Intermittent Brownian dynamics over a rigid strand: Heavily tailed relocation statistics in a simple geometry

Abstract : We analyze the intermittent Brownian dynamics (a succession of adsorption and bulk relocation steps) of a test particle over a single strand. We propose an analytic expression of the relocation time distribution at all times. We show that this distribution has a nontrivial heavily tailed statistics at long time with a diverging average relocation time. In order to experimentally probe this first passage statistics, we follow the intermittent Brownian dynamics of water molecules over long and stiff imogolite mineral strands, using a field cycling NMR dispersion technique. Our analytic derivation is found to be in good agreement with experimental data on a large domain of observation. Implications for the efficiency of a search strategy on a single filament are then discussed and the importance of the confinement and/or the finite size effect is emphasized.
Type de document :
Article dans une revue
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2008, 78, pp.030102(R). 〈10.1103/PhysRevE.78.030102〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00430263
Contributeur : Doru Constantin <>
Soumis le : vendredi 6 novembre 2009 - 13:01:28
Dernière modification le : lundi 11 février 2019 - 16:49:10

Identifiants

Citation

Pierre Levitz, Michel Zinsmeister, Patrick Davidson, Doru Constantin, Olivier Poncelet. Intermittent Brownian dynamics over a rigid strand: Heavily tailed relocation statistics in a simple geometry. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2008, 78, pp.030102(R). 〈10.1103/PhysRevE.78.030102〉. 〈hal-00430263〉

Partager

Métriques

Consultations de la notice

234