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convex analysis and applications
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Cornuéjols · Adam Ouorou
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Abstract We call ”on/off” constraint an algebraic constraint that is activated if and only if
a corresponding boolean variable is turned ”on” or equal to 1. Our main subject of interest is
to derive tight convex formulations of Mixed Integer NonLinear Programs (MINLPs) featuring
”on/off” constraints. We study the simple set defined by one ”on/off” constraint with bounded
variables. Using disjunctive programming, we introduce convex hull formulations of this set de-
fined in higher dimensional spaces. Because the large number of variables in these formulations
appears to be practically disadvantageous, we concentrate our efforts on defining explicit projec-
tions into lower spaces. When the functions defining the ”on/off” constraint are order preserving
or isotone, we show that the convex hull can be formulated in the space of original variables.
This result applies in particular when the functions are additively separable, sum of one variable
monotone functions.
As a direct application to our results, we present new formulations to a well-known telecom-
munication problem: routing several commodities subject to multiple delay constraints. While
classical multi-commodity routing problems deal with only one design specification, usually a
total queuing delay constraint, this model takes into account individual delays for each type of
commodity, allowing operators to offer a so-called ”differentiated quality of service”. Numerical
results on randomly generated and real world networks are presented to assess the efficiency of
the new models.

Keywords mixed integer nonlinear programming, on/off constraints, disjunctive constraints,
convex programming, routing problems, multiple delay constraints.
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1 Introduction

In recent years, Mixed Integer NonLinear Programming (MINLP) has been a very active area
of research. A special case of interest is that of convex MINLPs where the objective function
to minimize as well as the feasible region obtained by dropping the integrality requirements on
variables is convex. For such problems, several algorithms have been developed [10,16,19,7] and
have been implemented in solvers such as FilMINT [1] or Bonmin[6] which are able to solve
problems of medium sizes.
In order to solve larger problems, a key element is to be able to produce convex continuous relax-
ations which should provide good bounds on the value of the underlying MINLP and be easily
solvable by state of the art MINLP solvers. To the best of our knoweldge automatic procedures
handling such task are yet to be devised.
In this work, motivated by an application in telecommunications, we study tight relaxations
for certain types of convex MINLPs featuring “on/off” constraints. An “on/off” constraints
is an algebraic constraint that has to be activated if and only if a corresponding 0-1 indi-
cator variable is equal to 1. Given convex functions g : R

n+1 → R
m, h : R

n+1 → R and
fk : R

n → R, ∀k ∈ {1, 2, ...,K}, we are concerned with optimization problems that can be
written as:

min h(x, z)

s.t. g(x, z) ≤ 0

fk(x) ≤ 0 if zk = 1, ∀k ∈ {1, 2, ...,K}

li ≤ xi ≤ ui, ∀i ∈ {1, 2, ..., n}

x ∈ R
n, zk ∈ {0, 1}, ∀k ∈ {1, 2, ...,K}.

(1)

Each fk(x) ≤ 0 represents an ”on/off” constraint, with zk its corresponding indicator variable.
The g(x, z) ≤ 0 gather the remaining convex constraints. Bounds on variables are assumed to be
finite.
Of course the difficulty of solving a problem like (1) lies in the presence of the ”on/off” constraints.
Such constraints are clearly non-convex since each one generates a feasible region defined by the
union of two disjoint sets. Furthermore, reformulating these constraints is necessary in order to
solve the problem with a standard convex MINLP solver.
A way to model (1) as a convex MINLP is to use so called Big-M constraints. Unfortunately the
continuous relaxations resulting from such models, although compact and usually easy to solve,
typically provide weak lower bounds.
Another way to formulate (1) is to use disjunctive programming (see [5,8,17,13]). Indeed, (1)
can be reformulated as a disjunctive program as follows:

min h(x, z)

s.t. g(x, z) ≤ 0

(x, zk) ∈ Γ k
0 ∪ Γ k

1 , ∀k ∈ {1, 2, ...,K}

Γ k
0 = { (x, zk) ∈ R

n × B : zk = 0, li ≤ xi ≤ ui, ∀i ∈ {1, 2, ..., n} }

Γ k
1 = { (x, zk) ∈ R

n × B : zk = 1, fk(x) ≤ 0, li ≤ xi ≤ ui, ∀i ∈ {1, 2, ..., n} }.

(2)

In Stubbs and Mehrotra (1999) [17], Ceria and Soares (1999) [8], as well as in Grossman
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and Lee (2003) [13], one can find the necessary tools for writing the algebraic formulation of
conv

(

Γ k
0 ∪ Γ k

1

)

, the convex hull of Γ k
0 ∪ Γ k

1 , in a higher-dimensional space, by introducing addi-
tional variables. Using these results, one can rewrite (2) as:

min h(x, z)

s.t. g(x, z) ≤ 0

(x, zk) ∈ conv(Γ k
0 ∪ Γ k

1 ), ∀k ∈ {1, 2, ...,K}

Γ k
0 = { (x, zk) ∈ R

n × B : zk = 0, li ≤ xi ≤ ui, ∀i ∈ {1, 2, ..., n} }

Γ k
1 = { (x, zk) ∈ R

n × B : zk = 1, fk(x) ≤ 0, li ≤ xi ≤ ui, ∀i ∈ {1, 2, ..., n} }.

x ∈ R
n, zk ∈ {0, 1}, ∀k ∈ {1, 2, ...,K}.

(3)

Clearly, (3) is a valid formulation for (1). Furthermore, its continuous relaxation is a contin-
uous convex nonlinear program that is likely to provide relatively good bounds. Nevertheless,
writing conv(Γ k

0 ∪ Γ k
1 ) in higher dimensional spaces leads to a nonlinear program of large size,

often difficult to solve.
Naturally, one would be interested in formulations for (3) that do not require additional variables.
Günlük and Linderoth [14] showed in their recent work that when Γ k

0 is restricted to a single
point, the convex hull can be formulated in the space of original variables, using the so called
perspective function. Under the same assumptions, Aktürk, Atamtürk and Gürel [2] have given a
strong characterization of such convex hulls for a particular function used in machine scheduling
problems.
In this work, we study the case where Γ k

0 is a hyper-rectangle given by finite bounds on the
x variables. In Section 2, based on the work of [8], we start by studying the formulation of
conv

(

Γ k
0 ∪ Γ k

1

)

in extended spaces. Next, we define projections of this convex hull into lower
dimentionnal spaces. Our main result is that under specific assumptions on the fk functions, we
introduce tight relaxations in the space of original variables.
In Section 3, we study a first application for this type of problems, introduced by Ben Ameur
and Ouorou [3]: the Delay Constrained Routing Problem. This model gives guarantees on the
individual delay for each type of commodity, allowing telecommunication operators the ability to
provide a ”differentiated quality of service”. We propose new mathematical models for this prob-
lem based on the convex hull formulations introduced in Section 2. Finally, Section 4 reports
computational results obtained on telecommunication instances, allowing to compare existing
models to the new ones.
Given a set Γ ∈ R

n, we denote by cl(Γ ) its topological closure and by proj(x1,...,xj)(Γ ) its pro-
jection on the (x1, ..., xj) space. The effective domain of a function f , denoted dom(f), is the set
of points x ∈ R

n for wich f(x) < +∞. Let f be a closed convex function, the constraint f(x) ≤ 0
admits a unique closed extension (cl f) ≤ 0, wich results from redefining f at points x /∈ dom(f)
in such away that:
{x ∈ R

n : (cl f)(x) ≤ 0} = cl({x ∈ R
n : f(x) ≤ 0}.

2 Convex hull of Γ0 ∪ Γ1

We start by giving a simple example with one ”on/off” constraint ( i.e. K = 1 ) in R
3:
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Fig. 1 The sets Γ0 and Γ1.

Fig. 2 conv(Γ0 ∪ Γ1).

min
(x,z)∈R2,z∈B

h(x, z)

s.t. (x, z) ∈ conv (Γ0 ∪ Γ1)

Γ0 = { (x, z) ∈ R
2 × B : z = 0, l1 ≤ x1 ≤ u1, l2 ≤ x2 ≤ u2}

Γ1 = { (x, z) ∈ R
2 × B : z = 1, 1

c1−x1
+ 1

c2−x2
≤ d, l1 ≤ x1 ≤ u1, l2 ≤ x2 ≤ u2}

(4)

where u1 ≤ c1 and u2 ≤ c2.

Figure 1 gives a representation of the sets Γ0 and Γ1 in R
3. Γ0 is the rectangle on the right hand

side of the figure and Γ1 is the convex set on left hand side.
Figure 2 gives a representation of conv(Γ0∪Γ1) in R

3. An interesting remark is that the nonlinear
constraint of conv (Γ0 ∪ Γ1) can be derived by using the perspective function of f .

The perspective function f̃ : R
n+1 → R∪{+∞} of f is defined by: f̃(x, z) ≡

{

zf(x/z) if z > 0,

+∞ if z ≤ 0.

The closure of f̃ , as introduced in [8], is shown in [15] (Proposition VI.2.2.2) to be defined as:

(cl f̃)(x, z) ≡











zf(x/z) if z > 0,

limz→0+ zf(x̃ − x + x/z) if z = 0,

+∞ if z < 0,

where x̃ is an arbitrary point in the relative interior of dom(f).
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Fig. 3 conv(Γ0 ∪ Γ1).

In our example, the nonlinear constraint of conv (Γ0 ∪ Γ1) is obtained by taking the perspec-
tive function of f from the point x∗ = (u1, u2), that is f̃(x− (1− z)x∗, z) ≤ 0. Figure 3 plots the
level curves of f̃(x − (1 − z)x∗, z) in R

3.
For this specific example, conv (Γ0 ∪ Γ1) is written as follows:

conv (Γ0 ∪ Γ1) =















(x, z) ∈ R
3 :

(clf̃)(x − (1 − z)x∗, z) ≤ 0

l1 ≤ x1 ≤ u1, l2 ≤ x2 ≤ u2.















=



















(x, z) ∈ R
3 :

cl
(

z
zc1−x1+(1−z)u1

+ z
zc2−x2+(1−z)u2

− d
)

≤ 0

l1 ≤ x1 ≤ u1, l2 ≤ x2 ≤ u2.



















.

We now return to the general case dealing with one ”on/off” constraint in R
n. First, we recall

a result of Ceria and Soarres [8] characterizing the convex hull of a union of closed convex sets:
Consider a closed convex set P ⊆ R

n defined by P ≡ cl conv(K), K ≡
⋃p

i=1 Ki, where every set
Ki is a closed convex set having the following representation
Ki ≡ {x ∈ R

n : Gi(x) ≤ 0}, and Gi : R
n → R

m is a vector mapping whose components are
closed convex functions.

Theorem 1 ([8]) Let I ≡ {i : Ki 6= ∅}. If the set K is bounded below or above then x ∈ P if
and only if there exist vectors (λi, x

i), for every i ∈ I, such that the following nonlinear system
is feasible

x =
∑

i∈I

xi

∑

i∈I

λi = 1, i ∈ I,

(cl G̃i)(λi, x
i) ≤ 0, i ∈ I,

λi ≥ 0, i ∈ I.

where (cl G̃i)(λi, x
i) denotes the closure of the perspective mapping of G at (λ, x).

Based on this theorem, conv (Γ0 ∪ Γ1) can be formulated in a space of dimension 3n + 5.
We note that applying this result in the formulation of (3), a total of |K|.(2n + 4) variables
must be added. Therefore reducing the space dimension can have a very important impact when
dealing with large optimization problems including many ”on/off” constraints. In the following
lemma, we show that in our context, the convex hull explicit formula, corresponding to one
”on/off” constraint, can be obtained by adding only n variables.
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Lemma 1 Let:

f : E → R, E ⊆ R
n, be a closed convex function,

Γ0 = { (x, z) ∈ R
n × B : z = 0, l0i ≤ xi ≤ u0

i , ∀i ∈ {1, 2, ..., n} },

Γ1 = { (x, z) ∈ R
n × B : z = 1, f(x) ≤ 0, l1i ≤ xi ≤ u1

i , ∀i ∈ {1, 2, ..., n} }, non empty, then:

conv (Γ0 ∪ Γ1) = {(x, z) | ∃y ∈ R
n, s.t. (x, y, z) ∈ cl(Γ )},

where Γ =







































(x, y, z) ∈ R
2n+1 :

zf (y/z) ≤ 0,

xi − (1 − z)u0
i ≤ yi ≤ xi − (1 − z)l0i , ∀i ∈ {1, 2, ..., n},

zl1i ≤ yi ≤ zu1
i , ∀i ∈ {1, 2, ..., n},

0 < z ≤ 1.







































Proof Theorem 1 in [8], allows to write the exact formulation of conv(Γ0∪Γ1) as follows: conv(Γ0∪

Γ1) = proj(x,z)(Γ ),

where Γ =







































































































(x, z, λ0, λ1, z0, z1, x
0, x1) ∈ R

3n+5 :

x = x0 + x1,

z = z0 + z1,

λ0 + λ1 = 1,

(cl f)
(

x1/λ1

)

≤ 0,

l0λ0 ≤ x0 ≤ u0λ0,

l1λ1 ≤ x1 ≤ u1λ1,

z0 = 0,

z1 = λ1,

0 ≤ λ1, 0 ≤ λ0.







































































































≡















































































(x, z, λ0, x
0, x1) ∈ R

3n+2 :

x = x0 + x1,

λ0 + z = 1,

(cl f)
(

x1/z
)

≤ 0,

l0λ0 ≤ x0 ≤ u0λ0,

l1z ≤ x1 ≤ u1z,

0 ≤ λ0.

0 ≤ z.















































































.

Substituing x0 = x − x1 and λ0 = 1 − z, we obtain:

Γ ≡























































(x, z, x1) ∈ R
2n+1 :

(cl f)
(

x1/z
)

≤ 0,

l0λ0 ≤ x − x1 ≤ u0λ0,

l1z ≤ x1 ≤ u1z,

0 ≤ 1 − z.

0 ≤ z.























































≡











































(x, y, z) ∈ R
2n+1 :

(cl f) (y/z) ≤ 0,

x − (1 − z)u0 ≤ y ≤ x − (1 − z)l0,

zl1 ≤ y ≤ zu1,

0 ≤ z ≤ 1.











































= cl(Γ ).
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In Lemma 1, we show that only n variables are needed to explicitly describe the convex hull.
One can notice that these new variables appear in the perspective function of f as well as in:
x − (1 − z)u0 ≤ y ≤ x − (1 − z)l0 and zl1 ≤ y ≤ zu1. We observe that, if we consider only the
last two sets of constraints, the Fourrier-Motzkin elimination can be applied in a straightforward
way leading to the constraints zl1 +(1− z)l0 ≤ x ≤ zu1 +(1− z)u0. Nevertheless, the projection
becomes harder when taking into account the nonlinear constraint in Γ .

Next, we show that if the function f is order preserving or isotone (see definition below), the
y variables can be entirely projected out.

Definition 1 Let f : E → R, E ⊆ R
n, f is independently increasing (resp. decreasing) on the

ith coordinate if:
∀x = (x1, x2, ..., xi, ..., xn) ∈ dom(f), x′ = (x1, x2, ..., x

′
i, ..., xn) ∈ dom(f) s.t. x′

i ≥ xi ⇒ f(x′) ≥
( resp. ≤) f(x).
We say that f is independently monotone on the ith coordinate if it is independently increasing
or independently decreasing on this given coordinate.
f is order preserving if it is independently monotone on each and every coordinate.

Example 1 Consider the following functions:

1. f(x1, x2, x3) = e(2x1−x2) +x3, (x1, x2, x3) ∈ R
3, f is independently increasing on coordinate 1

and 3, independently decreasing on coordinate 2, therefore it is an order preserving function.
2. f(x, y) = x4 + y2, (x, y) ∈ R

2, the variation of f depends on the sign of the variables, f is
not an order preserving function.

3. f(x) =
∑n

i=1
1

ci−xi
, where xi ∈] − ∞, ci] for i = 1, . . . , n. Since f is a sum of one-variable

increasing functions, it is an order preserving function.

Additively separable functions which are sum of one-variable monotone functions are commonly
encountered order preserving functions.

Theorem 2 Let:

f : E → R, E ⊆ R
n, be an order preserving closed convex function,

J1(resp. J2) be the set of indexes on wich f is independently increasing (resp. decreasing),

Γ0 = { (x, z) ∈ R
n × B : z = 0, l0i ≤ xi ≤ u0

i , ∀i ∈ {1, 2, ..., n} },

Γ1 = { (x, z) ∈ R
n × B : z = 1, f(x) ≤ 0, l1i ≤ xi ≤ u1

i , ∀i ∈ {1, 2, ..., n} }, non empty, then:

conv (Γ0 ∪ Γ1) = cl(Γ
′

),
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where Γ
′

=



























(x, z) ∈ R
n+1 :

zqS (x/z) ≤ 0, ∀S ⊂ {1, 2, ..., n},

zl1i + (1 − z)l0i ≤ xi ≤ zu1
i + (1 − z)u0

i , ∀i ∈ {1, 2, ..., n},

0 < z ≤ 1.



























,

with qS = (f ◦ hS), hS(Rn → R
n) defined by (hS(x))i =























l1i ∀i ∈ S ∩ J1,

u1
i ∀i ∈ S ∩ J2,

xi −
(1−z)u0

i

z
∀i ∈ J1, i 6∈ S,

xi −
(1−z)l0i

z
∀i ∈ J2, i 6∈ S.

Proof We prove that cl(Γ
′

) is the projection in the (x, z) space of cl(Γ ), the set defined in Lemma
1.

1. We show that (x, z) ∈ cl(Γ
′

) ⇒ ∃y ∈ R
n s.t. (x, y, z) ∈ cl(Γ ).

For any given point (x, z) ∈ Γ
′

, z 6= 0, let y ∈ R
n be defined as follows:

yi = max{zl1i , xi − (1 − z)u0
i }, ∀i ∈ J1 and yi = min{zu1

i , xi − (1 − z)l0i }, ∀i ∈ J2.

One can see that ∃S ⊂ {1, 2, ..., n} such that hS(x
z
) = y

z
. Having zqS (x/z) = zf (hS(x/z)) ≤ 0

in Γ
′

, we deduce that zf(y/z) ≤ 0. All other constraints in Γ are satisfied by definition,
leading to (x, y, z) ∈ Γ . Now consider the remaining points (x, 0) ∈ cl(Γ

′

). There exists a
sequence of points (xk, zk) ∈ Γ

′

such that limk→∞(xk, zk) = (x, 0). Defining yk = y ∀k ∈ N,
we immediatly get (xk, yk, zk) ∈ Γ and limk→∞(xk, yk, zk) = (x, y, 0). This proves that
(x, y, 0) ∈ cl(Γ ).

2. We show that (x, y, z) ∈ cl(Γ ) ⇒ (x, z) ∈ cl(Γ
′

).

Let (x, y, z) be a point in Γ (z 6= 0). By definition of Γ and functions hS(x), we have
∀S ⊂ {1, 2, ..., n}

yi

z
≥ max{l1i ,

xi

z
−

(1 − z)u0
i

z
} ≥ (hS(x/z))i, ∀i ∈ J1

and
yi

z
≤ min{u1

i ,
xi

z
−

(1 − z)l0i
z

} ≤ (hS(x/z))i, ∀i ∈ J2.

f being an order preserving function one has zf(hS(x/z)) ≤ zf(y/z) ≤ 0, ∀S ⊂ {1, 2, ..., n}.
Finally, notice that the constraint zl1 + (1 − z)l0 ≤ x ≤ zu1 + (1 − z)u0 is obtained by
composing the last two constraints defining set Γ .

The extention to the closure is trivial.

This theorem gives a new formulation that can be also used to explicitly write conv (Γ0 ∪ Γ1)
in (3). This formulation has the advantage that no additional variable is introduced. However, it
has an exponential number of nonlinear constraints, up to (|K|.(2n − 1)). In the next corollary,
we show that adding only one nonlinear constraint for each ”on/off” constraint is sufficient to
have a valid formulation for our MINLP problem (2).
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Corollary 1 Let:

f : E → R, E ⊆ R
n, be an order preserving closed convex function,

J1(resp. J2) be the set of indexes on wich f is independently increasing (resp. decreasing),

Γ0 = { (x, z) ∈ R
n × B : z = 0, l0i ≤ xi ≤ u0

i , ∀i ∈ {1, 2, ..., n} },

Γ1 = { (x, z) ∈ R
n × B : z = 1, f(x) ≤ 0, l1i ≤ xi ≤ u1

i , ∀i ∈ {1, 2, ..., n} }, non empty, then:

1. Γ
′′

is a valid convex relaxation for conv(Γ0 ∪ Γ1)

2. {(x, z) ∈ R
n × B : (x, z) ∈ Γ

′′

} ≡ Γ0 ∪ Γ1

where Γ
′′

=



























(x, z) ∈ R
n+1 :

z(cl q′) (x/z) ≤ 0, s.t.:

zl1i + (1 − z)l0i ≤ xi ≤ zu1
i + (1 − z)u0

i , ∀i ∈ {1, 2, ..., n},

0 ≤ z ≤ 1.



























,

avec q′ = (f ◦ h∅) , h∅(R
n → R

n) defined as (h∅(y))i =

{

yi −
(1−z)u0

i

z
∀i ∈ J1,

yi −
(1−z)l0i

z
∀i ∈ J2.

Proof 1. cl(Γ ′′) is a valid convex relaxation of conv(Γ0 ∪ Γ1) since it only contains a subset of

the constraints defining the convex hull in Theorem 2.

2. For z = 1, one can check that Γ ′′ ≡ Γ1. For z = 0, since Γ ′′ is a valid convex relaxation of

(Γ0∪Γ1), (Γ0∪Γ1) ⊆ Γ ′′. Therefore intersecting with {(x, z) : z = 0} gives (Γ0∪Γ1)∩{(x, z) :

z = 0} = Γ0 ⊆ Γ ′′ ∩ {(x, z) : z = 0}. On the other hand, by definition of Γ ′′, when z = 0, all

the constraints of Γ0 are satisfied in Γ ′′, that is Γ ′′ ∩ {(x, z) : z = 0} ⊆ Γ0.

Connections to earlier works: theory Balas [4,5] was the first to introduce the explicit algebraic
formulation of convex hulls of union of polyhedra in higher dimensional spaces. Generalizations
and extensions have been established for unions of nonlinear convex sets [8,13,17]. More specific
cases have been studied, in particular, Günlük and Linderoth [14] have entirely characterized
the convex hull of the union of a point and a convex set in the space of original variables. We
show that this characterisation is a sepcial case of Lemma 1, it is actually obtained by fixing
l0 = u0 = 0 in the lemma’s definition:

conv(Γ0 ∪ Γ1) =







































(x, y, z) ∈ R
2n+1 :

z(cl f) (y/z) ≤ 0,

x ≤ y ≤ x,

zl1 ≤ y ≤ zu1,

0 < z ≤ 1.







































≡



























(x, z) ∈ R
n+1 :

z(cl f) (x/z) ≤ 0,

zl1 ≤ x ≤ zu1,

0 ≤ z ≤ 1.



























.
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which corresponds exactly to the result established in [14].

The fact that all the formulations we have introduced include topological closures of sets
presents some technical issues. Practically speaking, when implementing the perspective mapping
of f , one must find a way to bypass the division by zero. A first alternative is to use cutting
planes methods. Instead of explicitly writing the convex hull formulas in a mathematical program,
valid cuts are generated to strengthen the formulation (see [8,17,12] for more details). A second
alternative proposed in [13,16,10], is to approximate the functions by adding epsilons to the
corresponding constraints, avoiding therefore divisions by zero. In this work, our goal being
to write exact convex formulations of ”on/off” MINLPs, we show in Section 3 that, for our
application of interest, these difficulties can be avoided while still guaranteeing exact convex
MINLP models. In the next section, we introduce our main application and use the results
shown in this section in order to improve existing formulations.

3 Application: The Delay Constrained Routing Problem

In this section, we study an application occuring in Telecommunications, first introduced by
Ben Ameur and Ouorou [3]. Modern telecommunication services include group-based real-time
applications, such as online games and video conferencing which are very sensitive to transmission
delays. These types of applications require consideration of both source-to-destination delay
(i.e., packet delay from the source to all destinations) and inter-destination delay variation (i.e.,
the difference in packet delay from the source to different destinations) constraints. Commonly,
routing problems are studied under mean end-to-end delay constraints. This approach is not
appropriate when dealing with these new services since it ignores the heterogeneous nature of
real worl networks. The models we consider take into account a delay for each type of commodity
as well as a limit on the authorized number of active paths per commodity. Assuming that the
transmission delay through a link depends on its capacity as well as on the traffic carried through,
we next show how delay constraints can be integrated into routing problems. This application
can be formulated by a mixed integer non-linear program including ”on/off” constraints fitting
perfectly into our hypotheses. We note that the model introduced in [3] is a particular case of
ours, where the number of authorized paths is equal to one (mono-routing).

3.1 Mathematical models

Notations 1 Let G be a finite oriented network,

1. Parameters:
– V represents the set of vertices, E the set of arcs and K the set of com-

modities.
– dk denotes the kth commodity, vk ∈ R the quantity that need to be routed

and αk the delay guaranty corresponding to this demand, αk ∈ R.
– Each commodity has a set of candidate paths denoted by P (k) = {P 1

k , P 2
k ,

..., Pnk

k }, each one of these corresponding to a different routing for dk. N
represents the maximum authorized number of activated paths per demand.

– For each arc e, ce ∈ R represents its capacity and we ∈ R its cost.
2. Variables:
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– We call φi
k the fraction of the kth demand carried out by its ith path, φi

k ∈
[0, 1].

– zi
k constitutes the binary variables indicating if path P i

k is activated.
– xe denotes the total amount of flow crossing over arc e, xe ∈ R.

Initial mathematical model (P): The objective function (5) is to minimize the total routing cost
on all used links. For any commodity k, in (6) the fraction of routed demand must be greater
than 1 in order to guarantee the satisfaction of all demands. Constraints (7) define the variables
xe on each arc as the sum of all the flows passing through e. In (8), xe is bounded by the capac-
ity installed on the link. (9) represent the main ”on/off” delay constraints: the delay guarantee
associated to a given commodity must be satisfied on its candidate path if and only if the latter
is activated. As mentioned above, this model allows to fix a maximum number of active paths
per commodity. This is established in (10). In (11), we link the indicator variables zi

k to the φi
k

variables. Finally, bounds on all variables are introduced in (12-14). Let us point out the fact
that if N = 1, that is if only one path can be activated per commodity (i.e. mono-routing), the
variables φi

k becomes redundant and can be replaced by the zi
k variables. Ben Ameur and Ouorou

showed in [3] that as soon as one considers two candidate paths per commodity, the underlying
feasibility problem (ignoring the objective function) is NP-complete.

min
∑

e∈E

wexe (5)

nk
∑

i=1

φi
k ≥ 1, ∀k ∈ K (6)

∑

k∈K

∑

P i
k
∋l

φi
kvk ≤ xe, ∀e ∈ E (7)

xe ≤ ce, ∀e ∈ E (8)
∑

e∈P i
k

1

ce − xe

≤ αk, ∀k ∈ K, ∀P i
k ∈ P (k) if zi

k = 1 (9)

∑

P i
k
∈P (k)

zi
k ≤ N, ∀k ∈ K (10)

φi
k ≤ zi

k, ∀k ∈ K, ∀P i
k ∈ P (k) (11)

zi
k ∈ {0, 1}, ∀k ∈ K, ∀P i

k ∈ P (k) (12)

φi
k ∈ [0, 1], ∀k ∈ K, ∀P i

k ∈ P (k) (13)

xe ∈ R, ∀e ∈ E. (14)

This model is obviously non convex due to the presence of ”on/off” constraints in (9). We
will next introduce four different convex models equivalent to (3) having different continuous
relaxations.

Big-M relaxation: (PbigM ) A classical convex relaxation of constraint (9) is the big-M relaxation:
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min
∑

e∈E

wexe

s.t. (6), (7), (8), (10), (11) and (12 − 14)
∑

e∈P i
k

1
ce−xe

≤ M − zi
k(M − αk), ∀k ∈ K, ∀P i

k ∈ P (k). (9-a)

This formulation is exact if zi
k is a binary variable and provided that constant M is big enough.

When zi
k = 0, the constraint (9-a) is redundant, due to the big-M quantity on the right side,

when zi
k = 1, the big-M disappears leading to the original delay constraint formula. Since the

the quality of the bound corresponding to this formulation depends on the constant M, one has
to compute it efficently. Ben Ameur and Ouorou [3] pointed out the fact that the flow on a given
arc e always admits an upper bound ue verifying ue < ce. If a link e is used in an activated path
P i

k, then one can write 1
ce−xe

≤ αk −
∑

e′ 6=e
1

ce′
. On the other hand, if the arc is not used at

all, the corresponding delay remains lower than 1
ce

. Based on these observations, one can easily
deduce an upper bound αe for the delay on each arc and therefore obtain an upper bound on the
total delay generated on any given path. In other words, the big M constant can be replaced by
αi

k =
∑

e∈P i
k
αe. Indeed, by definition, constraints

∑

e∈P i
k

1
ce−xe

≤
∑

e∈P i
k
αe ∀k ∈ K, ∀P i

k ∈ P (k)

will always be satisfied.
Next, we introduce new formulations to this model, based on results established in Section 2. To
every path P i

k corresponds a delay constraint (9) in (P ) that is written: f (i,k)(x) ≤ 0 if zi
k = 1,

with f (i,k) : R
n → R, f (i,k)(x) =

∑

e∈P i
k

1
ce−xe

− αk. The f (i,k) functions being closed convex

functions, Lemma 1 can directly be applied leading to the following corollary.

Corollary 2 Let:

f : R
n
+ → R, f(x) =

n
∑

i=1

(

1
ci−xi

)

− b, b ≥ 0.

Γ0 = { (x, z) ∈ R
n × B : z = 0, 0 ≤ xi ≤ ui, ∀i ∈ {1, 2, ..., n} },

Γ1 = { (x, z) ∈ R
n × B : z = 1, f(x) ≤ 0, li ≤ xi ≤ ui, ∀i ∈ {1, 2, ..., n} }, non empty, then:

conv (Γ0 ∪ Γ1) = {(x, z) | ∃y ∈ R
n, s.t. (x, y, z) ∈ cl(Γ )},

where Γ =



















































(x, y, z) ∈ R
2n+1 :

n
∑

i=1

(

z2

zci−yi

)

− zb ≤ 0,

xi − (1 − z)ui ≤ yi ≤ xi, ∀i ∈ {1, 2, ..., n},

zli ≤ yi ≤ zui, ∀i ∈ {1, 2, ..., n},

0 < z ≤ 1.



















































Proof f being a closed convex function, Lemma 1 applies, the above statement is obtained by

replacing function f by its explicit expression.
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As discussed previously, one can see that the nonlinear functions are undefined when zi
k = 0.

In the following proposition, we suggest a new valid relaxation of the convex hull which overcomes
this issue while still being exact for zi

k ∈ {0, 1}.

Proposition 1 Let:

f : R
n
+ → R, f(x) =

n
∑

i=1

(

1
ci−xi

)

− b, b ≥ 0.

Γ0 = { (x, z) ∈ R
n × B : z = 0, 0 ≤ xi ≤ ui < ci, ∀i ∈ {1, 2, ..., n} },

Γ1 = { (x, z) ∈ R
n × B : z = 1, f(x) ≤ 0, li ≤ xi ≤ ui, ∀i ∈ {1, 2, ..., n} }, non empty, and

Γ ǫ =















































(x, y, z) ∈ R
2n+1 :

n
∑

i=1

(

z2

zci−yi+(1−z)ǫ

)

− zb ≤ 0,

xi − (1 − z)ui ≤ yi ≤ xi, ∀i ∈ {1, 2, ..., n},

zli ≤ yi ≤ zui, ∀i ∈ {1, 2, ..., n},

0 ≤ z ≤ 1.















































, then

1. proj(x,z)(Γ
ǫ) is a valid convex relaxation for conv(Γ0 ∪ Γ1)

2. {(x, z) ∈ R
n × B : (x, z) ∈ proj(x,z)(Γ

ǫ)} ≡ Γ0 ∪ Γ1

Proof First, we show that all constraints of Γ ǫ are convex, next we prove that the projection of

the latter on the (x, z)-space contains both Γ0 and Γ1.

The only nonlinear constraint in Γ ǫ is g(y, z) ≤ 0 with g(y, z) =
∑n

i=1 gi(yi, z)−b and gi(yi, z) =
z2

zci−yi+(1−z)ǫ . The Hessian matrix of gi is:

H(gi) =





2(yi−ǫ)2

(z(ci−ǫ)−(yi−ǫ))3
−2z(yi−ǫ)

(z(ci−ǫ)−(yi−ǫ))3

−2z(yi−ǫ)
(z(ci−ǫ)−(yi−ǫ))3

2z2

(z(ci−ǫ)−(yi−ǫ))3



.

Having yi ≤ zui ≤ zci + (1 − z)ǫ, ∀i ∈ {1, .., n}, one can check that H is positive semidefinite,

that is the gi functions are all convex, g being a sum of convex functions is therefore convex. On

the other hand, having z2

zci−yi+(1−z)ǫ ≤ z2

zci−yi
, the validity of these constraints is preserved.

Let us now consider the projection of Γ ǫ on the (x, z) space:

For z = 0 we have

Γ ǫ =















(x, y, 0) ∈ R
2n+1 :

xi ≤ ui, yi = 0, ∀i ∈ {1, 2, ..., n},

xi ≥ yi, ∀i ∈ {1, 2, ..., n},















,

in this case proj(x,z)(Γ
ǫ) = Γ0.
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For z = 1 we have

Γ ǫ =



























(x, y, 1) ∈ R
2n+1 :

n
∑

i=1

(

1
ci−yi

)

− b ≤ 0,

xi = yi, li ≤ yi ≤ ui, ∀i ∈ {1, 2, ..., n}



























,

in this case proj(x,z)(Γ
ǫ) = Γ1.

Based on this proposition, we introduce a new convex MINLP equivalent to (P) wich gives a
tighter continuous relaxation than the Big-M model.

Reduced convex hull relaxation model: (Pred) We replace constraints (9) by the convex relaxations
defined in Proposition 1:

min
∑

e∈E

wexe

s.t. (6), (7), (8), (10), (11) and (12 − 14)

∑

e∈P i
k

(

zi
k

2

zi
k
ce−y

(i,k)
e +(1−zi

k
)ǫ

)

− zi
kαk ≤ 0, ∀k ∈ K, ∀P i

k ∈ P (k) (9-b)

xe − (1 − zi
k)ue ≤ y

(i,k)
e ≤ xe, ∀k ∈ K, ∀P i

k ∈ P (k), ∀e ∈ P i
k.

zi
kle ≤ y

(i,k)
e ≤ zi

kue, ∀k ∈ K, ∀P i
k ∈ P (k), ∀e ∈ P i

k.

Let Nbmax be the maximum number of candidate paths per commodity, up to |E| × |K| ×
Nbmax variables can be added in this new model. While bounds corresponding to this model
might be tighter than those obtained with the big-M formulation, this relaxation may be difficult
to solve due to the large number of additional variables. The bellow corollary represents a first
step toward a tight model defined in the space of original variables.

Corollary 3 Let:

f : R
n
+ → R, f(x) =

n
∑

i=1

(

1
ci−xi

)

− b, b ≥ 0.

Γ0 = { (x, z) ∈ R
n × B : z = 0, 0 ≤ xi ≤ ui < ci, ∀i ∈ {1, 2, ..., n} },

Γ1 = { (x, z) ∈ R
n × B : z = 1, f(x) ≤ 0, li ≤ xi ≤ ui, ∀i ∈ {1, 2, ..., n} }, non empty, and

Γ ǫ
r =



































(x, z) ∈ R
n+1 :

n
∑

i=1

(

z2

zci−xi+(1−z)(ui+ǫ)

)

− zb ≤ 0,

zli ≤ xi ≤ ui, ∀i ∈ {1, 2, ..., n},

0 ≤ z ≤ 1.



































, then :
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1. Γ ǫ

r
is a valid convex relaxation for conv(Γ0 ∪ Γ1)

2. {(x, z) ∈ R
n × B : (x, z) ∈ Γ ǫ

r
} ≡ Γ0 ∪ Γ1

Proof f being an order preserving closed convex function, Corollary 1 applies leading to the fol-

lowing constraints:
∑n

i=1

(

z2

zci−xi+(1−z)ui

)

− zb ≤ 0. Having z2

zci−xi+(1−z)(ui+ǫ) ≤ z2

zci−xi+(1−z)ui

guarantees the validity of these new constraints, convexity is also maintained since one can re-
place (ui + ǫ) with vi leading to the initial constraints definition. Replacing z in Γ ǫ

r respectively
by 0 and 1, one can check that the resulting sets are respectively Γ0 and Γ1.

Projected convex hull relaxation model: (Pproj) We replace constraints (9) by the convex relax-
ations defined in the previous corollary:

min
∑

e∈E

wexe

s.t. (6), (7), (8), (10), (11) and (12 − 14)

∑

e∈P i
k

(

zi
k

2

zi
k
ce−xe+(1−zi

k
)(ue+ǫ)

)

− zi
kαk ≤ 0, ∀k ∈ K, ∀P i

k ∈ P (k) (9-c)

0 ≤ xe ≤ ue, ∀l ∈ E.

In Corollary 1, we decide to add only one nonlinear constraint in the formulation, knowing that
an exponentinal number of nonlinear constraints can be generated (see Theorem 2). In our com-
putationnal testing, we noticed that adding only this specific nonlinear constraint is sufficient to
have good bounds for the considered MINLP, and that generating some of the other nonlinear
constraints only slows down the nonlinear relaxation algorithm.

Finally, below, we present a model based on the state of the art formulations of convex hulls
in disjunctive programming, found in [8,13,17].

Higher space convex hull relaxation model: (Phigh) This formulation uses directly the theorem
introduced in [8] without taking into account results of Lemma 1.

min
∑

e∈E

wexe

s.t. (6), (7), (8), (10), (11) and (12 − 14)

∑

e∈P i
k

(

zi
k

2

zi
k
ce−λ

(1,i,k)
e

)

− zi
kαk ≤ 0, ∀k ∈ K, ∀P i

k ∈ P (k).

xe = λ
(0,i,k)
e + λ

(1,i,k)
e , ∀k ∈ K, ∀P i

k ∈ P (k), ∀e ∈ P i
k.

0 ≤ λ
(0,i,k)
e ≤ (1 − zi

k)u0
e, ∀k ∈ K, ∀P i

k ∈ P (k), ∀e ∈ P i
k.

0 ≤ λ
(1,i,k)
e ≤ zi

ku1
e, ∀k ∈ K, ∀P i

k ∈ P (k), ∀e ∈ P i
k.

In the next subsection the four models are compared on real world networks in order to
evaluate the efficiency of each.
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Connections to earlier works: application Ben Ameur and Ouorou [3] have introduced the fol-
lowing convex reformulation of the ”on/off” delay constraint:

∑

e∈P i
k

(

zi
k

2

ce − xe

)

− zi
kαk ≤ 0, ∀k ∈ K, ∀P i

k ∈ P (k). (15)

In proposition 2 we show that constraint (9-c) introduced in (Pproj) dominates (15).

Proposition 2 Constraint (9-c) dominates constraint (15).

Proof Constraints (9-c) dominates constraints (15) if and only if
∑

e∈P i
k

(

zi
k

2

ce−xe

)

− zi
kαk ≤

∑

e∈P i
k

(

zi
k

2

zi
k
ce−xe+(1−zi

k
)(ue+ǫ)

)

− zi
kαk, ∀k ∈ K, ∀P i

k ∈ P (k).

By definition of ue, ∀e ∈ E, one can write:

ue + ǫ ≤ ce ⇒ ue + ǫ − ce ≤ 0 ⇒ zi
k

2
(1 − zi

k)(ue + ǫ) − zi
k

2
(1 − zi

k)ce ≤ 0

⇒ zi
k

2
(1−zi

k)(ue +ǫ)−zi
k

2
ce +zi

k

3
ce ≤ 0 ⇒ zi

k

2
(1−zi

k)(ue +ǫ)−zi
k

2
ce +zi

k

3
ce +zi

k

2
xe−zi

k

2
xe ≤ 0

⇒ zi
k

2
(zi

kce − xe + (1 − zi
k)(ue + ǫ)) − zi

k

2
(ce − xe) ≤ 0 ⇒ zi

k

2

(ce−xe) −
zi

k

2

(zi
k
ce−xe+(1−zi

k
)(ue+ǫ))

≤ 0

⇒ zi
k

2

(ce−xe) ≤ zi
k

2

(zi
k
ce−xe+(1−zi

k
)(ue+ǫ))

, ∀e ∈ E ⇒
∑

e∈P i
k

(

zi
k

2

ce−xe

)

≤
∑

e∈P i
k

(

zi
k

2

zi
k
ce−xe+(1−zi

k
)(ui+ǫ)

)

⇒
∑

e∈P i
k

(

zi
k

2

ce−xe

)

− zi
kαk ≤

∑

e∈P i
k

(

zi
k

2

zi
k
ce−xe+(1−zi

k
)(ui+ǫ)

)

− zi
kαk.

4 Computational testings

We compare the four models presented in Section 3 on real world networks (denoted rdatax)
as well as on randomly generated networks (denoted adatax), with up to 100 vertices and 1000
commodities. All models are implemented in C++ and solved with Bonmin (release 1.1.3) [6]
an open source convex MINLP solver (see http://www.coin-or.org/Bonmin). The time limit
for Bonmin is set to 2 hours. The underlying MILP solver used is CBC [11] and the nonlinear
programming solver is Ipopt [18]. All tests were performed on an Intel Xeon 1.6 Ghz CPU.
Bonmin offers the possibility to choose one of five solution algorithms: a nonlinear programming
based Branch & Bound [9], an Outer Approximation decomposition [10], and three branch-and-
cut algorithms based on the Quessada Grossmann algorithm [16], a vanilla implementation of
this algorithm, a hybrid method including a preliminary phase of Outer Approximation De-
composition and periodically adding outer approximation cuts, and finally, a method based on
adding Extended Cutting Plane cuts [19] (similar to the method proposed in [1]). Here we report
results obtained with the hybrid method since it appeared to be consistently better than the
others (with all four models) in preliminary experiments. In the following tables, we compare the
computing time to optimality and the number of nodes developped in the branch and bound with
the four models, results are reported in tables with the following form: (cpu time ; number
of nodes). If optimality is not reached within the time limit, the gap between the current best
integer feasible solution and the continuous relaxation is displayed inside brackets, ∞ indicates

http://www.coin-or.org/Bonmin
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Table 1 Mono-routing analysis, 2 paths per commodity

|V | |E| |K| PbigM Pproj Phigh Pred

rdata1 60 280 100 (0.4 ; 0) (0.4 ; 0) (35 ; 0) (2 ; 0)
rdata2 61 148 122 (190 ; 5193) (155 ; 1012) (2997 ; 21312) (1948 ; 15129)
adata3 100 600 200 (144 ; 335) (57 ; 0) (206 ; 556) (159 ; 84 )
rdata4 34 160 946 (3 ; 0) (3 ; 0) (2040 ; 11691) (1485 ; 5845)
rdata5 67 170 761 ([∞] ; 14788) (251 ; 3357) (1549 ; 2793) ([0.03%] ; 15697)
adata6 100 800 500 (1065 ; 27991) (1470 ; 42244) ([1%] ; 6831) ([0.3%] ; 2499)

Table 2 Mono-routing analysis, 3 paths per commodity.

|V | |E| |K| PbigM Pproj Phigh Pred

rdata1 60 280 100 (2.7 ; 0) (2.4 ; 0) (2.8 ; 0) (11.9 ; 0)
rdata2 61 148 122 (25 ; 0) (13 ; 0) (994 ; 3671) (1396; 7815)
adata3 100 600 200 ([0.28%] ; 157748) (344; 5097) (722 ; 3286) (312 ; 1124)
rdata4 34 160 946 ([0.001%] ; 79807) (1525 ; 50583) ([0.04%] ; 28876) ([0.1%] ; 22438)
rdata5 67 170 761 ([0.43%] ; 138618) ([0.03%] ; 202122) ([0.2%] ; 9472) ([0.14%] ; 9461)
adata6 100 800 500 ([0.006%] ; 176413) (934 ; 19351) ([0.6%] ; 16539) ([0.06%] ; 4067)

Table 3 mono-routing analysis, 10 paths per commodity.

|V | |E| |K| PbigM Pproj Phigh Pred

rdata1 60 280 100 (568 ; 13649) (231 ; 4762) (1415 ; 9263) (1209 ; 6485)
rdata2 61 148 122 (120 ; 0) (66 ; 0) (1527 ; 1599) (1555 ; 2563)
adata3 100 600 200 (534 ; 5118) (644 ; 14216) (4866 ; 8841) (6684 ; 11626)
rdata4 34 160 946 ([1.9%] ; 79807) ([2.1%] ; 96212) ([∞] ; 3409) ([1.8%] ; 3156)
rdata5 67 170 761 ([∞] ; 37446) ([∞] ; 30500) ([∞] ; 747) ([∞] ; 1568)
adata6 100 800 500 ([2.7%] ; 35520) ([1.5%] ; 2680) ([∞] ; 2642) ([∞];1001)

that no integer feasible solution has been found after two hours of computing times. For each
instance, the best computing time or the smallest gap is listed in bold characters.
In the following tables, we report results obtained for different networks and different parameters
using the hybrid algorithm in Bonmin. In tables 1, 2 and 3, we consider the case when N = 1,
that is only one path per commodity can be activated at a time (mono-routing problems). The
number of candidate paths per commodity is set to 2, 3 and 10 respectively in tables 1, 2 and 3.

First, let us point out the fact that having zero node explored in the Branch & Bound means
that the problem has been solved during the Outer Approximation Decomposition [10] initial
phase of the hybrid algorithm (it means in no case that the initial continuous relaxation is integer
feasible). The main observation is that the model based on the projected convex hull Pproj gives
the best performance on these instances. Pproj solves 14 instances out of 18 while PbigM , Phigh

and Pred solve respectively 10, 11 and 10 instances. If we consider geometric means, Pproj is
2.1 times faster than PbigM , 6.7 times faster than Phigh and 6.3 times faster than Pred. The
advantage in terms of number of nodes is comparable. If we look only at the four problems which
are solved by Pproj but not solved by PbigM , Pproj is at least one order of magnitude faster than
PbigM with at least 5 times less nodes to reach optimality (it is at least 5.45 and 7.17 times faster
that Phigh and Pred). One can conclude that even if Phigh and Pred provide better continuous
relaxations and usualy require less nodes, they remain slower due to the increased number of
variables. Problem adata3 in Table 2 gives a good illustration of this: one can see that optimality
is reached with Pred in only 1124 nodes, where the Big-M model explored 157748 nodes without
reaching the optimum. However, Phigh and Pred often remain slower to solve since they have an
important number of additional variables. On the same problem, the continuous relaxation of
Pred is solved in 3.5 secs while for PbigM it takes only 0.5 secs. The projected model Pproj is
able to give bounds almost as tight as the extended formulations, without having to deal with
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Table 4 Bi-routing analysis, 2 paths per commodity.

|V | |E| |K| PbigM Pproj

rdata1 60 280 100 (0.8 ; 0) (0.4 ; 0)
rdata2 61 148 122 (2.4 ; 0) (10.9 ; 0)
adata3 100 600 200 (47.6 ; 0) (4.7 ; 0)
rdata4 34 160 946 (5.6 ; 0) (3.4 ; 0)
rdata5 67 170 761 (38.3 ; 0) (50.4 ; 0)
adata6 100 800 500 (40.1 ; 0) (42.4 ; 0)

Table 5 Bi-routing analysis, 3 paths per commodity.

|V | |E| |K| PbigM Pproj

rdata1 60 280 100 (16.7 ; 0) (2.9 ; 0)
rdata2 61 148 122 (129.2 ; 18) (59 ; 0)
adata3 100 600 200 (291.5 ; 760) (171.3 ; 615)
rdata4 34 160 946 (154.9 ; 62) (343.8 ; 472)
rdata5 67 170 761 ([0.15%] ; 91430) (609.1 ; 5290)
adata6 100 800 500 (1579.8 ; 8176) (747.7 ; 7056)

Table 6 Bi-routing analysis, 10 paths per commodity.

|V | |E| |K| PbigM Pproj

rdata1 60 280 100 (1909 ; 56788) (399 ; 7846)
rdata2 61 148 122 (28.8 ; 0) (288.8 ; 666)
adata3 100 600 200 ([0.11%] ; 67705) ([0.13%] ; 77129)
rdata4 34 160 946 ([1.2%] ; 23984) ([0.6%] ; 32939)
rdata5 67 170 761 ([2%] ; 11772) ([1.2%] ; 16285)
adata6 100 800 500 ([0.7%] ; 6480) ([0.14%] ; 22364)

the inconvenience of large size problems (still on the same instance the continuous relaxation of
Pproj is solved in 0.9 secs).
We now consider the bi-routing case, maximum two paths can be activated per commodity, in
order to route fractions of the demand (N = 2).
From previous results on the mono-routing case, it appears clearly that Pproj is consistently better
than Phigh and Pred for all instances but one where they are equivalent. Furthermore, since the
bi-routing and the multiple-routing case involve adding new variables corresponding to fractions
of demands (φi

k), these high dimensional relaxations would be even larger and more difficult to
solve in these cases. For this reason, Phigh and Pred were not implemented in the remaining of
the experiments. Tables 4, 5 and 6 reports results obtained for instances with respectively 2, 3
and 10 paths per commodity.

First, we note that bi-routing problems seem in general easier to solve than their mono-routing
counterparts. For these problems PbigM and Pproj solved respectively 13 and 14 instances. In-
stances having 2 paths per commodity seem very easy to solve (they are all solved in less than
one minute with both formulations) and instances with 3 path seem much easier than before.
On average Pproj is still faster than PbigM taking about 1761 secs versus 2235 secs.
We finally consider the multiple-routing case where all the paths in P (k) can be activated
(N = ∞). Tables 7 and 8 reports respectively results obtained for instances with 3 and 10
paths per commodity (instances with 2 paths are similar in the bi-routing and multi-routing
cases).

Multi-routing problems bring the same observations as the bi-routing case. For these prob-
lems PbigM and Pproj solved respectively 8 and 11 instances out of 12. Now, all instances with
3 paths per commodity seem quite easy to solve with both formulations. On average, for all
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Table 7 Multiple-routing analysis, 3 paths per commodity.

|V | |E| |K| PbigM Pproj

rdata1 60 280 100 (2.7 ; 0) (1.2 ; 0)
rdata2 61 148 122 (10 ; 0) (29.7 ; 0)
adata3 100 600 200 (195.7 ; 164) (50.5 ; 0)
rdata4 34 160 946 (20.7 ; 0) (43 ; 0)
rdata5 67 170 761 (2503.1 ; 34783) (362.8 ; 4024)
adata6 100 800 500 (1482.4 ; 6083) (224.7 ; 326)

Table 8 Multiple-routing analysis, 10 paths per commodity

|V | |E| |K| PbigM Pproj

rdata1 60 280 100 (799.7 ; 12633) (220.8 ; 1922)
rdata2 61 148 122 (16.1 ; 0) (24.8 ; 0)
adata3 100 600 200 ([0.08%] ; 94194) (768.6 ; 5207)
rdata4 34 160 946 ([0.4%] ; 40820) ([0.04%] ; 45492)
rdata5 67 170 761 ([1.2%] ; 16106) (5467.7 ; 17347)
adata6 100 800 500 ([0.7%] ; 5880) (5392 ; 23867)

instances, Pproj takes 1649 secs while PbigM takes 2819 secs. For the instance not solved by both
formulations, Pproj final gap is about one order of magnitude smaller than the PbigM one.

5 Conclusion

Studying and writing explicit formulations of union of convex sets is a main topic in disjunctive
programming. While many works deal with finding the explicit formulation of convex hulls for
unions of general convex sets, we looked closely at specific two set cases: the union of a hyper-
rectangle and a closed convex set defined by one nonlinear constraint. On one hand, we have
established formulations in reduced dimensional spaces, on the other hand, we showed that
when the nonlinear function defining the convex set is order preserving, we can give an explicit
characterization of the convex hull in the space of original variables. Using these results, we
could propose new formulations for ”The Delay Constrained Routing Problem”, an up-to-date
telecommunication problem. Numerical testings showed that the new formulations allow to solve
new instances with gains up to one order of magnitude of computing time compared to the
classical models. Our results can be directly applied to any MINLP featuring on/off constraints,
leading to more efficient mathematical models and hopefully better computing times.

References

1. K. Abhishek, S. Leyffer, and J. T. Linderoth. FilMINT: An outer-approximation-based solver for nonlinear
mixed integer programs. Preprint ANL/MCS-P1374-0906, Mathematics and Computer Science Division,
Argonne National Laboratory, 2006.
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