OVERVIEW ON STUDIES OF MARTIAN LIKE CO2-N2 MIXTURE BY INDUCTIVELY COUPLED PLASMA TORCH

Damien Vacher, Pascal André, Michel Dudeck

To cite this version:

Damien Vacher, Pascal André, Michel Dudeck. OVERVIEW ON STUDIES OF MARTIAN LIKE CO2-N2 MIXTURE BY INDUCTIVELY COUPLED PLASMA TORCH. Radiation of High Temperature Gases in Atmospheric Entry, Sep 2008, Heraklion, Greece. pp.41_vache. hal-00431660

HAL Id: hal-00431660

https://hal.archives-ouvertes.fr/hal-00431660

Submitted on 12 Nov 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
OVERVIEW ON STUDIES OF MARTIAN LIKE CO$_2$-N$_2$ MIXTURE BY INDUCTIVELY COUPLED PLASMA TORCH

Vacher D.$^{(1)}$, André P.$^{(1)}$, Dudeck M.$^{(2)}$

$^{(1)}$LAEPT, CNRS, Clermont-Ferrand, France, Damien.VACHER@laept.univ-bpclermont.fr
$^{(2)}$Institut Jean Le Rond d’Alembert, University of Paris 6, France

ABSTRACT

The purpose of the work is to make an overview on the results obtained through the studies on martian plasmas created by inductively coupled plasma torches (ICP). As the main advantage of the ICP torch is the absence of electrode compared to the others various test facilities, the radiative properties of this kind of plasmas are of interest to propose test cases in order to validate radiation models. ICP torches can work under various operating conditions in terms of pressure, enthalpy or flow. As a consequence, the studied plasma can be either at thermodynamical equilibrium or out of equilibrium, without problems of stability in time. The presentation concerns only the plasmas formed with a martian like CO$_2$-N$_2$ mixture and all the parameters of test facilities will be precised.

The following paper corresponds to the first step of a global paper which will be proposed later and it reports only the oral presentation which has been done during the third International Workshop of RHTG.

1. INTRODUCTION

Five laboratories have been found concerning the study of CO$_2$ or CO$_2$-N$_2$ plasmas by inductively coupled plasma torch. The laboratories which are about to start this kind of study do not appear in this presentation.

The laboratories which have obtained results are the following :
- L.A.E.P.T. (Laboratory of Electrical Arc and Thermal Plasmas) located in Clermont-Ferrand, France;
- C.O.R.I.A. (Complexe de Recherche Interprofessionnel en Aérothermochimie) located at Rouen, France;
- I.R.S. (Institut für RaumfahrtSysteme) located at Stuttgart, Germany;
- V.K.I. (Von Karman Institute) located at Rhode Saint Genese, Belgium;
- I.P.M. (Institute for Problems of Mechanics) located at Moscow, Russia.

REFERENCES

3. C.O.R.I.A. (Rouen, France)

**REFERENCES**

1. C. Rond, A. Bultel, P. Boubert, B.G. Chéron
   Spectroscopy measurements of nonequilibrium CO$_2$ plasma in RF torch, submitted to Chemical Physics (2008)


4. I.R.S. (Stuttgart, Germany)

**REFERENCES**


5. V.K.I. (Rhode Saint Genese, Belgium)

6. I.P.M. (Moscow, Russia)

REFERENCES

The informations are given by M. Playez.
Continuation of the previous study: Conclusion

- LTE takes place for the atomic components of the plasma in the central region of the jet.
- Atomic temperature = plasma temperature.
- $C_2$ molecules: Self-absorption of the molecular emission (SME) influences the measured values of the molecular temperatures.
- $T \leq 6700$ K ($P=25$ mbar): minor effect of the SME.
- Plasma in the jet core nearly the thermodynamic equilibrium; Plasma out of equilibrium at the periphery.

**REFERENCES**


2. A.F. Kolesnikov, M.I. Yakushin and al. (2002), *Comparative analysis of the inductive plasmatrons capabilities for thermochemical simulation at the earth and Mars atmospheric entry conditions*


**7. CONCLUSION**

A conclusion can not be done due to the fact that each laboratory works under different conditions in terms of flow, injected power, operating frequency and operating pressure. However, it is very interesting to gather all the data in order the domain of applications of each laboratory and also in order to create a connection between all these laboratories.

The following figure propose a regrouping of the data of each laboratory in terms of specific enthalpy and pressure. Of course, The field of investigation of each laboratories is likely to evolve.

**ACKNOWLEDGMENTS**

I would like to thank all the colleagues who permitted to this presentation to exist. I express all my recognition to them and thanks once again them for all the informations that they sent to me. These colleagues are: P. Boubert, A. Bultel, G. Herdrich, A.F. Kolesnikov, M. Playez and C. Rond.

I wish that the discussion will continue in order to still work together on the atmospheric entries with inductively coupled plasma torches.