, ); a rabbit polyclonal anti-Rab 7 [40] and a rabbit polyclonal anti-VDAC 1 (Abcam). The secondary antibodies used were: goat anti-mouse HRP (Sigma Aldrich); goat anti-rabbit HRP (Sigma Aldrich) for western blotting; and donkey anti-rabbit Texas red (Jackson ImmunoResearch); donkey anti-mouse Texas red, a rabbit polyclonal anti-calnexin (Stressgen); a rabbit polyclonal

, Sigma Aldrich) for immunofluorescence and a IgG anti-rabbit coupled to phycoerytrin (PE. Serotec) for flow cytometry

J. Celli, C. De-chastellier, D. M. Franchini, J. Pizarro-cerda, and E. Moreno, Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum, J Exp Med, vol.198, pp.545-556, 2003.

R. M. Delrue, M. Martinez-lorenzo, P. Lestrate, I. Danese, and V. Bielarz, Identification of Brucella spp. genes involved in intracellular trafficking, Cell Microbiol, vol.3, pp.487-497, 2001.

P. G. Detilleux, B. L. Deyoe, and N. F. Cheville, Penetration and intracellular growth of Brucella abortus in nonphagocytic cells in vitro, Infect Immun, vol.58, pp.2320-2328, 1990.

J. P. Liautard, A. Gross, J. Dornand, and S. Kohler, Interactions between professional phagocytes and Brucella spp, Microbiologia, vol.12, pp.197-206, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00193942

J. Pizarro-cerda, S. Meresse, R. G. Parton, G. Van-der-goot, and A. Sola-landa, Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes, Infect Immun, vol.66, pp.5711-5724, 1998.

J. Pizarro-cerda, E. Moreno, and J. P. Gorvel, Invasion and intracellular trafficking of Brucella abortus in nonphagocytic cells, Microbes Infect, vol.2, pp.829-835, 2000.

C. Barlowe, COPII-dependent transport from the endoplasmic reticulum, Curr Opin Cell Biol, vol.14, pp.417-422, 2002.

C. Barlowe, L. Orci, T. Yeung, M. Hosobuchi, and S. Hamamoto, COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum, Cell, vol.77, pp.895-907, 1994.

D. J. Stephens, N. Lin-marq, A. Pagano, R. Pepperkok, and J. P. Paccaud, COPIcoated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites, J Cell Sci, vol.113, pp.2177-2185, 2000.

J. Celli, S. P. Salcedo, and J. P. Gorvel, Brucella coopts the small GTPase Sar1 for intracellular replication, Proc Natl Acad Sci U S A, vol.102, pp.1673-1678, 2005.
DOI : 10.1073/pnas.0406873102

URL : https://hal.archives-ouvertes.fr/hal-00165745

D. J. Comerci, M. J. Martinez-lorenzo, R. Sieira, J. P. Gorvel, and R. A. Ugalde, Essential role of the VirB machinery in the maturation of the Brucella abortuscontaining vacuole, Cell Microbiol, vol.3, pp.159-168, 2001.

M. Desjardins, L. A. Huber, R. G. Parton, and G. Griffiths, Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus, J Cell Biol, vol.124, pp.677-688, 1994.

J. Garin, R. Diez, S. Kieffer, J. F. Dermine, and S. Duclos, The phagosome proteome: insight into phagosome functions, J Cell Biol, vol.152, pp.165-180, 2001.
DOI : 10.1083/jcb.152.1.165

S. P. Salcedo, M. I. Marchesini, H. Lelouard, E. Fugier, and G. Jolly, Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1, PLoS Pathog, vol.4, p.21, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00294210

A. Cloeckaert, P. De-wergifosse, G. Dubray, and J. N. Limet, Identification of seven surface-exposed Brucella outer membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay, Infect Immun, vol.58, pp.3980-3987, 1990.

D. M. Chuang, C. Hough, and V. V. Senatorov, Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases, Annu Rev Pharmacol Toxicol, vol.45, pp.269-290, 2005.
DOI : 10.1146/annurev.pharmtox.45.120403.095902

M. A. Sirover, Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology, J Cell Biochem, vol.66, pp.133-140, 1997.

A. V. Bryksin and P. P. Laktionov, Role of glyceraldehyde-3-phosphate dehydrogenase in vesicular transport from golgi apparatus to endoplasmic reticulum, Biochemistry (Mosc), vol.73, pp.619-625, 2008.

H. Plutner, A. D. Cox, S. Pind, R. Khosravi-far, and J. R. Bourne, Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments, J Cell Biol, vol.115, pp.31-43, 1991.

C. G. Robinson and C. R. Roy, Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila, Cell Microbiol, vol.8, pp.793-805, 2006.

E. J. Tisdale, J. R. Bourne, R. Khosravi-far, C. J. Der, and W. E. Balch, GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex, J Cell Biol, vol.119, pp.749-761, 1992.

I. Derre and R. R. Isberg, Legionella pneumophila replication vacuole formation involves rapid recruitment of proteins of the early secretory system, Infect Immun, vol.72, pp.3048-3053, 2004.

M. A. Sirover, New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase, Biochim Biophys Acta, vol.1432, pp.159-184, 1999.

J. Gruenberg and F. G. Van-der-goot, Mechanisms of pathogen entry through the endosomal compartments, Nat Rev Mol Cell Biol, vol.7, pp.495-504, 2006.

M. C. Schlumberger and W. D. Hardt, Salmonella type III secretion effectors: pulling the host cell's strings, Curr Opin Microbiol, vol.9, pp.46-54, 2006.
DOI : 10.1016/j.mib.2005.12.006

M. A. Horwitz, The Legionnaires' disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes, J Exp Med, vol.158, pp.2108-2126, 1983.

S. Shin and C. R. Roy, Host cell processes that influence the intracellular survival of Legionella pneumophila, Cell Microbiol, vol.10, pp.1209-1220, 2008.

L. D. Rogers and L. J. Foster, Contributions of proteomics to understanding phagosome maturation, Cell Microbiol, vol.10, pp.1405-1412, 2008.

E. J. Tisdale, Glyceraldehyde-3-phosphate dehydrogenase is required for vesicular transport in the early secretory pathway, J Biol Chem, vol.276, pp.2480-2486, 2001.

E. J. Tisdale, Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase Ciota/lambda and plays a role in microtubule dynamics in the early secretory pathway, J Biol Chem, vol.277, pp.3334-3341, 2002.

E. J. Tisdale, Rab2 interacts directly with atypical protein kinase C (aPKC) iota/lambda and inhibits aPKCiota/lambda-dependent glyceraldehyde-3-phosphate dehydrogenase phosphorylation, J Biol Chem, vol.278, pp.52524-52530, 2003.
DOI : 10.1074/jbc.m309343200

URL : http://www.jbc.org/content/278/52/52524.full.pdf

E. J. Tisdale, Rab2 purification and interaction with protein kinase C iota/ lambda and glyceraldehyde-3-phosphate dehydrogenase, Methods Enzymol, vol.403, pp.381-391, 2005.
DOI : 10.1016/s0076-6879(05)03033-8

E. J. Tisdale and C. R. Artalejo, Src-dependent aprotein kinase C iota/lambda (aPKCiota/lambda) tyrosine phosphorylation is required for aPKCiota/lambda association with Rab2 and glyceraldehyde-3-phosphate dehydrogenase on pregolgi intermediates, J Biol Chem, vol.281, pp.8436-8442, 2006.

E. J. Tisdale and C. R. Artalejo, A GAPDH mutant defective in Src-dependent tyrosine phosphorylation impedes Rab2-mediated events, Traffic, vol.8, pp.733-741, 2007.

E. J. Tisdale, C. Kelly, and C. R. Artalejo, Glyceraldehyde-3-phosphate dehydrogenase interacts with Rab2 and plays an essential role in endoplasmic reticulum to Golgi transport exclusive of its glycolytic activity, J Biol Chem, vol.279, pp.54046-54052, 2004.

M. P. Machner and R. R. Isberg, Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila, Dev Cell, vol.11, pp.47-56, 2006.

T. Murata, A. Delprato, A. Ingmundson, D. K. Toomre, and D. G. Lambright, The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor, Nat Cell Biol, vol.8, pp.971-977, 2006.

A. Ingmundson, A. Delprato, D. G. Lambright, and C. R. Roy, Legionella pneumophila proteins that regulate Rab1 membrane cycling, Nature, vol.450, pp.365-369, 2007.
DOI : 10.1038/nature06336

J. Chen, M. Reyes, M. Clarke, and H. A. Shuman, Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila, Cell Microbiol, vol.9, pp.1660-1671, 2007.

S. Meresse, P. Andre, Z. Mishal, M. Barad, and N. Brun, Flow cytometric sorting and biochemical characterization of the late endosomal rab7-containing compartment, Electrophoresis, vol.18, pp.2682-2688, 1997.

C. De-chastellier, C. Frehel, C. Offredo, and E. Skamene, Implication of phagosome-lysosome fusion in restriction of Mycobacterium avium growth in bone marrow macrophages from genetically resistant mice, Infect Immun, vol.61, pp.3775-3784, 1993.

A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels, Anal Chem, vol.68, pp.850-858, 1996.

A. Cloeckaert, M. S. Zygmunt, G. Bezard, and G. Dubray, Purification and antigenic analysis of the major 25-kilodalton outer membrane protein of Brucella abortus, Res Microbiol, vol.147, pp.225-235, 1996.