m = 1000 eigenvalues (Re = 590).
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Fig. 5 (a) Streamwise component of the most unstable eigenmode at ωr ≈ 0.2, cf. figure 2. (b) Streamwise
component of the associated adjoint eigenfunction.

ωi > 0 already shown in figure 2. Again, it has to be emphasized that we did not attempt to recover
a definitely converged spectrum, which would hardly be feasible given the high non-normality of the
operator in the large-scale system (3), which makes the precise eigenvalue locations sensitive to the
grid-values used. The most unstable eigenmode (at ωr ≈ 0.2, cf. figure 2) is depicted in figure 5(a)
whereas the associated adjoint eigenvector structure is given in figure 5(b). As discussed for instance
in [7], the clear separation in space between the direct and adjoint eigenfunction is associated with the
strong streamwise non-normality.

The bi-orthogonal projection of the actuator onto the space spanned by the 1000 eigenvectors has
been performed and the projected actuator in physical space is depicted in figure 6 (a). The pro-
jected volume forcing structure is very different from the real actuator shown in figure 3, the non-zero
contributions visible downstream being precisely due to the strong non-normality. The adjoint modes
are localized upstream, providing nonzero inner-products with the actuator, whereas the associated
dominant direct modes are located downstream.



Control of a separated boundary layer: Reduced-order modeling using global modes revisited 9

x

y

13

13

150

150

0

0 x

y

(a)

(b)

Fig. 6 Streamwise component Bx of the projected actuator for the modal basis at Re = 590; (a) bi-orthogonal
projection, m = 1000; (b) least-square projection, mu = 15, ms = 985.

By performing however the combined bi-orthogonal and least-square projection in the decomposi-
tion (24), one recovers the projected actuator depicted in figure 6 (b) which is seen to be quite close
to the physical one. It would however be hazardous to infer merely from the reduced actuator struc-
ture, that the alternative projection works better than the conventional bi-orthogonal procedure. The
performance of both approaches will be assessed in the next section.

The projection has been performed considering m = 1000 complex eigenvectors and the associated
reduced system in the real vectorspace (15) is of dimension n = 2m = 2000. In the aim of realizing
an efficient feedback with the plant, one would like the dimension of the compensator to be as small
as possible and some criterion has to be applied to assess the amount of information contained in the
modes, with regard to the control issue. This point has been addressed for instance in [3] and [5]. The
idea is to quantify the output y = Cq for harmonic actuation inputs φ = eiωt for the (complex) system

E
d

dt
q = Aq + Bje

iωt, (27)

and consequently

y = C (iωE− A)
−1

Bje
iωt, (28)

with Bj the component of the projected actuator with respect to the eigenvector qj . The expansion in
terms of the complex eigenvectors (together with the complex conjugate) is (11) and for Bj = βjEq̂j ,
one gets

y = Cq̂j

(
1

iω − λj

)
βje

iωt (29)

with λj = −iωj the eigenvalue with eigenvector q̂j . The quantity Cq̂j provides the skin friction
measurements (8) of the global mode and is hence a vector Cj with 6 (complex) components, the
amount of which indicating the observability of the mode, whereas βj is a measure of its controllability.
From equation (29) it follows

|y| ≤
|Cj ||βj |

|Re(λj)|
= Γj (30)

and the quantity Γj is convenient to provide the hierarchy of the modes with respect to controllability
and observability (|Cj | is here the sum of the modulus of its 6 components). Note that |Re(λj)| =
|Im(ωj)| and this quantity hence increases with the damping rate of the stable modes.

The Γj values have been computed for the projected actuators for all the eigenvalues depicted in
figure 4. The modes have been ordered for decreasing Γj and for instance the 200 first modes with
respect to this criterion are shown in figure 7(a), whereas the 50 first modes are depicted in figure
7(b). The results at Re = 590 are shown, for the coefficients of the actuator expansion obtained by
the combined bi-orthogonal and least-square projection. First, the coefficients are computed for the
highest mmax = 1000 value considered here and the criterion is applied to select a lower dimension m.
The projection onto the stable subspace being orthogonal, the coefficients have then to be recomputed
according to the least-square procedure. It has been checked that the procedure is hardly sensitive to the
step ∆m used when diminishing the dimensions throughout this procedure. The general trend is that
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Fig. 7 Eigenvalues associated with decreasing Γj-values (flow case at Re = 590); (a) 200 eigenvalues; (b) 50
eigenvalues.

for increasing damping rates (that is for decreasing imaginary parts of ωj), the Γj values decrease. As
already observed by [5], there is however some evidence that a simple selection criterion based only on
the damping rates of modes may not be reliable. For instance, the spectrum with m = 200 eigenvalues
shown in figure 7 (a) still contains eigenvalues with relatively high damping rates.

The criterion has also been applied to the reduced actuator obtained by conventional bi-orthogonal
projection. For a given dimension, the selected basis, not shown here, appeared to be essentially the
same (with however different coefficients in the actuator expansion).

4 Control results

Putting together the plant (9) and the compensator (15), one recovers the system

E
d

dt
q = Aq + B φ, y = Cq, (31)

d

dt
x̂e =

(
Λ + B̂K̂ + L̂Ĉ

)
x̂e − L̂y, (32)

φ = K̂x̂e. (33)

The second-order backward differentiation formula (BDF) has been used for the integration of the
differential-algebraic system (31), and the vector qn+1 at time tn+1 = (n + 1)∆t is solution of
(

3

2∆t
E− A

)
qn+1 =

1

2∆t
E

(
4qn − qn−1

)
+ Bφn+1. (34)

Even for large and full matrices, as arising from the present Chebyshev-collocation approximation,
the LU decomposition of the left-hand side can be performed with nowadays available computers
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Fig. 8 Flow energy (normalized by E(0)) as function of time (Re = 590): — uncontrolled case; − − −

estimator of dimension n = 400 (double-projection); · · · estimator of dimension n = 100 (double-projection);
− · −·: estimator of dimension n = 100 (bi-orthogonal projection).

and the solution vector can be integrated efficiently in time. Once the solution computed at time
tn+1, the skin-friction is measured up to second order in time the measure and at the next timestep
yn+2 ≈ 2yn+1 − yn enters into (32) (which is solved by second-order BDF too), providing the control
at the new timestep.

4.1 Control at Re = 590

First of all, the flow at Re = 590 has been considered which exhibits only weakly unstable global
instability modes. According to the above selection criterion, compensators with decreasing (real)
dimensions n = 2m have been considered, performing the double-projection as exposed in the previous
section for the actuator B depicted in figure 3. As initial perturbation of the flow, a volume force of
Gaussian-type, similar to the actuator structure but localized upstream of the bump near the entry
of the flow domain, has been applied at t = 0. The solid line in figure 8 shows the uncontrolled flow
dynamics exhibiting a strong transient energy growth followed by the beating behavior. The associated
dynamics has been analyzed in [9] in terms of the interaction between the global modes. Compensators
with dimensions n = 400 and n = 100 have been considered (that is using m = 200 and m = 50
complex modes for the expansion, respectively). The results with control are depicted as the dashed
and the dotted lines and a compensator with the fairly low dimension n = 100 is seen to successfully
control the flow dynamics. The control is seen to have no impact on the transient energy growth up to
t = 200. Indeed, the controller can start to act only after the initial disturbance (localized upstream)
has reached the first sensor, the first skin-friction measurement starting at x = 60.

Compensators obtained by conventional bi-orthogonal projection have also been computed and
coupled to the plant. One result with n = 100 is shown as the dashed-dotted line in figure 8 and the
energy is shown to increase again after t ≈ 700. Hence, in this case the alternative projection approach
behaves favorably with regard to the dimension of the compensator. The uncontrolled flow structure is
shown in figure 9 at t = 350, 485, 550, illustrating the periodic (with period T ≈ 200) regeneration of the
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Fig. 10 Streamwise velocity component of the controlled flow at t = 100, 300, 500, 1100.

perturbation within the recirculation bubble. In figure 10 instantaneous flow structures are depicted
when control is applied, with the estimator of dimension n = 400 obtained by double-projection.
Clearly the control prevents the regeneration of the perturbation which is washed downstream and
eventually vanishes.

4.2 Control at Re = 690

The flow control issue at the Reynolds number Re = 690 is expected to be more involved, given
the relatively high amplification rates of the modes as shown in figure 2. Again, the compensators
for decreasing dimensions have been computed using the procedure outlined in section 3. The flow
dynamics is triggered by the same initial disturbance as previously at Re = 590 and the same actuator
is used in the plant. The uncontrolled total flow energy is shown as the solid line in figure 11. Again,
there is a transient growth up to t = 200, but now the subsequent global dynamics exhibits almost the
same growth rate and the characteristic modulation due to the beating between the global modes is
visible as well. Using the double-projection, a compensator with dimension n = 400 is seen to control
the flow and the energy is depicted as the dotted line in figure 11. The energy decrease is however seen
to be relatively slow, in comparison with the flow case at Re = 590. A compensator with dimension
n = 300 (with m = 150 modes) has been considered as well and the result is shown as the dashed
line in figure 11. This dimension is roughly the smallest possible to maintain a constant flow energy
after the transient growth. Hence, comparing the results for both the Reynolds numbers Re = 590 and
Re = 690, one may conclude that the required dimension of reliable compensators increases as the flow
becomes more unstable away from threshold.

Again, the conventional bi-orthogonal projection of the actuator has been considered as well for
the design of the compensator. As for Re = 590, this projection procedure behaves less favorably, the



Control of a separated boundary layer: Reduced-order modeling using global modes revisited 13

1e+00

1e+05

1e+10

1e+15

1e+20

 0  500  1000  1500  2000  2500  3000

E
(t

)

t

Fig. 11 Flow energy (normalized by E(0)) as function of time (Re = 690): —- uncontrolled case; · · · estimator
of dimension n = 400 (double-projection); − − − estimator of dimension n = 300 (double-projection); − ·−·:
estimator of dimension n = 400 (bi-orthogonal projection).

reduced controller with dimension n = 400 being not sufficient to control the flow, as shown by the
dashed-dotted line in figure 11.

5 Concluding remarks

Given the nowadays available computers and numerical methods, it has become customary to numer-
ically analyze the instability behavior of open non-parallel flows in terms of eigenmodes depending on
more than one space dimension. When adopting a dynamical system approach for flow control, the
global modes appear naturally as a possible projection basis for model reduction. While these modes
reproduce the instability physics, they may however not be efficient from the input-output viewpoint
of system theory which uses the controllability and observability operators. In this latter case the
actuator designed to control the flow as well as the sensor operator are part of the formulation, which
however relies on the time-history of the dynamics.

For the separated boundary-layer flow along a bump geometry considered in the present work, the
specific geometrical parameters and discretization used give rise to a large-scale numerical model for the
flow perturbation dynamics. Readdressing the a priori model reduction using global modes, an alter-
native projection procedure, in comparison with conventional bi-orthogonal projection, is proposed. It
uses the subset of stable modes to minimize the energy norm of the error between the real actuator and
the reduced one. For the flow case considered, this procedure is shown to give rise to reliable and fairly
low-dimensional controllers. Furthermore, this projection procedure is shown to perform better than
the conventional approach based on the bi-orthogonality between direct and adjoint modes. Indeed,
a compensator of dimension almost twice as high has to be taken in that case to achieve equivalent
control.

The reliability of reduced order models based on global modes has been questioned recently, for
instance in [5]. The present analysis provides indeed evidence, that the dimension of reliable controllers
increases with the strength of the global flow instability.
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