Dejean's conjecture and letter frequency

Abstract : We prove two cases of a strong version of Dejean's conjecture involving extremal letter frequencies. The results are that there exist an infinite $\left({\frac{5}{4}^+}\right)$-free word over a 5 letter alphabet with letter frequency $\frac{1}{6}$ and an infinite $\left({\frac{6}{5}^+}\right)$-free word over a 6 letter alphabet with letter frequency $\frac{1}{5}$.
Document type :
Journal articles
Complete list of metadatas

Cited literature [11 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00432200
Contributor : Jérémie Chalopin <>
Submitted on : Saturday, November 14, 2009 - 4:29:22 PM
Last modification on : Tuesday, April 24, 2018 - 1:53:00 PM
Long-term archiving on : Thursday, June 17, 2010 - 8:20:29 PM

File

CO08.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Jérémie Chalopin, Pascal Ochem. Dejean's conjecture and letter frequency. RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), EDP Sciences, 2008, 42, pp.477-480. ⟨10.1051/ita:2008013⟩. ⟨hal-00432200⟩

Share

Metrics

Record views

254

Files downloads

206