Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids

Abstract : We present here a number of test cases and meshes which were designed to form a benchmark for finite volume schemes and give a summary of some of the results which were presented by the participants to this benchmark. We address a two-dimensional anisotropic diffusion problem, which is discretized on general, possibly non-conforming meshes. In most cases, the diffusion tensor is taken to be anisotropic, and at times heterogeneous and/or discontinuous. The meshes are either triangular or quadrangular, and sometimes quite distorted. Several methods were tested, among which finite element, discontinous Galerkin, cell centred and vertex centred finite volume methods, discrete duality finite volume methods, mimetic methods. The results given by the participants to the benchmark range from the number of unknowns, the errors on the fluxes or the minimum and maximum values and energy, to the order of convergence (when available).
Type de document :
Communication dans un congrès
ISTE. Finite volumes for complex applications V, Jun 2008, France. Wiley, pp.659--692, 2008
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00429843
Contributeur : Raphaele Herbin <>
Soumis le : mercredi 4 novembre 2009 - 16:30:38
Dernière modification le : mercredi 10 octobre 2018 - 01:26:52
Document(s) archivé(s) le : jeudi 17 juin 2010 - 19:25:32

Fichier

benchfvca5.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00429843, version 1

Collections

Citation

Raphaele Herbin, Florence Hubert. Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids. ISTE. Finite volumes for complex applications V, Jun 2008, France. Wiley, pp.659--692, 2008. 〈hal-00429843〉

Partager

Métriques

Consultations de la notice

508

Téléchargements de fichiers

292