
HAL Id: hal-00429360
https://hal.science/hal-00429360

Submitted on 2 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconfigurable Video Coding on multicore : an overview
of its main objectives

Ihab Amer, Christophe Lucarz, Ghislain Roquier, Marco Mattavelli, Mickael
Raulet, Jean François Nezan, Olivier Déforges

To cite this version:
Ihab Amer, Christophe Lucarz, Ghislain Roquier, Marco Mattavelli, Mickael Raulet, et al.. Recon-
figurable Video Coding on multicore : an overview of its main objectives. IEEE Signal Processing
Magazine, 2009, Volume 26 (Issue 6), pp 113 - 123. �10.1109/MSP.2009.934107�. �hal-00429360�

https://hal.science/hal-00429360
https://hal.archives-ouvertes.fr

IEEE SIGNAL PROCESSING MAGAZINE [113] NOVEMBER 2009

 Digital Object Identifier 10.1109/MSP.2009.934107

1053-5888/09/$26.00©2009IEEE

Reconfigurable Video
Coding on Multicore

T
he current monolithic and lengthy scheme
behind the standardization and the design of
new video coding standards is becoming
inappropriate to satisfy the dynamism
and changing needs of the video coding

community. Such scheme and specification formal-
ism does not allow the clear commonalities
between the different codecs to be shown, at the
level of the specification nor at the level of the
implementation. Such a problem is one of the
main reasons for the typically long interval elaps-
ing between the time a new idea is validated until
it is implemented in consumer products as part of
a worldwide standard. The analysis of this problem
originated a new standard initiative within the
International Organization for Standardization (ISO)/
International Electrotechnical Commission (IEC)
Moving Pictures Experts Group (MPEG) committee, name-
ly Reconfigurable Video Coding (RVC). The main idea is to
develop a video coding standard that overcomes many short-
comings of the current standardization and specification process
by updating and progressively incrementing a modular library of
components. As the name implies, flexibility and reconfigurabil-
ity are new attractive features of the RVC standard. Besides
allowing for the definition of new codec algorithms, such fea-
tures, as well as the dataflow-based specification formalism,
open the way to define video coding standards that expressly tar-
get implementations on platforms with multiple cores.

This article provides an overview of the main objectives of
the new RVC standard, with an emphasis on the features that
enable efficient implementation on platforms with multiple
cores. A brief introduction to the methodologies that efficiently

map RVC codec specifications to multicore platforms is accom-
panied with an example of the possible breakthroughs that are
expected to occur in the design and deployment of multimedia
services on multicore platforms.

INTRODUCTION
The multicore revolution promises to provide dramatic increas-
es in the performance of processing platforms. However, one of
the main obstacles that may prevent the widespread usage of
such technology is the fact that current serial specification for-
malisms and programming methods (the legacy of several years
of the continuous successes of the sequential processor

[Ihab Amer, Christophe Lucarz, Ghislain Roquier,

 Marco Mattavelli, Mickaël Raulet, Jean-François Nezan, and Olivier Déforges]

[An overview of its main objectives]

© PHOTO F/X2

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 26, 2009 at 17:00 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [114] NOVEMBER 2009

 architectures) are not at all appropriate to programming the
new generation of multicore platforms. Considering the fact
that the vast majority of existing software is written in sequen-
tial form, and methods such as multithreading rarely scale
beyond a few cores, serious problems are arising for porting
existing technologies and applications on the new performing
multicore platforms. In a time when new hardware meant high-
er clock frequencies, old programs almost always ran faster on
more modern equipment. However, this is not the case anymore
when programs written for single-core systems will have to exe-
cute on multicore platforms at possibly lower clock speeds on
low-power platforms. Hence, a shift to a new programming par-
adigm that exploits the parallelism and diversification inherited
in multicore systems is clearly becoming a necessity. The mas-
sive move towards multicore technology is now starting to
spread into the multimedia systems world. Many processor
manufacturers are working on integrating high definition (HD)
encoding/decoding coprocessors with their general purpose
CPUs on the same die. More of that is expected to occur in other
consumer markets, such as set-top boxes, DVD/Blue-ray players,
and mobile phones. With the emergence of the new era of mul-
ticore technology, the video coding providers find their way to
meet the demands for encoding/decoding platforms capable of
supporting multiple coding standards and multiple profiles.
Although many of these codecs share common and/or similar
coding tools, there is currently no explicit way to exploit such
commonalities at the level of the specification nor at the level of
implementation. This problem grows as new standards are
released and legacy formats continue to be supported, resulting
in complex systems that are composed of multiformat algo-
rithms and protocols with virtually unbounded complexities [1],
[2]. Ideally, designers of video coding systems should be able to
select arbitrary combinations of the available coding tools in a
way that the combinations best match the requirements of each
application but at the same time such customized applications
remain into a standard framework that guarantees interopera-
bility [3]. All of these considerations led to the development of
the RVC standard, a new standard currently under its final stage
of standardization by the ISO/IEC MPEG, which aims at provid-
ing the framework that allows for dynamic development,

 implementation, and adoption of standardized video coding
solutions with features of higher flexibility and reusability [1].

OVERVIEW OF THE MPEG RVC STANDARD
Unlike previous video coding standards, RVC itself does not define
a new codec. Instead, it provides a framework to allow service
providers to define a multitude of different codecs, by combining
together blocks, or so-called functional units (FUs), from a stan-
dard video tool library (VTL). Such a possibility clearly simplifies
the task of designing future multistandard video coding applica-
tions and devices by allowing software and hardware reuse across,
once, different, and disjoint video coding standards. Two stan-
dards are defined within the context of the MPEG RVC frame-
work: ISO/IEC23001-4 (or MPEG-B part 4) [4], which defines the
overall framework as well as the standard languages that are used
to describe the different components of the framework, and ISO/
IEC23002-4 (or MPEG-C part 4) [5], which defines the library of
video coding tools employed in existing MPEG standards [6].

Another interesting feature of the RVC standard that distin-
guishes it from traditional decoders’ rigidly specified video cod-
ing standards is that a description of the decoder can be
associated to the encoded data in various ways according to each
application scenario. Figure 1 illustrates this conceptual view of
RVC. All the three types of decoders are within the RVC frame-
work and constructed using the MPEG-B standardized languag-
es. Hence, they all conform to the MPEG-B standard. A Type-1
decoder is constructed using the FUs within the MPEG VTL
only. Hence, this type of decoder conforms to both the MPEG-B
and MPEG-C standards. A Type-2 decoder is constructed using
FUs from the MPEG VTL as well as one or more proprietary
libraries (VTL 1-n). This type of decoder conforms to the
MPEG-B standard only. Finally, a Type-3 decoder is constructed
using one or more proprietary VTL (VTL 1-n), without using the
MPEG VTL. This type of decoder also conforms to the MPEG-B
standard only. An RVC decoder (i.e., conformant to MPEG-B) is
composed of coding tools described in VTLs according to the
decoder description. The MPEG VTL is described by MPEG-C.
Traditional programming paradigms (monolithic code) are not
appropriate for supporting such type of modular framework. A
new dataflow-based programming model is thus specified and
introduced by MPEG RVC as specification formalism.

The MPEG VTL is normatively specified using RVC-Caltrop
Actor Language (CAL). An appropriate level of granularity for the
components of the standard library is important, to enable an
effective possibility of reconfigurations, for codecs, and an efficient
reuse of components in codecs implementations. If the library is
composed of too coarse modules, they will be too large to allow
their usage in different and interesting codec configurations,
whereas, if the library component granularity level is too fine, the
resulting number of modules in the library will be too large for an
efficient and practical reconfiguration process at the codec imple-
mentation side and may obscure the desired high-level descrip-
tion and modeling features of the RVC codec specifications. Most
of the efforts behind the standardization of the MPEG VTL were
devoted to study the best granularity tradeoff level of the VTL [FIG1] The conceptual view of RVC.

MPEG VTL

(MPEG-C)
Video Tools

Libraries {1· · ·N}

Decoder

Description

Coded Data Decoded

Video

Decoder Type-1

or Decoder Type-2

or Decoder Type-3

MPEG-B Decoder

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 26, 2009 at 17:00 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [115] NOVEMBER 2009

components. However, it must be noticed that the choice of the
best tradeoff in terms of high-level description and module reus-
ability does not really affect the potential parallelism of the algo-
rithm that can be exploited in multicore implementations. This
fact becomes clear describing how an RVC implementation is gen-
erated and is further developed in the section “Methodologies for
Developing RVC Dataflow Programs for Multicore Platforms.”

In the RVC framework, the decoding platform acquires the
decoder description that fully specifies the architecture of the
decoder and the structure of the incoming bit stream. So as to
instantiate the corresponding decoder implementation, the plat-
form uses a library of building blocks specified by MPEG-C.
Conceptually, such a library is a user-defined proprietary imple-
mentation of the MPEG RVC standard library, providing the same
input/output (I/O) behavior. This type of library can be expressly
developed to explicitly expose an additional level of concurrency
and parallelism appropriate for implementing a new decoder con-
figuration on user-specific multicore target platforms. The dataflow
form of the standard RVC specification, with the associated model
of computation, guarantees that any reconfiguration of the user-
defined proprietary library, developed at whatever lower level of
 granularity, provides an implementation that is consistent with the

(abstract) RVC decoder model that is originally specified using the
standard library. Figure 2 illustrates the normative and nonnorma-
tive components of the RVC framework and shows how a decoding
solution is built, not only from the standard specification of the
codecs in RVC-CAL by using the normative VTL. This already pro-
vides an explicit, concurrent, and parallel model but also from any
nonnormative “multicore- friendly” proprietary Video Tool Libraries,
that increases if necessary the level of explicit concurrency and par-
allelism for specific target platforms. Thus, the standard RVC speci-
fication that is already an explicit model for multicore systems can
be further improved or specialized by proprietary libraries that can
be used in the instantiation phase of an RVC codec implementation.
In other words, the multicore platform-specific optimization stage
is fully integrated into the MPEG RVC standard.

In summary, the new MPEG RVC standard basically pro-
vides two levels of explicit concurrency that can be exploited
for multicore implementations. The first is at the level of each
component of the standard library, that are by definition inde-
pendent dataflow components, whereas the second is the pro-
prietary customization of each library module that maintains
all its internal concurrency properties in whatever configura-
tion they are used. Figure 3 illustrates this concept. The

Decoder

Description

FU Network

Description

(FNL)

Bit Stream Syntax

Description

(RVC-BSDL)

Model Instantiation:

Selection of FUs and

Parameter Assignment

MPEG-B

MPEG Tool
Library

(RVC-CAL FUs)

Non-MPEG
Tool Libraries

MPEG Tool
Library

Implementation

Non-MPEG
Tool Library

Implementation

MPEG-C

Abstract Decoder Model (ADM)

FNL + RVC-CAL

Decoder

Implementation

Encoded Video Data

RVC Decoder Implementation

Decoded Video DataDecoding Solution

[FIG2] Illustration of the reconfigurable video coding framework, showing the dataflow-based normative specification as well as the
decoder implementation process that is compatible with the usage of specific “multicore-friendly” libraries.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 26, 2009 at 17:00 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [116] NOVEMBER 2009

 originally instantiated MPEG RVC decoder model that is com-
posed of the basic FUs of the MPEG RVC VTL can already be
partitioned and be mapped on a multicore processor platform.
In addition, further concurrency can be used if specific propri-
etary libraries are used leading to higher exploitation of the
potential parallelism provided by additional processor cores.

The fundamental element of the RVC framework, in the nor-
mative part, is the decoder description that includes two types of
data: 1) the bit stream syntax description (BSD), which describes
the structure of the bit stream. The BSD is written in RVC-BSD
language (BSDL). It is used to generate the appropriate parser to
decode the corresponding input encoded data [7], [8]; and 2) the
FU network description (FND), which describes the connections
between the coding tools (i.e., FUs). It also contains the values of
the parameters used for the instantiation of the different FUs
composing the decoder [9]–[11]. The FND is written in the so-
called FU network language (FNL). The syntax parser (built from
the BSD), together with the network of FUs (built from the
FND), form a CAL model called the abstract decoder model
(ADM), which is the normative behavioral model of the decoder.

Once the ADM is specified, the following step is the imple-
mentation of the ADM. As already mentioned above, any pro-
prietary implementation of the standard library, specifically
customized for a target multicore platform for instance, can
be used for the implementation. Several tools are already avail-
able to support such a process, and several others are in devel-

opment. The more innovative and attractive tools are capable
to directly synthesize the ADM into both hardware (HDL) [10]
and/or software (C, C11…) [11], [12] implementations using
the standard or the proprietary libraries of components. The
next sections discuss in more detail how such a process is par-
ticularly suitable to provide efficient implementations for mul-
ticore platforms. Indeed, the properties of the new specification
formalism that is used by the RVC standard provide the right
starting point, which is compatible with other advanced meth-
odologies and tools that enable the implementation of RVC
codecs on platforms with multiple cores. The dataflow formal-
ism provided by CAL does not imply any specific assumption
on the type of multicore architecture (shared memory) or on
the topology of their connections, thus any multicore archi-
tecture can be the target of the RVC specification. The compu-
tation model of the RVC specification implies only autonomous
processing entities (actors) exchanging data tokens. It should
also be noticed that the implementation process as defined in
MPEG RVC provides safe and open ways of reconfiguring a
platform without the danger of downloading possibly mali-
cious or dangerous code. In fact, only the codec configuration
has to be taken by the outside world, whereas the “pieces of
code” that are assembled to build an executable for the final
implementation, are either generated directly from the certi-
fied standard library, or by the proprietary library that is reli-
able being built by the user itself or by a trusted source.

[FIG3] Illustration of the concept of mapping an RVC specification onto a multicore platform for (a) the abstract decoder model or
(b) via user-defined proprietary libraries.

MPEG

VTL

IQ 2-D IT

MVs Motion

Comp.
Adder

DF DF

Proprietary

VTL

Parser
BS

Entropy

DEC.
IQ

MVs Motion

Comp.
Adder

Trans-

pose

Video

1-D IT

1-D IT

Vacant

Processors

N-Core Processor N-Core Processor

(a) (b)

BS

Parser
+Entropy

DEC.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
Proprietary Dec. ModelMPEG RVC ADM Video

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 26, 2009 at 17:00 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [117] NOVEMBER 2009

CAL DATAFLOW PROGRAMMING MODEL
As mentioned previously, the CAL Actor Dataflow Language
has been chosen as the specification language for the behavior
of the FUs in the VTL (MPEG-C). CAL was developed and ini-
tially specified as a subproject of the Ptolemy project at the
University of California at Berkeley [13]. RVC-CAL is a subset
of the original CAL language and is normalized by ISO/IEC as a
part of the RVC standard. It slightly restricts the data types,
operators, and features that could be used in the original CAL
language. The main reason for such restrictions is to simplify
the development of synthesis tools supporting both hardware
and software synthesis [10], [11].

INTRODUCTION TO DATAFLOW PROGRAMMING
The dataflow paradigm for parallel computing has a long history
from the early 1970s. Important milestones may be found in the
works of Dennis [14] and Kahn [15]. A dataflow program is con-
ceptually represented as a directed graph where nodes (called
actors) represent computational units, while edges represent
communication channels. These channels are used to send pack-
ets of data, called tokens. Unlike the standard imperative pro-
gramming model, where concurrent programs are typically
realized using threads, the dataflow programming model limits
the execution of concurrent programs to be only driven by token
availability. Low-level considerations, such as synchronization or
exclusive memory accesses make the imperative model inade-
quate in the context of multicore platforms. Conversely, in an
actor-oriented dataflow model, an actor executes (fires) when the
required token(s) are available, regardless of the status of all
other actors. The so-called firing rule (an actor may include sev-
eral firing rules) defines the amount of tokens to consume and
produce and with possibly additional conditions on the token
values or the actor state. A major benefit of the dataflow model is
that actors may fire simultaneously, thus allowing the program
to be distributed over different processing elements, a feature
that is particularly useful in the context of multicore platforms.

CAL SEMANTICS
Figure 4 illustrates the principles of the CAL dataflow program-
ming model. An actor is a modular component that encapsulates
its own state. The state of any actor is not shareable with other
actors. Thus, an actor cannot modify the state of another actor.
Interactions between actors are only allowed through channels.
The behavior of an actor is defined in terms of a set of actions. The
operations an action can perform are to consume input tokens, to
modify internal state, and/or to produce output tokens. The topol-
ogy of a set of interconnected actors constitutes what is called a
network of actors. The transitions of an actor are purely sequen-
tial, where actions are fired one after another. At the network level,
the actors can work concurrently, each one executing their own
sequential operations. CAL also allows hierarchical system design,
in which each actor can be specified as a network of actors.

The CAL dataflow programming model is based on the dataflow
process network model (DPN) [16], where an actor may include
multiple firing rules. CAL extends the model to cope with

 nondeterminism. Many variants of dataflow models have been
introduced in the literature [17]–[20]. CAL is expressive enough
to specify a wide range of programs that follow a variety of dataflow
models, trading between expressiveness (the set of programs that
can be modeled) and analyzability. A CAL dataflow program can fit
into those models depending on the environment and the target
application. The synchronous dataflow (SDF) model [17] is one of
the most studied in the literature. The SDF model is a special case
of DPN where actors have static firing rules. They consume and
produce a fixed number of tokens each time they fire. SDF may be
easily specified in CAL constraining actions to have the same token
consumption and production. Moreover, production and con-
sumption rates may be easily extracted from an actor to check the
SDF properties of actors at compile time. A key feature of this
model is that a static code analysis detects if the program can be
scheduled at compile time. A static analysis produces a static
schedule (a predefined sequence of actor firings), if it exists, which
is free of deadlock and that uses bounded memory.

WHY C FAILS WHEREAS RVC-CAL MAY
WORK FOR MULTICORE PLATFORMS
The control over low-level details, which is considered a merit of
C language, typically tends to over-specify programs. Not only the
algorithms themselves are specified, but also how inherently par-
allel computations are sequenced, how and when inputs and out-
puts are passed between the algorithms and, at a higher level, how
computations are mapped to threads, processors, and application
specific hardware. In general, it is not possible to recover the orig-
inal knowledge about the intrinsic properties of the algorithms by
means of analysis of the software program. The opportunities for
restructuring transformations on imperative sequential code are
very limited compared to the parallelization potential available on
multicore platforms [21]. These are the main reasons for which C
has been replaced by CAL in RVC. Any new codec configuration
would have required for a true code parallelization a code analysis
that would have resulted to be undecidable without the knowl-
edge of the algorithmic semantic. Knowledge is not available for a
new algorithm. Conversely, the CAL language focuses on the

[FIG4] Pictorial representation of the CAL dataflow
programming model.

Encapsulated State

ActionsActions

State

Actors

Guarded

Atomic Actions

Point-to-Point,

Buffered

Token-Passing

Connections

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 26, 2009 at 17:00 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [118] NOVEMBER 2009

 algorithm and does not overload the code with implementation
details. Thanks to this property, the CAL language presents inter-
esting features such as parallelism scalability, modularity, flexibil-
ity, and portability, as described next.

PARALLELISM SCALABILITY
Writing programs such that their parts execute concurrently with-
out much interference is one of the key problems in scaling tradi-
tional imperative programs. Encapsulated actors allow exposing
more parallelism as applications grow in size.

MODULARITY
The strong encapsulation of actors along with their hierarchical
structure offers high degree of modularity. Hence, the internal speci-
fication of any actor can be modified without impacting other actors.

FLEXIBILITY
Unlike procedural programming languages, where control flow
(sequence of execution of instructions) is tightly coupled with the
algorithm, the actor model allows more flexibility in the schedul-
ing process of the model (i.e., determining the order of execution
of the actions) by allowing for various scheduling schemes depend-
ing on various optimization criteria.

PORTABILITY
For many highly concurrent programs, portability has remained
an elusive goal, often due to their sensitivity to timing. The
“untimedness” and asynchrony of dataflow programming offers
a solution to this problem.

By providing these features, CAL is clearly an appropriate data-
flow programming model for modeling and implementing com-
plex signal processing systems on multicore platforms.

IMPLEMENTING RVC DECODERS
ONTO MULTICORE PLATFORMS
This section provides two different implementations example
of an existing decoder and possible new reconfiguration of RVC

decoders targeting a better usage of each specific decoder
 platform. The first example is a direct synthesis of an ADM
over a multicore platform, whereas the second represents a
possible RVC implementation of a scalable decoder partitioned
over a multicore platform.

AUTOMATIC SYNTHESIS OF AN MPEG-4 SP
DECODER ONTO A MULTICORE PLATFORM
The first example is the porting of an RVC MPEG-4 simple pro-
file (SP) decoder. This implementation example intends to show
how the RVC specification can directly and automatically gener-
ate different model partitions that execute correctly on a parallel
platform. Conversely, any mapping of a sequential specification
would need a very problematic code analysis to be able to gener-
ate parallel code. Thus the emphasis is given to such aspect
more than on the absolute performance that implies classical
platform specific code optimization steps that can be applied
after the dataflow program has been partitioned on different
cores and is not the subject of this discussion. Figure 5 presents
the structure of the MPEG-4 SP ADM as described within RVC.
Essentially, it is composed of four mains parts: the parser, a
luminance component (Y) processing path, and two chromi-
nance components (U, V) processing paths. Each path is com-
posed of its texture decoding engine as well as its motion
compensation engine (both are hierarchical RVC-CAL FUs).

The potential parallelism of such MPEG-4 SP ADM enables
the partitioning of the dataflow model in different ways over a
multicore platform. Obviously, the different partitions may
result into solutions with different efficiency depending on the
combinations of implemented scheduling, data dependencies,
and complexities. A software code generator is a very attractive
support for deriving implementations from the ADM dataflow
model. A code generator, that automatically translates CAL data-
flow models to C/C11, is presented in detail in [11]. This tool
uses process network model of computation [15] to implement
the CAL dataflow model. The compiler creates a multithread
program from the given dataflow model, where each actor is

[FIG5] The abtract decoder model of the MPEG-4 SP decoder as defined within RVC.

Texture Decoding (Y)

Texture Decoding (U)

Texture Decoding (V)

Motion Compensation (Y)

Motion Compensation (U)

Motion Compensation (V)

1011001010

0101000011

0000101000

1001010110

1101001000

01

Parser Merger

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 26, 2009 at 17:00 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [119] NOVEMBER 2009

translated into a thread, and the connectivity between actors is
implemented via software first in, first out (FIFO). Although the
generation provides correct software implementations, inherent
context switches occur during execution, due to the concurrent
execution of threads, that may lead to inefficient software execu-
tion if the granularity of actor is too fine. The problem of multi-
threaded programs is discussed in [22]. A more appropriate
solution that avoids thread management is presented in [16]
and [23]. Instead of suspending and resuming threads based on
the blocking read semantic of process network [24], actors are,
instead, managed by a user-level scheduler that selects the
sequence of actor firing. The scheduler checks (before executing
an actor), if it can fire, depending on the availability of tokens
on inputs and the availability of rooms on outputs. If the actor
can fire, it is executed (these two steps refer to the enabling
function and the invoking function of [23]). If the actor cannot
fire, the scheduler simply tests the next actor to fire (sorted fol-
lowing an appropriate given strategy) and so on. A code genera-
tor based on this concept is available in [25]. Such a compiler
presents a scheduler that has the two following characteristics:
1) actor firings are checked at run-time (the dataflow model is
not scheduled statically) and 2) the scheduler executes actors
following a round-robin strategy (actors are sorted a priori).

In the case of the standard RVC MPEG-4 SP dataflow model,
such generated mono-thread implementation is about four times
faster than the one obtainable by [11]. For the multicore imple-
mentation described here, actors are mapped statically (each
actor is assigned a priori to a core) even if nothing in the RVC
model prevents implementing for more sophisticated dynamic
allocations. For each core, all actors assigned on it are gathered
into a single thread managed by its own round-robin scheduler,
as explained above. Since only one thread is executed on each
core, threads are not executed concurrently but in parallel.

Table 1 shows different implementations with various assign-
ment scenarios of the components of the MPEG-4 SP decoder
over a dual-core platform. All of them, and any other partitioning,
would execute correctly even if not all of them would be equally
meaningful in terms of efficiency.

It is clear that the best achieved frame rate on the target
dual-core platform has been obtained by partitioning the decod-
er in which one core executes the parser in addition to the
chrominance engines for texture and motion compensations,
while the other core executes the luminance engine for texture/
motion compensation in addition to the YUV merging and dis-
play engines. This decision has been made knowing that the
amount of data processed by the Y channel is typically four times
larger than the data processed by each U and V channels (assum-
ing 4:2:0 color resolution). In general, profiling results obtained
by simulating the execution of the dataflow models would pro-
vide useful indications on how to select appropriate partitioning.

A clear advantage of RVC over the traditional methodology is
not only the compactness of the dataflow model (the number of
lines of code for the RVC SP decoder used as input of the code
generator are only about 3,500) but also the fact that the abstract
model of the decoder is platform-independent. This means that,

starting from the same MPEG-4 SP ADM, each implementer can
realize its own decoder based on the target platform by applying
various sets of operations on the ADM so that the resulting
implementation is adapted to its own single or multicore target
platform. In addition to this platform- independence, the ADM is
described in a modular way, allowing for the full exposure of the
available data-level parallelism in the decoder.

Table 2 shows an example of the different throughputs that
were directly achievable by mapping the MPEG-4 SP ADM to a
single and a dual-core platform, respectively. The modularity of
the initial ADM, as well as the flexibility provided by the RVC
framework and the automatic code synthesis from CAL actors,
allowed for a simpler and efficient process to do the mapping on
the dual-core platform. Obviously, other platform specific opti-
mizations can be applied to each sequential code section to
improve absolute performances. Such classical steps are outside
the scope of the discussion and are not presented here.

RVC PROMISES
The adoption of the MPEG RVC standard is intended to play an
important role in renewing many concepts in the field of multi-
media systems. One idea that could be applied to video coding
to ease the deployment on multicore platforms is to reconfig-
ure a decoder so as to break as much as possible data dependen-
cies. Data dependencies were not considered important factors
during standardization in the sequential processor age, howev-
er, now they can become the real obstacle for a efficient multi-
core implementation. Obviously, such a change in algorithms
should avoid relevant loss in coding efficiency, and several solu-
tions seem very promising. Previously introduced ideas and
technologies such as scalable video coding (SVC) can also be
further extended so as to achieve more useful degrees of free-
dom. Scalability, for instance, could be extended to new dimen-
sions such as the decoder structure itself and/or the required

[TABLE 1] DIFFERENT AUTOMATIC SYNTHESIS OF THE
MPEG-4 SP DECODER ON A 2.5 GHZ DUAL-CORE PROCES-
SOR FOR AN SD SEQUENCE (720 3 576 PIXELS).

CORE 1 CORE 2 FRAMES/S
PARSER 1 TEXTUREYUV
1 MOTIONYUV 1 MERGER

5.9

PARSER 1 TEXTUREYUV
1 MOTIONYUV

MERGER 5.7

PARSER 1 TEXTUREYUV MOTIONYUV 1 MERGER 8.5
PARSER 1 TEXTUREUV
1 MOTIONUV

TEXTUREY 1 MOTIONY
1 MERGER

9.2

[TABLE 2] SPEEDUP FACTOR OF THE AUTOMATIC
SYNTHESIS OF THE MPEG-4 SP DECODER OVER A 2.5 GHZ
DUAL-CORE PROCESSOR.

THROUGHPUT
(FRAMES/S)

SPEEDUP
FACTOR

SINGLE CORE DUAL CORE

QCIF (176 3 144) 78.5 122.7 1.56
CIF (352 3 288) 21.4 32 1.49
SD (720 3 576) 5.9 9.2 1.57

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 26, 2009 at 17:00 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [120] NOVEMBER 2009

processing power. Currently, the objectives on which the state-
of-the-art multimedia broadcasting services (such as those
based on SVC) rely on, is the rendering of the reconstructed
video content in terms of one, or more, of the following three
dimensions: quality (SNR), spatial resolution, and/or temporal
resolution. This enables the broadcasting services to satisfy the
demands of different types of customers having various avail-
able transmission bandwidths.

Under the RVC framework, an arbitrary decoder description
can be deployed and associated to the encoded bit stream to
 configure the receiver side on the structure of the decoder. Hence,
a theoretically unbounded set of scalability dimensions (other
than the three mentioned above) can be formulated by appropri-
ately varying the encoding/decoding scheme, accompanied with
embedding the configuration of the new target decoder in the bit
stream. Such a possibility extends the potential of better satisfying
the demands of target applications to include platform-computa-
tional requirements in addition to the bandwidths constraints.
Figure 6 provides an example that illustrates such a concept.

An RVC reconfigurable encoder is located at the server side.
It produces a scalable bit stream associated with the description
of a scalable decoder configuration, in which each enhancement
layer contains the enhancement encoded video content, as well
as the required data to construct an ADM part that will be able
to decode the video content in the corresponding enhancement
layer. Hence, unlike the case with the classical SVC, where each
decoding terminal has a fixed decoder structure that is able to
decode all configurations of the scalable bit stream, the RVC
approach is more efficient, enabling for lower usage of compu-
tational resources according to the given scalability scenario.

More specifically, a different set of constraints imposed by
the target platform can be applied when instantiating the differ-
ent components of the ADM and that results in different imple-
mentation-components that better fits the designated
platform(s). This ensures efficient implementation of each
abstract decoder part in spite of the differences of the target
platforms. Thus, different layer-decoders can be implemented
on different platforms, with various core-structures, and then
an “integration” core can be used to reconstruct the final video
content based on the results of the layered-decoders.

METHODOLOGIES FOR DEVELOPING RVC
DATAFLOW PROGRAMS FOR MULTICORE PLATFORMS
The MPEG RVC standard purposely does not specify any meth-
odology for developing a proprietary library of RVC compo-
nents. This leaves the door open for research and de velopment,
either tools for the direct synthesis of a CAL specification into
software or hardware or any other methodology for optimiza-
tion on specific platforms. An example of direct synthesis of an
RVC specification has been provided in the previous section.
This section presents some ideas and guidelines for the trans-
formation of CAL dataflow programs according to platform
constraints for the development of proprietary libraries. Here,
the principle is to work at a high level of abstraction and then
use tools for direct software synthesis such as the ones men-
tioned in previous sections. It has to be noticed that nothing
prevents using other approaches, for instance, the handwriting
of optimized libraries in whatever platform’s native language.
For the generality of the approach and for the portability on dif-
ferent multicore architectures, our attention and preference

[FIG6] An RVC bit stream can be efficiently decoded by various platforms with various architectures.

Media

Server

Constraints–1

RVC Decoder

Core 3 Core 2

Core 1

Core 4

Core 5 Core 6

ADM (Pt. 1)

ADM (Pt. 2)

ADM (Pt. 3)
IDM–3

IDM–2

IDM–1

Encoded Data (Pt. 1)

Encoded Data (Pt. 2)

Encoded Data (Pt. 3)

M
e
th

o
d
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

Im
p
le

m
e
n
ta

ti
o
n

Im
p
le

m
e

n
ta

ti
o
n

M
e
th

o
d
o
lo

g
y

M
e
th

o
d

o
lo

g
y

RVC Decoder

RVC Decoder

Constraints–2

Constraints–3
(Pt. 3) Decoder

Implementation

(Pt. 2) Decoder

Implementation

(Pt. 1) Decoder

Implementation

Modified

RVC

Scalable

Encoder

B
a
s
e

E
n
h
.
1

E
n
h
.
2

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 26, 2009 at 17:00 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [121] NOVEMBER 2009

goes to the development of high-level CAL libraries where RVC
CAL components are transformed into hierarchical networks of
FUs explicitly exposing higher levels of parallelism. Obviously,
the methodology transforming an RVC ADM into a multicore
implementation is not limited to developing a library but in-
cludes several stages such as partitioning (of components on
cores) and scheduling (when more than one FU is partitioned
on the same core). In general, such problems are classical prob-
lems that are the subject of active research activities and can be
solved using different approaches available in literature.

PORTING THE ABSTRACT DECODER
MODEL ONTO MULTICORE PLATFORMS
Porting an ADM to fit into a multicore architecture consists of
defining where the different actors that compose the ADM will
be located during execution. Porting an ADM may require par-
titioning the ADM where each subset and their corresponding
FUs are assigned to a processing element (i.e., core) of the tar-
get multicore platform. Once an ADM has been partitioned,
each subset is directly translated to C, using the code genera-
tor presented in the section “Implementing RVC Decoders

Onto Multicore Platforms,” regardless of any optimizations.
The execution of the model on the different cores is globally
asynchronous and is only driven by the token availability,
while the actors assigned on a core are scheduled using the
aforementioned strategy (c.f. the section “Implementing RVC
Decoders Onto Multicore Platforms”).

As an example, this concept is illustrated in Figure 3(a),
where the different FUs of the MPEG RVC ADM are assigned to
the different cores of the platform.

OPTIMIZING THE IMPLEMENTATION
AND THE PROPRIETARY TOOLBOXES
The ADM in MPEG is thought to be a very high-level description
to ease and represent the video coding process, thus it is mainly
concerned with the behavioral description of the different mod-
ules of the decoder. An ADM is agnostic of a particular multicore
platform. As a consequence, the parallelism and concurrency
exposed by the standard ADM generally may not fit well for effi-
cient implementations on a specific target platform.

The proprietary libraries here play a vital role in the process
of mapping the ADM to a decoder implementation that meets

[FIG7] Normalized complexity of the action operators of actors composing an MPEG-4 SP decoder.

0.00 E + 00

Actors of the MPEG-4 SP Decoder

5.00 E + 07

1.00 E + 08

1.50 E + 08

2.00 E + 08

N
o
rm

a
liz

e
d
 C

o
m

p
le

x
it
y

2.50 E + 08

3.00 E + 08

3.50 E + 08

by
te

2b
it

M
PEG

4_
al
go

_I
S

M
PEG

4_
al
go

_D
C
R
in
vp

re
d

U
np

ac
k

Blo
ck

Exp
an

d

M
PEG

4_
al
go

_D
C
R
ad

dr
es

si
ng

M
PEG

4_
al
go

_I
nv

er
se

qu
an

t

M
PEG

4_
al
go

_a
dd

M
BPac

ke
r

M
VSeq

ue
nc

e

M
VR

ec
on

st
ru

ct

Sea
rc

hW
in
do

w

id
ct
2d

M
em

or
yM

an
ag

er

G
EN

_m
gn

t_
D
C
Spl

it

In
te

rp
ol
at

io
n_

ha
lfp

el

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 26, 2009 at 17:00 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [122] NOVEMBER 2009

the constraints of the target platform and the requirements
defined by the designer for a specific application. A proprietary
toolbox is nonnormative in implementation but normative in a
behavior video coding tool library. These FUs must be designed
in the proprietary video tool box such that the implementation
of the whole decoder by connecting all the FUs as specified by
the ADM fulfils the imposed requirements of the system. These
proprietary toolboxes intend to provide fine-tuned actors that
are considered a benefit for an optimized implementation on a
specific multicore architecture.

On one hand, depending on the target multicore platform,
the ADM may expose too much parallelism that may lead to an
inefficient partitioning of implementation due to the asynchro-
nous execution on the different cores (actors on the same core
are scheduled within a round-robin scheduler). Raising the
granularity of actors may be a solution to overcome this short-
coming. Subnetworks of actors, (part of the ADM) may be sub-
stituted by a single functionally equivalent actor picked from a
particular proprietary toolbox. Computations of the different
actors are serialized into a single coarse-grain actor so as to
increase execution efficiency on each core.

Another option in this context can be directly taken at the
ADM level without using any particular proprietary toolboxes.
Analyzing the ADM to detect one or more subnetworks that
can be scheduled statically (such as a subnetwork with the
SDF property) is another possibility. In this case, the resulting
scheduling of the actions may be viewed as a larger actor
where original actors are executed serially in a predefined
order. The resulting partition can thus execute synchronously
without needing to check the availability of tokens. The global
execution of the model on the different cores is asynchronous
where actors assigned to a core execute synchronously. Work
is ongoing in this way of exploring the SDF property inside a
CAL ADM [26], [27].

In other cases, the ADM may not expose sufficient parallelism
for a specific multicore platform. In that case, increasing the
potential parallelism so as to exploit the available processing
capabilities of the multicore platform is the option to take. For
that, a proprietary toolbox may include actors at a finer granu-
larity that can replace actors of the ADM. Such an operation can-
not be fully automated because it changes the structure of the
dataflow program. Such a model transformation also includes
token splitting and the restructuring of the associated actions.

Replacing actors may be done according to various criteria,
such as complexity or execution time. Figure 7 illustrates the
complexity of the actors that are included in the MPEG-4 SP
decoder. The complexity is given in term of elementary (logical,
arithmetic, bitwise, etc.) operators, cumulated over the Foreman
sequence (QCIF, 300 frames at 30 frames/s). It shows that the
inverse transform [a monolithic two-dimensional (2-D) inverse
discrete cosine transform (IDCT)] is the most complex part of
the decoder in terms of elementary operations. Such analysis
shows that if such an actor acts as a bottleneck, it may be
replaced by smaller actors provided by a specific proprietary
toolbox. For instance, in Figure 3, the 2-D IDCT of the MPEG

RVC ADM is replaced with a two one-dimensional IDCTs in the
proprietary implementation of the decoder.

CONCLUSIONS
The increasing demand for video decoding platforms capable of
supporting multiple codecs, together with the novel ideas that
are continuously developing, raises new issues in the standard-
ization process. On one hand, there is the need to release new
and more efficient video coding standards in a timely manner
to satisfy a wide variety of applications, while on the other
hand, being able to guarantee interoperability and support to
existing deployed standards is also clearly essential. The lack of
such features in current video coding standard specification
formalism led to the development of the RVC standard, whose
key concept is based on the ability to design a decoder at a
higher level of abstraction than the one provided by current
generic monolithic specifications. Instead of the typical low-
level C/C11 code, an “abstract model,” based on modular
components taken from the standard library, is the standard
reference specification. The possibility of dynamic reconfigura-
tion of codecs also requires new methodologies and new tools
for describing the new bit stream syntaxes and the parsers of
such new codecs. The functionality of the coding tools and
their potential concurrency are explicitly exposed to the users
by the used specification formalism. This new approach to the
codec specification is by far a better starting point, not only for
customizing audio-visual applications to the specific service
requirements, but also for efficient implementation methodolo-
gies on the new generation of multicore platforms. With the
emergence of the RVC standard and its supporting technologies
and tools, many concepts in the field of multimedia systems
and their implementations on multicore platforms are expected
to be revisited and evolve into new solutions in the future.

ACKNOWLEDGMENTS
The authors would like to thank Matthieu Wipliez, Jérôme
Gorin, and Mickaël Raulet, who developed the Open RVC-CAL
Compiler framework, and Jörn W. Janneck and Johan Eker, of
the Open Dataflow framework.

AUTHORS
Ihab Amer (ihab.amer@epfl.ch) received his B.Sc. degree in 2000
and his M.Sc. degree in 2003. He received his Ph.D. degree from
the University of Calgary, Canada, in 2007. He spent six months
with the DSP division of Xilinx Inc., and he has been a member of
the ISO/IEC MPEG Standard Committee. He authored/coau-
thored over 30 peer-reviewed conference and journal papers, and
he has over 30 contributions to the MPEG standards. He also has
a pending patent. He is an assistant professor at the German
University in Cairo, a research consultant with ATIPS Labs at the
University of Calgary, and a visiting researcher at the GR-LSM Lab
at Ecole Polytechnique Fédérale de Lausanne (EPFL-Switzerland).
He is a Member of the IEEE.

Christophe Lucarz (christophe.lucarz@epfl.ch) received his
M.Sc. degree in electrical engineering from the Institut National

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 26, 2009 at 17:00 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [123] NOVEMBER 2009

des Sciences Appliquées in Lyon, France, in 2006. He is current-
ly a researcher with the Multimedia Architectures Research
Group at Ecole Polytechnique Fédérale de Lausanne (EPFL-
Switzerland) and is working towards his Ph.D. degree. He is also
taking part in the MPEG ISO/IEC standardization committee in
video coding as well as the ACTORS European Project.

Ghislain Roquier (ghislain.roquier@epfl.ch) is a post-doc
researcher in the GR-LSM Multimedia group at Ecole
Polytechnique Fédérale de Lausanne in Switzerland. He received
his M.Sc. degree in signal processing from the Université de
Rennes I, France in 2005. He received the Ph.D. degree in elec-
tronics in 2008 from the Institut National des Sciences Appliquées
de Rennes, France. His main research interests include design
and implementation of heterogeneous real-time embedded sys-
tems, rapid prototyping methodologies, and multimedia DSP.

Marco Mattavelli (marco.mattavelli@epfl.ch) started his
research activity at the “Philips Research Laboratories” of
Eindhoven in 1988. In 1991 he joined the “Swiss Federal
Institute of Technology” (EPFL), where he got his Ph.D. in 1996.
He received the ISO/IEC Award in 1997 and 2003. He is current-
ly leading the “Multimedia Architectures Research Group” at
EPFL. His current major research activities include methodolo-
gies for specification and modeling of complex systems and
architectures for video coding. He is the author of more than
100 publications and has served as invited editor for several con-
ferences and scientific journals. He is a Member of the IEEE.

Mickaël Raulet (mraulet@insa-rennes.fr) received his M.Sc.
degree in 2002. He received a Ph.D. degree from the Institut
National des Sciences Appliquées (INSA) in electronic and signal
processing in collaboration with the software radio team of
Mitsubishi Electric ITE (Rennes, France) in 2006. He is currently
with the Institute of Electronics and Telecommunications of
Rennes, where he is a researcher in rapid prototyping of standard
video compression on embedded architectures. Since 2007, he has
been involved in the ISO/IEC JTC1/SC29/WG11 standardization
activities (better known as MPEG) such as a Reconfigurable Video
Coding Expert. His interests include video standard compression
and telecommunication algorithms and rapid prototyping onto
multicore architectures. He is a Member of the IEEE.

Jean-François Nezan (jnezan@insa-rennes.fr) is an assistant
professor at the Institut National des Sciences Appliquées
(INSA) in Rennes, France, and a member of the IETR Laboratory
also in Rennes. He received his postgraduate certificate in sig-
nal, telecommunications, images, and radar sciences from
Rennes University in 1999, and his engineering degree in elec-
tronic and computer engineering from INSA-Rennes Scientific
and Technical University in 1999. He received his Ph.D. degree
in electronics in 2002 from INSA. His main research interests
include image compression algorithms, multiprocessor rapid
prototyping, and dataflow programming.

Olivier Déforges (odeforge@insa-rennes.fr) is a professor at
the Institut National des Sciences Appliquées (INSA) in Rennes,
France. He received a Ph.D. degree in image processing in 1995.
In 1996, he joined the Department of Electronic Engineering at
INSA-Rennes Scientific and Technical University. He is a mem-

ber of the Institute of Electronics and Telecommunications of
Rennes, UMR CNRS 6164. His research interests are image and
video lossy and lossless compression, image understanding, fast
prototyping, and parallel architectures.

REFERENCES
[1] E. S. Jang, J. Ohm, and M. Mattavelli. (2008). Whitepaper on reconfigurable
video coding (RVC). ISO/IEC JTC1/SC29/WG11 Document N9586, Antalya,
Turkey [Online]. Available: http://www.chiariglione.org/mpeg/technologies/
mpb-rvc/index.htm
[2] I. Richardson, C.S. Kannangara, M. Bystrom, J. Philp, and M. De. Frutos-
Lopez, “A framework for fully configurable video coding,” in Proc. Picture Cod-
ing Symp. (PCS), 2009, pp. 145–148.
[3] C. Lucarz, M. Mattavelli, J. Thomas-Kerr, and J. Janneck, “Reconfigurable
media coding: A new specification model for multimedia coders,” in Proc. IEEE
Workshop Signal Processing Systems (SiPS), 2007, pp. 481–486.
[4] MPEG Systems Technologies—Part 4: Codec Configuration Representa-
tion, ISO/IEC FDIS 23001-4, 2009.
[5] MPEG Video Technologies—Part 4: Video Tool Library, ISO/IEC FDIS
23002-4, 2009.
[6] C. Lucarz, I. Amer, and M. Mattavelli, “Reconfigurable video coding: Con-
cepts and technologies,” in Proc. IEEE Int. Conf. Image Processing, Special Ses-
sion on Reconfigurable Video Coding, Cairo, Egypt, 2009.
[7] MPEG Systems Technologies—Part 5: Bitstream Syntax Description Lan-
guage (BSDL), International Standard ISO/IEC FDIS 23001-5, 2008.
[8] M. Raulet, J. Piat, C. Lucarz, and M. Mattavelli, “Validation of bitstream syntax
and synthesis of parsers in the MPEG reconfigurable video coding framework,” in
Proc. IEEE Workshop Signal Processing Systems (SIPS), 2008, pp. 293–298.
[9] D. Ding, L. Yu, C. Lucarz, and M. Mattavelli, “Video decoder reconfigurations
and AVS extensions in the new MPEG reconfigurable video coding framework,” in
Proc. IEEE Workshop Signal Processing Systems (SIPS), 2008, pp. 164–169.
[10] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier, M. Wipliez, and M. Rau-
let, “Synthesizing hardware from dataflow programs: An MPEG-4 simple profile
decoder case study,” in Proc. IEEE Workshop Signal Processing Systems (SIPS),
2008, pp. 287–292.
[11] G. Roquier, M. Wipliez, M. Raulet, J. W. Janneck, I. D. Miller, and D. B.
Parlour, “Automatic software synthesis of dataflow program: An MPEG-4 simple
profile decoder case study,” in Proc. IEEE Workshop Signal Processing Systems
(SIPS), 2008, pp. 281–286.
[12] G. Roquier, C. Lucarz, M. Mattavelli, M. Wipliez, M. Raulet, J. W. Janneck,
I. D. Miller, and D. B. Parlour, “An integrated environment for HW/SW co-design
based on a CAL specification and HW/SW code generators,” in Proc. IEEE Int.
Symp. Circuits and Systems (ISCAS 2009), Taipei, Taiwan, 2009, p. 799.
[13] J. Eker and J. W. Janneck. (2003). CAL language report specification of
the CAL actor language. EECS Dept., Univ. of California, Berkeley, Tech. Rep.
UCB/ERL M03/48 [Online]. Available: http://www.eecs.berkeley.edu/Pubs/
TechRpts/2003/4186.html
[14] J. B. Dennis, “First version of a data flow procedure language,” in Proc.
Colloque sur la Programmation Programming Symp. London, U.K.: Springer-
Verlag, 1974, pp. 362–376.
[15] G. Kahn, “The semantics of a simple language for parallel programming,” in
Information Processing, J. L. Rosenfeld, Ed. Stockholm, Sweden: North Holland,
Aug. 1974, pp. 471–475.
[16] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proc. IEEE, vol. 83,
no. 5, pp. 773–801, May 1995.
[17] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proc. IEEE, vol. 75,
no. 9, pp. 1235–1245, 1987.
[18] S. Ritz, M. Pankert, V. Zivojinovic, and H. Meyr, “Optimum vectorization of
scalable synchronous dataflow graphs,” in Proc. IEEE Int. Conf. Application-Spe-
cific Array Processors, Oct. 1993, pp. 285–296.
[19] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cycle-static data-
flow,” IEEE Trans. Signal Processing, vol. 44, no. 2, pp. 397–408, 1996.
[20] B. Bhattacharya and S. Bhattacharyya, “Parameterized dataflow modeling for
DSP systems,” IEEE Trans. Signal Process., vol. 49, no. 10, pp. 2408–2421, 2001.
[21] S. S. Bhattacharyya, G. Brebner, J. Eker, J. W. Janneck, M. Mattavelli, C. von
Platen, and M. Raulet, “OpenDF—A dataflow toolset for reconfigurable hardware
and multicore systems,” ACM SIGARCH Comput. Architecure News, Special Is-
sue: MCC08–Multicore Computing 2008, vol. 36, no. 5, pp. 29–35, Dec. 2008.
[22] E. A. Lee, “The problem with threads,” IEEE Comput. Soc., vol. 39, no. 5, pp.
33–42, 2006.
[23] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya, “Func-
tional DIF for rapid prototyping,” in Proc. 2008 19th IEEE/IFIP Int. Symp. Rapid
System Prototyping, June 2008, pp. 17–23.
[24] G. Kahn and D. B. MacQueen, “Coroutines and networks of parallel pro-
cesses,” in Proc. IFIP Congr., 1977, pp. 993–998.
[25] Open RVC-CAL Compiler [Online]. Available: http://sourceforge.net/proj-
ects/orcc/
[26] J. Boutellier, V. Sadhanala, C. Lucarz, P. Brisk, and M. Mattavelli, “Sched-
uling of dataflow models within the reconfigurable video coding framework,” in
Proc. IEEE Workshop Signal Processing Systems (SIPS), 2008, pp. 182–187.
[27] R. Gu, J. Janneck, M. Raulet, and S. S. Bhattacharyya, “Exploiting statically
schedulable regions in dataflow programs,” in Proc. Int. Conf. Acoustics, Speech,
and Signal Processing, Taipei, Taiwan, Apr. 2009, pp. 565–568. [SP]

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 26, 2009 at 17:00 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

