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SUMMARY

A new numerical method is proposed to estimate directly stress intensity factors at the tip of a crack in
an elastic body. In the same spirit as for the extended finite element method, the approximation of the
displacement field is enriched in the vicinity of the crack tip. Yet the method proposed herein differs
by the way the enrichment is introduced. Instead of using partition of unity concepts, a two-description
formulation is implemented. The first one uses standard finite elements while the second one, in the
vicinity of the crack tip, resorts to a few purely analytical expressions. These two descriptions are then
coupled by partitioning the energy with an overlapping zone. The performance of this new enrichment
technique is illustrated and compared with existing techniques by means of two examples. Copyright q
2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the pioneering papers of Black and Belytschko [1] and Moës et al. [2], the extended finite
element method (X-FEM), initially dedicated to elastic solids, was extensively developed to deal
with many applications. Concerning the simulation of failure in solids, 3D crack propagation [3, 4],
dynamic crack propagation [5–10] were simulated, non-linear models [11, 12], and multi-grid
solvers [13] were implemented, and coupling with molecular models [14, 15] was shown to be
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possible. Even full field measurement techniques such as digital image correlation [16–19] now
use enriched kinematics.

X-FEM rests on different enrichments, namely, displacement discontinuities across the crack
faces, and (standard crack) singular functions at the crack tip. Ironically, the latter enrichments
cannot be trusted to provide reliable estimates of stress intensity factors (SIFs) [20]. Hence, most of
these analyses require a post-processing stage to extract SIFs from the simulated displacement field.
This stage is usually performed by using interaction integrals [1] or least-squares techniques [6].

In References [21, 22], an alternative enrichment basis is proposed where SIFs KI and KII are
directly evaluated as parameters of the discretization basis. It is referred to as KX-FEM. It is
shown in these references that nodal enriched degrees freedom corresponding to KI and KII must
be constrained to have the same value. This strategy is generalized in Reference [23] by the use
of a cut-off function. Other requirements to get accurate SIFs are to include in the basis not only
the usual asymptotic terms (with KI and KII as pre-factors) but also higher-order terms [21].

Having implemented enriched kinematics in a digital image correlation framework [18] spurred
the present authors to work on the improvement of the robustness of SIF extraction techniques.
For instance, noise robust interaction integrals [24] but also a general formalism of the extraction
problem (Réthoré et al., submitted 2008) were recently proposed. In the latter reference, one of
the conclusions was that the best determination of SIFs is obtained when they are directly the
unknowns of the correlation problem as in integrated approaches of digital image correlation [25].
One of the driving idea of the present paper is to propose a numerical methodology that allows
for direct extractions of SIFs with no additional data processing.

Although the method proposed by Liu et al. [21] and Xiao and Karihaloo [22] is very appealing,
it will be shown herein that the underlying partition of unity that is kept active over the enriched
region reduces drastically the potential of the method. It can be traced back to the conditioning of
the system [20, 23, 26]. By reducing the number of degrees of freedom of the enrichment leads to
a better conditioning, and hence a more accurate evaluation of SIFs. An alternative to the partition
of unity enrichment is proposed herein. An analytical model written in Williams’ series formalism
[27] is used in the vicinity of the crack tip where the finite element model is not activated. The
analytical model includes rigid body translations, rotation, classical asymptotic terms (and T -stress
and higher-order term can also be included). Then both descriptions are matched using an energy
coupling procedure or Arlequin method [28].

Section 2 briefly recalls the family of functions describing the displacement of a cracked
elastic solid. In Section 3, the new formulation is proposed and its discretization is discussed in
Section 4. In Section 5, the performance of the proposed enrichment technique is illustrated with
two examples.

2. CRACK DISPLACEMENT FIELD

Let us consider a homogeneous body with isotropic elastic behavior, and a 2D setting, the displace-
ment field u is conventionally represented by its complex writing, u=ux+ iuy . It was expanded
by Williams [27] for a straight crack as a double series

u(r,�)= ∑
i=I,II

∑
n
cni /

n
i (r,�) (1)
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where cni are the influence parameters, and /ni reference fields that form the complete set of linear
elastic fields satisfying a zero traction condition along the crack path

• even n

/nI (r,�) = rn/2
(
�ein�/2− n

2
ei(4−n)�/2+

(n
2

+1
)
e−in�/2

)
(2)

/nII(r,�) = irn/2
(
�ein�/2+ n

2
ei(4−n)�/2−

(n
2

−1
)
e−in�/2

)
(3)

• odd n

/nI (r,�) = (−1)(n+1)/2rn/2
(
�ein�/2− n

2
ei(4−n)�/2+

(n
2

−1
)
e−in�/2

)
(4)

/nII(r,�) = i(−1)(n−1)/2rn/2
(
�ein�/2+ n

2
ei(4−n)�/2−

(n
2

+1
)
e−in�/2

)
(5)

where � is the Kolossov constant, namely, �= (3−�)/(1+�) for plane stress or �= (3−4�) for
plane strain conditions, � being Poisson’s ratio.

The partition between modes I and II is performed on the basis of the following symmetries

/nI (z) = /nI (z)
/nII(z) = −/nII(z)

(6)

All these fields are homogeneous functions of the distance to the crack tip r . With this convention, all
elastic displacement fields with finite strain energy densities are generated with 0�n<∞. All odd
indices label fields with a discontinuity across the crack mouth, whereas even indices correspond to
continuous fields. To mention just a few examples, n=0 corresponds to translations either parallel
(hence termed I) or perpendicular (labeled II) to the crack path, n=1 are the classical mode I
and mode II displacement fields whose amplitudes are proportional to the corresponding SIFs.
The case n=2 gives access to either the T -stress component for mode I, or rigid body rotation
about the crack tip for mode II (no discontinuity is involved here since 2 is even). Larger indices
correspond to ‘subsingular’ or higher-order fields that may capture the remote heterogeneity of the
loading, but do not affect the fracture behavior at the crack tip. This family of fields is thus the
appropriate basis function to describe the displacement field for a traction-free crack in an elastic
solid.

3. PROBLEM FORMULATION

Owing to the difficulties described in the introduction, one wants to enrich a finite element
discretization using the family of functions introduced above, but not in the standard extended
finite element formalism. The underlying partition of unity must be deactivated over the region
where the enriched part of the displacement basis is adopted. For this purpose, the energy coupling
(or Arlequin) procedure proposed by Ben Dhia and Rateau [28] is chosen.

For each description of the displacement field, the derived elastic stress must satisfy the balance
of momentum (body forces are neglected herein)

divr=0 (7)
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where r is Cauchy’s stress tensor, and div the divergence operator. The domain� is now subdivided
into two overlapping sub-domains �1 and �2. In each of these sub-domains, a description u1,
respectively, u2, of the displacement field is adopted. The boundary conditions are held by the
sub-domain �1, namely, tractions td and displacements ud are prescribed on two complementary
parts ��1t and ��1u of its boundary.

From the strong form of the equilibrium equation (7), two weak forms (one for each description)
are derived, and are weighted by a partition of unity over the overlapping region �12=�1∩�2

�1(x)+�2(x)=1 (8)

where �1 and �2 are the respective weights given to each energy contribution. The definition of
these weighting functions is extended over the entire domain � so that the description 1 (resp. 2)
holds in �\�2 only (resp. �\�1). In this setting, the linear li and bilinear ai weighted energy
forms are obtained for i =1 or 2

ai (ui ,v∗
i ) =

∫
�i

�ie(ui) :C :e(v∗
i )d� (9)

l1(v∗
1) =

∫
��1t

�1td ·v∗
1 dS (10)

where C is Hooke’s tensor, e the infinitesimal strain tensor, and v∗
i admissible displacement fields.

Note that l2 is 0 since the crack faces are traction free.
In addition to this partition of energy, a kinematic coupling must be added to ensure the

compatibility of the two displacement fields in the sense of a scalar product � between the
displacement gap and Lagrange multipliers k. If � is the L2 scalar product over the coupling
region �12, we have

�(u1−u2,l∗)=
∫
�12

l∗ ·(u1−u2)d�=0 (11)

where l∗ are admissible Lagrange multipliers. The total formulation thus reads: find (u1,u2,k)
such that for all admissible (v∗

1,v
∗
2,l

∗) fields,

a1(u1,v∗
1)+a2(u2,v∗

2)+�(u1−u2,l∗)+�(v∗
1−v∗

2,k)= l1(v∗
1)+l2(v∗

2) (12)

Using this weak formulation, a discretization scheme is being adopted for the two descriptions.

4. DISCRETIZATION AND NUMERICAL ELABORATION

After the weak formulation is chosen, the discretization schemes for the two descriptions and some
details on the numerical elaboration are detailed in the sequel.

4.1. Outer domain (Model 1)

For the outer domain, model 1, a finite element discretization is adopted. � is divided into a
given number of elements, a subset being ‘active’ as they define the discretized domain �h

1 and
the complementary subset being ‘inactive’. Further, a discontinuous enrichment is added to the
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interpolation to account for the displacement jump across the part of the crack faces that lies in
�1. The interpolation of the displacement for the outer model thus reads

u1(x)= ∑
i∈N1

Ni (x)di + ∑
i∈Ncut

Ni (x)H(x)bi =DTU1 (13)

where Ni are standard finite element shape functions supported by the set of nodes N1 included
in �h

1, di the corresponding degrees of freedom. In this equation, H(x) is the discontinuous
symmetrized Heaviside step function that enables with its associated degrees of freedom bi for the
description of displacement discontinuities for the nodes in the subset Ncut of N1 that have their
support cut by the crack. This interpolation relies on a usual extended finite element discretization
based on the partition of unity property of Ni [29]. Matrix D collects the value of the discretization
functions and vector U1 the degrees of freedom of the outer domain.

In the following, only regular meshes of quadrangular elements will be used. For the numerical
integration of the discontinuous function in the weak form, the quadrangles are subdivided into
nsub×nsub quadrangular integration cells containing one Gauss point. Standard Gauss quadrature
rule with four integration points per quadrangle is used for the standard terms.

4.2. Inner domain (Model 2)

For the inner domain, model 2, the functions are selected in the basis presented in Section 2. The
displacement field u2(x) reads

u2(x)= 1

2�
√
2�

∑
n∈[0;nmax]

(/nI (x) pn+/nII(x)qn)=UTU2 (14)

where � is Lamé’s coefficient, pn and qn the degrees of freedom associated with mode I and II
functions, and nmax an integer that defines the maximum order considered in the interpolation.
Matrix U collects the values of the discretization functions and vector U2 the degrees of freedom
of the inner domain. Note that for n=1, p1 and q1 enable for a direct evaluation of KI and KII.
The discretized domain �h

2 is defined as the area of the ‘inactive’ finite elements plus those in the
coupling zone �h

12. The numerical integration of the weak form a2 is performed in the same way for
the enriched terms of a1, namely, by using the underlying finite elements that are subdivided into
nsub×nsub quadrangular integration cells containing one Gauss point. The discretization functions
adopted for the inner domain satisfy Equation (7) and thus the integration of a2 could be split
into two domain integrals (the first one defined on the domain for which �2=1 vanishes, and
the second one in �h

12), and a contour integral of the normal tractions on the inner boundary of
�h
12. Up to the influence of the weighting function, this contour integral is exactly the one that is

required for the hybrid crack element (see e.g. [30]). In practice, it is more convenient to integrate
the initial form of a2.

4.3. Coupling

The discretized coupling domain is the subset of elements in �h
12. Lagrange multipliers are

discretized using standard finite element shape functions

k(x)= ∑
i∈N12

Ni (x)li =LTK (15)
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where N12 is the set of nodes in �h
12, Ni standard finite element shape functions, and li their

associated degrees of freedom.MatrixL collects the values of the discretization functions and vector
K the degrees of freedom of Lagrange multipliers. Since the coupling terms involve discontinuous
functions and basis functions of description 2, the above-mentioned quadrature using cells with
one Gauss point is used.

4.4. Numerical elaboration

After the discretization schemes have been introduced in the weak form, a linear system is obtained

⎡
⎢⎢⎣
K1 0 CT

1

0 K2 CT
2

C1 C2 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
U1

U2

K

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
F1

F2

0

⎤
⎥⎥⎦ (16)

with

K1i j =
∫

�h
1

�1e(Di ) :C :e(D j )d� (17)

K2i j =
∫

�h
2

�2e(Ui ) :C :e(U j )d� (18)

C1i j =
∫

�h
12

Li ·D j d� (19)

C2i j = −
∫

�h
12

Li ·U j d� (20)

are elementary blocks of the global matrix and

F1i =
∫

��t

�1td ·Di dS (21)

F2i =
∫

��t

�2td ·Ui dS (22)

the external force vectors. Note that, in practice, F2 is equal to zero.
For practical reasons, the weighting functions �i are computed numerically by solving a

Laplacian problem (��i =0) using a finite element method in the coupling zone �h
12. For example,

�1 is computed using the appropriate boundary conditions on the boundary of �h
12 and �2 is then

directly obtained using Equation (8).

5. EXAMPLES

In the following, two examples are discussed. The first one corresponds to a closed-form solution
of a crack in an infinite domain, i.e. the extension of the inner field to infinity, and it will test the
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compatibility of the entire global scheme. The second one is more informative as it corresponds
to a problem that has no exact (closed-form) solution.

5.1. Infinite plate with a semi-infinite crack

The first example is dedicated to a convergence study in the idealized case of an infinite plate
with a semi-infinite crack. The numerical model consists of a 39×39 quadrangular elements with
a horizontal centered crack whose tip is located in the middle of the plate. To fall within the
hypothesis of an infinite plate, asymptotic fields for mode I, with KIo as a prescribed SIF, and
mode II, with KIIo as a prescribed SIF, are imposed on the outer boundary of the mesh. The plate
is considered to be of area 1m2, the material properties are set to 210MPa for Young’s modulus
and 0.3 for Poisson’s ratio. The prescribed SIF values are 1MPa

√
m for KIo and KIIo. 16×16

quadrature cells in each quadrangles are used where needed. Let us focus on the influence of the
size of the analytical model (that contains indices ranging between 0 and 2, i.e. nmax=2) and also
on the size of the coupling zone.

The size of �h
2 is defined as Router =hrouter (h being the element size), and that of ‘inac-

tive’ elements Rinner =rinnerh. The size of the coupling region is h�overlap= Router−Rinner. As an
example, Figure 1 shows the weighting function �1 of the finite element model for an analytical
model of 10-node layer around the crack tip, rinner=10 and an overlapping zone of 5-node layer,
�overlap=5. Figure 2 shows the two components of the displacement field for the two models when
rinner=3 and �overlap=3.

In order to study the influence of the size of the inner domain and its coupling with the FE
zone (outer domain), rinner is varied in the interval 1�rinner�10 and 1��overlap�5. Figures 3 and 4
summarize the results. In Figure 3, the relative errors on KI and KII are plotted as functions of rinner
for different coupling zone sizes �overlap. From the plots using a linear scale, a good convergence
is observed. It is to be noted that estimated KIs are first less than the prescribed value, then higher
and finally converge to KIo itself. For mode II, only higher values are observed. The log-scale
plots show the same trends for mode I and mode II, namely, a linear decrease of the absolute

0

0.2

0.4

0.6

0.8

1

Figure 1. Weighting function of the finite element model �1 for the square plate with an edge crack.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2009)
DOI: 10.1002/nme
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Figure 2. Horizontal (left) and vertical (right) displacement field (in �m) for the square plate. The size
of the analytical domain is rinner=3 and the width of the coupling region is �overlap=3. The top figures
show the displacement in the finite element model, the middle figures in the analytical model and the

bottom figures the total displacement.

relative error is obtained, the size of the coupling zone acting as a multiplicative pre-factor. For
large domain sizes rinner=10, (i.e. 1

4 of the size of the mesh), absolute errors on KI as low as
10−4 and 2×10−5 on KII are obtained for �overlap=5 coupling zones.
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Figure 3. Normalized error on KI (left) and KII (right) as functions of the size of the analytical domain
rinner. Top figures are plotted using a linear scale for the y-axis whereas the bottom figures use a log scale.

The effect of the size of the coupling zone is shown in Figure 4. The relative error on SIFs
follows the same type of dependence with �overlap. Even though increasing the size of the analytical
model and using larger coupling zone reduces the error on estimated SIFs, the values obtained
with as small parameter values rinner =�overlap=1, yields 2.5×10−3 errors for KI and 5.0×10−3

for KII, which are very low values.

5.2. Cracked plate in remote tension

In the previous example, because of the idealized boundary conditions, only classical asymptotic
terms were activated. This is not the case when realistic boundary conditions are used. The present
example aims at evaluating this influence. A cracked plate whose geometry is parameterized by
its width w, its length L and the length of the crack a is considered. Under remote tension, the
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1 1.5 2 2.5 3 3.5 4 4.5 5

(a)

(b)

1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 4. Normalized error on KI (a) and KII (b) as functions of width of the coupling zone �overlap.

value of KI that holds for an infinite medium (�
√

�a) is corrected by a pre-factor C depending
on the ratio a/w only [31]

C=1.12−0.231
( a

w

)
+10.55

( a

w

)2−21.72
( a

w

)3+30.39
( a

w

)4
(23)

In the numerical model w is set to 7×10−3m, a is equal to 0.5w, and L is equal to 17×10−3m.
Young’s modulus is equal to 200MPa, and Poisson’s ratio to 0.3. The applied stress � is 10MPa,
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0

(a)

0

0.5

1

1.5

2

(b)

Figure 5. Horizontal (a) and vertical (b) displacement field (in �m) for the cracked plate in
remote tension for rinner=�overlap=1.

which gives 2.98MPa
√
m for KIo the reference value for KI. The finite element mesh consists

of 49×119 quadrangular elements that are subdivided into 8×8 integration cells when needed.
Figure 5 shows the displacement field for rinner=�overlap=1.

Owing the use of realistic boundary conditions, the normalized values of KI obtained for nmax=2
shown in Figure 6 lead to an error increase when the domain of influence of the analytical model
is enlarged (by increasing its size or the size of the coupling zone). The traction-free edge in
front of the crack tip activates higher-order term in Williams’ series. However, using the smallest
domain of influence (i.e. rinner =�overlap=1), the normalized value of KI is 1.0146 (i.e. less than
1.5% error, which is very low).

In Figure 7, rinner =10, �overlap=3 and the effect of the number of terms nmax is investigated.
A stabilization of the normalized SIF is observed for a value equal to 1.002, when seven terms are
considered. For different values of nmax, the normalized value of KI is plotted as a function of rinner
in Figure 8(a). One notes that the strong dependence observed for nmax=2 is decreasing when
more terms are considered. For nmax=7, the normalized SIF KI remains almost constant, varying
between 0.999 and 1.0012. Let us note that for the smallest domain of influence, rinner =�overlap=1,
the normalized value of KI is 0.999 (i.e. less than 0.1% error, which is again very low). Figure 8(b)
shows the results obtained using KX-FEM under the same conditions. The cut-off function is
exactly the weighting function �2 and the same number nmax of higher-order terms are considered
(only odd terms are introduced in KX-FEM because the underlying partition of unity is assumed to
capture the even terms that are not discontinuous across the crack faces). The numerical integration
is also performed using the same quadrature. For KX-FEM, an optimal value exists for rinner≈4−5
for a normalized value of K1 of 0.93 for nmax=1 and 0.983 for nmax=5. Increasing nmax, the
results are improved but a critical dependence on rinner is still observed, namely, for too small
rinner, the domain of influence of the enrichment function is not large enough for a robust SIF
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Figure 6. Normalized KI as function of the size of the analytical domain rinner (a), the size of the
overlapping domain �overlap (b) for nmax=2.

estimation but for too large rinner the conditioning of the system is increasing [20], which also
reduces the robustness of the SIF estimation.

For different values of nmax, Figure 9(a) shows the effect of the mesh size h while the ratio
of the number of elements along the length and width of the sample is kept constant and rinner=
�overlap=1. For all values of nmax, a standard convergence is obtained with a rate between 1.5
and 1.25 that decreases when nmax increases. Note, that the convergence rate obtained with the
present enrichment procedure is faster than that of KX-FEM (Figure 9(b)). Even in its optimal
version [20], the latter gives a convergence rate of about 0.5. Here, for comparison purposes,
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1.05

Figure 7. Normalized KI as function of nmax for rinner=10 and �overlap=3.

the cut-off function is equal to �2 and thus the outer radius of the domain of influence of the
enrichment decreases when the element size decreases (rinner =�overlap=1). Further �2 is numer-
ically computed using first-order finite elements. It is thus continuous but with discontinuous
derivatives, this is not the optimal choice for KX-FEM (Nicaise et al. [20] use an analytically
defined fifth-order polynomial cut-off function). However, this crude form of �2 seems to be
appropriate for the technique proposed herein. We also performed the same convergence study for
KX-FEM using rinner =4 and �overlap=1. The convergence is improved but no rate faster than 1 was
obtained.

This example shows that for realistic boundary conditions, higher-order terms must be considered
to obtain low errors on estimated SIF values. As in the previous example, using the proposed
technique with the smallest analytical domain and the smallest coupling zone yields already very
low errors. This is all the more important if one wants to deal with noisy data when experimental
analyses are preformed (e.g. by resorting to DIC (Réthoré et al., submitted 2009)).

6. CONCLUSION

The present paper proposes an alternative to partition of unity methods to incorporate enriched
interpolation functions. Cracked solids are modeled by using two descriptions that are coupled
over a non-zero area region using a partition of energy, namely, using a bridging domain or
Arlequin method. The first description consists of standard finite elements in the outer domain,
and the second one relies on Williams’ series solution in the inner domain. The numerical imple-
mentation is described and two examples are proposed to assess the validity of the proposed
approach, and to evaluate its performance when seeking stress intensity factors in comparison
with usual X-FEM approaches. High accuracy and robustness with respect to the enriched domain
size and the overlap width are obtained. Very small inner domains can be used and thus crack
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Figure 8. Normalized KI as function of the size of the analytical domain for different values of nmax
obtained using the proposed HAX-FEM (a) and KX-FEM (b).

propagation may also be investigated without any modification of the enriched basis due to the crack
curvature.

As a possible extension of the proposed method, analytical crack tip fields with a cohesive law
such as those derived by Karihaloo and Xiao [32] may be introduced using the proposed formalism
to simulate the cohesive crack growth. Last, the developments discussed herein from a numerical
standpoint are currently implemented in an experimental technique to measure displacement fields
of crack bodies (by digital image correlation). In that context, the robustness of SIFs extraction
is critical since pictures are noisy and the displacement field measurement itself is an ill-posed
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Figure 9. Normalized relative error on KI as function of the mesh size for different values of nmax obtained
using the proposed HAX-FEM (a) and KX-FEM (b) with rinner=�overlap=1.

problem. The fact that the two kinematic bases (numerical and experimental) are identical allows
one to avoid interpolation errors and further measurement uncertainties.
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9. Grégoire D, Maigre H, Réthoré J, Combescure A. Dynamic crack propagation under mixed-mode loading—
comparison between experiments and X-FEM simulations. International Journal of Solids and Structures 2007;
44(20):6517–6534.
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17. Réthoré J, Hild F, Roux S. Shear-band capturing using a multiscale extended digital image correlation technique.
Computer Methods in Applied Mechanics and Engineering 2007; 196(49–52):5016–5030.
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