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CO-INERTIA ANALYSIS AND THE LINKING OF
ECOLOGICAL DATA TABLES

STÉPHANE DRAY,1 DANIEL CHESSEL, AND JEAN THIOULOUSE

UMR CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard Lyon 1,
69622 Villeurbanne Cedex, France

Abstract. Ecological studies often require studying the common structure of a pair of
data tables. Co-inertia analysis is a multivariate method for coupling two tables. It is often
neglected by ecologists who prefer the widely used methods of redundancy analysis and
canonical correspondence analysis. We present the co-inertia criterion for measuring the
adequacy between two data sets. Co-inertia analysis is based on this criterion as are ca-
nonical correspondence analysis or canonical correlation analysis, but the latter two have
additional constraints. Co-inertia analysis is very flexible and allows many possibilities for
coupling. Co-inertia analysis is suitable for quantitative and/or qualitative or fuzzy envi-
ronmental variables. Moreover, various weighting of sites and various transformations and/
or centering of species data are available for this method. Hence, more ecological consid-
erations can be taken into account in the statistical procedures. Moreover, the principle of
this method is very general and can be easily extended to the case of distance matrices or
to the case of more than two tables. Simulated ecological data are used to compare the co-
inertia approach with other available methods.

Key words: canonical correlation analysis; canonical correspondence analysis; co-inertia anal-
ysis; multi-table analysis; ordination; redundancy analysis; statistical analysis.

INTRODUCTION

Problems in applied or theoretical ecology often deal
with the study of a pair of numerical data tables. Some
relate species traits to species composition (Ojeda et
al. 1998) or habitat utilization to species traits (Willby
et al. 2000), while others link experimental conditions
(e.g., geographic locations or date) to species com-
position (Dolédec and Chessel 1987). One of the major
tasks of ecological studies is to analyze the response
of community composition to environmental condi-
tions and this often requires the use of multivariate
analyses. Gauch (1982:1) summarizes the reasons for
this choice in a clear and concise way:

Community ecology concerns assemblages of plants
and animals living together and the environmental
and historical factors with which they interact. . . .
Community data are multivariate because each sam-
ple site is described by the abundances of a number
of species, because numerous environmental factors
affect communities, and so on. . . . The application
of multivariate analysis to community ecology is nat-
ural, routine and fruitful.

Ordination methods allow detecting the underlying
data structure, but ‘‘a major purpose is interpretation
of community relationships to environment, and not
simply the representation of numerical relationships
among samples or species in a hyperspace with a lim-
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ited number of axes’’ (Gauch and Wentworth 1976:17).
Among the available methods for this task are: canon-
ical correlation analysis (CANCOR, Hotelling 1936);
principal component analysis with instrumental vari-
ables (Rao 1964), also named ‘‘redundancy analysis’’
(RDA); co-inertia analysis (COIA, Dolédec and Ches-
sel 1994); and canonical correspondence analysis
(CCA, ter Braak 1986).

Various kinds of data such as numbers of individuals,
presence absence data, abundance indexes, biomass,
etc., can fill the species table. Environmental conditions
are recorded at each site by way of quantitative, qual-
itative, or fuzzy variables (Chevenet et al. 1994). In
addition, ecologists have learned to use various trans-
formations of environmental data as well as species
data (Noy-Meir 1973, Noy-Meir et al. 1975) before
performing multivariate analysis.

The diversity of biological questions has lead to the
study of various living creatures, implying a diversity
of data types, a diversity of numerical conditions, and
a diversity of statistical approaches. In a given situa-
tion, characterized by the properties of collected data
and the objectives of the study, the choice of the
‘‘good’’ statistical method can be very difficult for
ecologists. Unfortunately, this choice is often guided
by practical considerations such as the possibilities pro-
posed by a statistical software package, and the theo-
retical considerations concerning the characteristics of
the data and the objectives of the study are neglected.
Co-inertia analysis, which has been implemented only
in the ADE-4 software (Thioulouse et al. 1997), is
much less used than CCA (Birks et al. 1996). The var-
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ious statistical methods available for ecological studies
do not provide optimal results for all ecological situ-
ations. Now, almost 10 years after Palmer’s (1993) pa-
per in Ecology, the controversy about the choice of
methods for analysis and detrending (Wartenberg et al.
1987, Peet et al. 1988, Jackson and Somers 1991) has
nearly settled down. Indeed, RDA and CCA have be-
come the most widely used methods. The success of
CCA (more than 800 references vs. 80 references for
COIA [based on Science Citation Index, through April
2002]) is probably due to the availability of this method
in statistical packages and to the previous success of
correspondence analysis (Hill 1974). But this success
should not hide the fact that CCA is only suited to
gradient analysis (Palmer 1993) and is not always ap-
propriate for the coupling of two tables. Indeed, CCA
is very stringent and requires that the species table is
analyzed by correspondence analysis (CA) and that the
sites are weighted by their richness. These consider-
ations are not suitable for all situations.

In this paper, we present the principles of COIA,
showing the numerous possibilities available for cou-
pling two tables. The co-inertia criterion, which has
been often neglected, is presented and appears as a
central concept when analyzing a pair of tables. More-
over, we emphasize the generality of the principle of
COIA that can be extended to the case of linking more
than two tables.

A GLOBAL MEASURE OF CO-STRUCTURE

Different statistics such as Pearson correlation co-
efficient or covariance can be used to measure the re-
lation between two variables. The purpose of this sec-
tion is to define a statistic that measures the relation
between two (or more) sets of variables. Let X̃ be a
table containing the values of p environmental vari-
ables (columns) measured at n sites (rows). Each site
can be represented as a point in an ecological hyper-
space with p dimensions where each axis represents an
environmental variable. If D is the diagonal matrix (n
3 n) of site weights (D 5 diag(w1, . . . , wn)) and if Q
( p 3 p) is a metric of this hyperspace, then the inertia
of the ‘‘cloud of sites’’ around the reference point o is
simply

n n
2 2˜I 5 w \X 2 o\ 5 w \X \O O0 i i Q i i Q

i51 i51

T5 trace(XQX D). (1)

This total inertia is a global measure of the variability
of the data. It is the weighted sum of square distances
measured with Q, between the points of X̃ (n sites) and
the reference point o. If Q is the Euclidean metric and
D the diagonal matrix of uniform weights (wi 5 1/n)
and if o is the centroid of the cloud (o 5 [x̄1, . . . , x̄p]
and X is the centered-by-species table), the inertia is
simply a sum of variances.

The sites Xi can be projected on a Q-normed vector
u and the projected inertia is expressed by

T TI(u) 5 u QX DXQu.

The total inertia can be easily decomposed on a set of
p orthogonal Q-normed vectors uk:

p p

T TI 5 I(u ) 5 u QX DXQuO O0 k k k
k51 k51

p

25 \XQu \ .O k D
k51

Let Y be the species table, derived from an original
table Ỹ, with n rows (sites) and q columns (species).
In the species hyperspace, each site Yi is represented
by a point. If each site has the same weight (D 5
diag(w1, . . . , wn)) and if metric R is used in the species
hyperspace, then the inertia is

TJ 5 trace(YRY D)0

and can be decomposed as above on a set of vectors
vk.

It is not much more difficult to study the common
geometry of the two clouds. Co-inertia is a global mea-
sure of the co-structure of sites in the environmental
and species hyperspaces: it is high when the two struc-
tures vary simultaneously (and also when they vary
inversely), and low when they vary independently, or
when they do not vary. It is defined by

p q p q
TT T 2 k j 2Co-I 5 (u QX DYRv ) 5 ([X ] DY )O O O Ok j

k51 j51 k51 j51

T T5 trace(XQX DYRY D).

If the clouds are centered, then inertia is a sum of
variances and co-inertia is a sum of square covariances.

PRINCIPLES OF CO-INERTIA ANALYSIS

The co-inertia criterion measures the concordance
between two data sets, and a multivariate method based
on this statistic has been developed. Co-inertia analysis
(Chessel and Mercier 1993, Dolédec and Chessel 1994)
is a symmetric coupling method that provides a de-
composition of the co-inertia criterion on a set of or-
thogonal vectors. It is defined by the analysis of sta-
tistical triplet (Y TDX, Q, R). Different types of data
lead to different transformations (centering, normali-
zation, . . . ) of X and Y and to different metrics
(weights) Q and R. Co-inertia analysis aims to find a
vector v1 in the species space and a vector u1 in the
environmental space with maximal co-inertia. If X and
Y are centered, then co-inertia analysis (COIA) max-
imizes the square covariance between the projection of
X on u1 and the projection of Y on v1:

2 2cov (XQu , YRv ) 5 corr (XQu , YRv )1 1 1 1

3 var(XQu ) 3 var(YRv )1 1

i.e., (a) 5 (b) 3 (c) 3 (d).
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FIG. 1. Principles of co-inertia analysis (COIA). The two
ecological data tables X and Y produce two representations
of the sites in two hyperspaces. Separate analyses find axes
maximizing inertia in each hyperspace (F1 [first factorial
axis]). COIA aims to find a couple of co-inertia axes on which
the sites are projected. COIA maximizes the square covari-
ance between the projections of the sites on the co-inertia
axes.

This square covariance (a) can be easily decom-
posed, showing that COIA finds a compromise between
the correlation (b), the variance of sites in the species
viewpoint (d) and the variance of sites in the environ-
mental viewpoint (c) (Fig. 1). The second and further
pairs of vectors (u2, v2. . . ) maximize the same quantity
but are subject to extra constraints of orthogonality.
CANCOR (canonical correlation analysis), CCA (ca-
nonical correspondence analysis), and RDA (redun-
dancy analysis) also maximize the square covariance
but with additional constraints (Fig. 2) influencing the
robustness of the analysis relative to the number of
variables. CANCOR is defined by the use of two Ma-
halanobis metrics (XTDX)21 and (YTDY)21; CCA and
RDA have only one Mahalanobis metric (X TDX)21.
The Mahalanobis metric takes into account the corre-
lation in the data since it is calculated using the inverse

of the variance–covariance matrix (De Maesschalck et
al. 2000). The use of this metric adds constraints in
the analysis and its calculation implies precautions con-
cerning the dimensions of the tables when using CCA,
RDA, or CANCOR. The additional constraints are that
when COIA maximizes the square covariance, CAN-
COR maximizes the square correlation and CCA or
RDA maximizes the product of the square correlation
by the species variance, which is simply the variance
explained by the instrumental variables (sensu Rao
1964) of X. That is why CCA and RDA permit variance
partitioning (e.g., Méot et al. 1998) by using partial
ordination (Rao 1964, ter Braak 1988) to measure the
variance explained by different sets of instrumental
variables.

Co-inertia analysis is a general coupling method that
maximizes the co-inertia between the variables of two
tables. Separate tables X and Y can be analyzed by
various methods, leading to different coupling meth-
ods. Hence, Reynaud and Thioulouse (2000) perform
a correspondence analysis (CA) on Y and a multiple
correspondence analysis (MCA, Tenenhaus and Young
1985) on X and link these two analyses through COIA
(CA–MCA COIA). Various couplings have been per-
formed in ecological studies, such as PCA–PCA COIA
(Cadet and Thioulouse 1998; PCA 5 principle com-
ponent analysis) or CA–PCA COIA (Lods-Crozet et al.
2001) but many other possibilities have not yet been
used. The CA–PCA or CA–MCA COIA is very similar
to CCA and the two approaches aim to find a site score
that is a linear combination of environmental variables
maximizing the variance of species centroid (i.e., sep-
aration of species niches). The only difference is that
CCA has an additional constraint (the total variance
must be equal to 1), and must be avoided in the case
of numerous environmental variables.

COIA is very general and some existing methods
appear as special cases of it. Inter-battery analysis
(Tucker 1958) is mathematically equivalent to a PCA–
PCA COIA. The MCA–MCA COIA is equivalent to
the correspondence analysis of the Burt’s table crossing
two qualitative tables (Cazes 1980). When table X con-
tains qualitative variables and Y contains species num-
bers, it is usual to cross tables X and Y to obtain a
matrix containing the distribution of species among the
environmental variables categories. A simple CA of
this new table allows one to ordinate the species and
the environmental classes (analysis of ecological pro-
files, Romane 1972, Montana and Greig-Smith 1990).
Binary discriminant analysis (Strahler 1978), which
has been used in ecology (Del Moral 1982, Huang and
Del Moral 1988), is mathematically equivalent to Ro-
mane’s CA. Although this approach allows plotting of
species and environmental classes (Ben-Shahar 1987,
Ben-Shahar and Skinner 1988), no information about
ordination of sites is available. It is easy to demonstrate
that CA of the table of ecological profiles is a CA–
MCA COIA (Mercier et al. 1992).
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FIG. 2. Criteria maximized in canonical cor-
relation analysis, co-inertia analysis, and anal-
ysis with respect to instrumental variables. Ca-
nonical correlation analysis (CCA) requires that
there be few species and few environmental var-
iables compared to site number; analysis with
respect to instrumental variables (e.g., CCA or
RDA [redundancy analysis]) requires only that
there be few environmental variables, while
there is no constraint in the co-inertia approach.

THE FLEXIBILITY OF CO-INERTIA ANALYSIS (COIA)

As seen before, co-inertia analysis allows many cou-
plings of ecological data. The two tables can be ana-
lyzed by various analyses (e.g., CA [correspondence
analysis], centered PCA[principle component analy-
sis], normed PCA, etc.) with the only constraint that
the sites are weighted in the same way for the two
separate analyses. Hence, COIA can analyze quanti-
tative, qualitative, or even fuzzy environmental vari-
ables. For quantitative variables, the environmental ta-
ble can be analyzed by at least 10 different PCA op-
tions. In the case of qualitative variables, MCA (mul-
tiple correspondence analysis) is applied on the
environmental table. Fuzzy correspondence analysis
(FCA, Chevenet et al. 1994) is suitable for fuzzy var-
iables. Hill and Smith analysis (Hill and Smith 1976,
Kiers 1994) allows one to analyze qualitative and quan-
titative environmental variables simultaneously. All
types of environmental variables can be incorporated
in COIA and this flexibility is also available for the
species data.

The choice of the analysis for species data is decisive
for the coupling because different analyses imply dif-
ferent ecological considerations. The first element to
take into account is the shape of the species response
curve in relation to environmental variables. In the case
of unimodal response, the niche centroid (i.e., the av-
erage of environmental variables per species) is a good
summary of species distribution (ter Braak and Looman
1986). Computations of niche centroids are based on
the weighted-average principle and are computed in
table YTDX when Y has been transformed by yij /y1j 5
pi/j. This transformation is introduced when Y is ana-
lyzed by a CA, by a PCA on species profiles, or by a
nonsymmetric correspondence analysis (NSCA, Lauro
and D’ambra 1984, Gimaret-Carpentier et al. 1998a,
Kroonenberg and Lombardo 1999). The square root of

the transformation into species profiles is also the basis
of the Hellinger transformation (Legendre and Gal-
lagher 2001).

The use of CA in the instrumental variables approach
leads to CCA (canonical correspondence analysis), and
the use of PCA on species profiles in the co-inertia
approach leads to OMI analysis (outlying mean index
analysis, Dolédec et al. 2000). But other coupling pos-
sibilities exist, such as a CA of Y in the co-inertia
approach. When species response is assumed to be lin-
ear, the species–environment relation is well summa-
rized by correlation coefficients. A simple PCA on Y
can then be applied, and leads to RDA (redundancy
analysis) in the instrumental-variables approach, and
to inter-battery analysis (Tucker 1958) in the co-inertia
approach. In the case of a short gradient, methods based
on correlation coefficients or on weighted averaging
produce similar results. There are many zeroes (i.e.,
species absences) before or after the species optimum
and so linear or unimodal models can be fitted ade-
quately to species responses. If the studied gradient is
longer, there are many zeroes before and after the spe-
cies optimum. In this case, a correlation coefficient
cannot summarize the species response, and a linear
model is also inadequate.

Transformations of Y by yij /y1j 5 pi/j (species pro-
files) or by yij /yi1 5 pj/i (sites profiles) clearly has an
influence on the orientation of the study. In the table
of species profiles, species are considered as frequency
distributions among sites. As abundance values are di-
vided by species totals, the differences in global abun-
dance between species are not taken into account. The
analysis of this table is focused on the relative distri-
bution of species over the sites and aims to compare
the ecological preferences of species. This implies that
the species is the unit of interest and that the study
consists in species niche separation. Transformation of
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Y into a table of sites profiles implies that species are
considered as variables and sites as frequency distri-
butions among species. Abundances values are divided
by sites totals and so differences in species richness of
sites are removed. In this case, the site is the unit of
interest and the study is focused on the species com-
position of the site (ter Braak 1983). This approach is
able to detect changes in the relative species compo-
sition of sites, which can be linked to changes in the
environment and is suitable for biomonitoring purpos-
es. If data are not modified then the unit of interest is
the occurrence of a species in a site. The importance
of a site is proportional to its richness, and the impor-
tance of a species is proportional to its abundance.
Double profile (yij /y1jyi1) is a compromise between
sites-orientated studies and species-orientated studies
that removes the variations of richness among sites and
the variations of abundances among species. This op-
tion is used in CA, so it must be emphasized that CCA
removes the abundance effect, and the information giv-
en by species absences is not considered. When the aim
of the study is, for example, to analyze limiting factors
or pollution effects, species absence is a piece of in-
formation and CCA should not be used. Species profiles
or unmodified data allow one to take into account spe-
cies absence and thus to reveal a limiting factor. This
option is used in classical PCA (linear model) and in
species profile PCA (unimodal model) and leads to
OMI analysis (Dolédec et al. 2000) in the co-inertia
approach.

Various centerings can also be applied to table Y.
Mathematically and geometrically, and also ecologi-
cally, centering involves a point of reference for the
study. In the case of noncentered data, the point of
reference is the all-zero record—an empty site or a
species that is always absent. Information is all that
deviates from this absolute zero and study is focused
on absolute variations and not on the deviations from
a simple model.

Centering by species implies that the reference point
is a hypothetical site where the species composition is
simply the mean species composition computed for all
sites. Information is given by a site when it deviates
from this hypothetical site and a species is taken into
account if it departs from a uniform distribution over
all sites. The study is focused on composition differ-
ences between sites and species and not on absolute
composition.

Centering by site implies that the reference point is
an average species for which the abundance in a site
is a constant proportion of the species total abundance
in this site. Information is given by a species only if
its distribution differs from the distribution of the total
abundance. A site is informative if its composition de-
viates from equal proportions of all species.

All these considerations have to be taken into ac-
count and the choice must and can only be made by
ecologists.

The last element to take into account concerns
weighting of species and sites. Species and sites can
be uniformly weighted but one may wish to weight
species proportionally to their global abundances or
sites proportionally to their richness. Weighting is re-
lated to the ability of the sampling protocol to be rep-
resentative of the community. Sampling selectivity is
a reason for nonrepresentativeness and is due to the
fact that many species are rare in the sample not be-
cause they are rare in the studied area, but because the
collecting method is not efficient for capturing them
(Bayley and Peterson 2001). Hence, information given
by an abundant species is more reliable than that given
by a rare species and more weight must be assigned to
abundant species. Unequal sampling effort also intro-
duces biases in the analysis (Cao et al. 2001, 2002)
because sampling size is closely related to species rich-
ness. Species–area relationships (e.g., Soberon and
Llorente 1993) have been often studied and are a con-
sequence of two independent phenomena. The total
number of individuals increases with area, leading to
an increased probability of encountering more species
with larger areas (Palmer and White 1994). Hence, es-
timation of species richness is more reliable in a rich
site that has been more sampled than in a poor site,
and that is why sites must be weighted by their richness.
Unequal sampling effort can also affect species dif-
ferently; with a low sampling effort it is more difficult
to detect the presence of a rare species than that of an
abundant species. In that case, sites must be weighted
by their richness and species by their global abundance.

These different weighting options influence the total
inertia of the statistical triplet (Y, R, D). If we consider
the case of two diagonal matrices (D 5 diag(w1, . . . ,
wn) and R 5 diag(r1, . . . , rq)), the inertia is simply

qn
2J 5 w r y .O O0 i j i j

i51 j51

This equation shows that the total inertia can be par-
titioned into each cell of the table Y. According to the
orientation of the study and to the weighting options,
it is evident that part of inertia due to each cell of Y
will be more or less influenced by different parameters
(Table 1). Table 1 shows clearly that CA is a compro-
mise between the species-profiles NSCA and sites-pro-
files NSCA (Gimaret-Carpentier et al. 1998b). Study
of species niche differentiation by CA gives more
weight to low-species-richness-sites than species-pro-
files NSCA. Study of composition of sites by CA gives
more weight to rare species than sites-profiles NSCA.
The numerous options presented in Table 1 are good
starting point to develop new methods to analyze spe-
cies–environment relationships. For example, a cou-
pling method based on NSCA of the species table
would be more efficient with rare species or poor sites
than classical CCA based on CA (Couteron et al. 2003).
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TABLE 1. Total inertia for various situations of weighting and profiles.

Weighting†
No profile

pij

Sites profiles
pij 5 pj/ipi1

Species profiles
pij 5 pi/jp1j

Double profiles
pij

p pi1 1j

Uniform weighting
( )r 5 1, w 5 1j i

n q
2pO O ij

i51 j51

n q 2pijO O 2pi51 j51 i1

n q 2pijO O 2pi51 j51 1j

n q 2pijO O 2 2p pi51 j51 i1 1j

(PCA) (sites-profiles PCA) (species-profiles PCA)

Sites weighting
( )r 5 1, w 5 pj i i1

n q
2p pO O ij i1

i51 j51

n q 2pijO O
pi51 j51 i1

n q 2p pij i1O O 2pi51 j51 1j

n q 2pijO O 2p pi51 j51 i1 1j

(sites-profiles NSCA)

Species weighting
( )r 5 p , w 5 1j 1j i

n q
2p pO O ij 1j

i51 j51

n q 2p pij 1jO O 2pi51 j51 i1

n q 2pijO O
pi51 j51 1j

n q 2pijO O 2p pi51 j51 i1 1j

(species-profiles NSCA)

Double weighting
( )r 5 p , w 5 pj 1j i i1

n q
2p p pO O ij i1 1j

i51 j51

n q 2p pij 1jO O
pi51 j51 i1

n q 2p pij i1O O
pi51 j51 1j

n q 2pijO O
p pi51 j51 i1 1j

(CA)

Notes: In order to simplify the equations, we consider uniform weights equal to 1 (in the place of 1/n and 1/p), and the
table of abundance values has been divided by its total . Information in parentheses(p 5 y /y ); p 5 y /y , p 5 y /yij ij 11 i1 i1 11 1j 1j 11

is the name of the statistical method based on the profile/weighting option directly above it; if there is no information in
parentheses it means that no existing method is based on this profile/weighting option. CA 5 correspondence analysis, PCA
5 principle-component analysis, and NSCA 5 nonsymmetric correspondence analysis.

† For weightings, rj is the weight associated to species j, and wi is the weight associated to site i.

EXTENSIONS OF CO-INERTIA ANALYSIS

The concept of co-inertia appears as a central part
in two-tables coupling methods, and is general enough
to be extended to other cases (Esposito Vinzi 2001). If
the use of Euclidean or chi-square distances is not sat-
isfactory, ecological distances computed on species
data may be preferred (Legendre and Anderson 1999,
Legendre and Gallagher 2001, McArdle and Anderson
2001). This strategy is also available in COIA (Fig.
3b) and distance matrices can be analyzed to improve
the ecological sense of the study (Dray et al. 2003).
Moreover, the possibility to extend the co-inertia cri-
terion to the case of more than two tables provides new
efficient tools for the ecologist (Fig. 3). For example,
RLQ analysis (Fig. 3c; Dolédec et al. 1996) is simply
the extension of co-inertia analysis to analyze the re-
lationships between species traits and environmental
variables through a species-by-sites table (Legendre et
al. 1997) (the RLQ method uses linear combination of
the variables in table R [external information about
rows] and of the variables in table Q [external infor-
mation about columns] of maximal covariance weight-
ed by data contained in table L [link table]. Dray et
al. (2002) are adapting RLQ analysis to study the re-
lationships between two data sets arising from different
sampling schemes with different sampling locations. If
the sites are partitioned, within-class or between-class
co-inertia analysis (Fig. 3f; Franquet and Chessel 1994,
Franquet et al. 1995) allows one to analyze the species–
environment relationships while taking into account
this partition. Co-inertia has also been extended to the

case of coupling k tables (k . 2), under the name of
‘‘multiple co-inertia analysis’’ (Fig. 3d; Chessel and
Hanafi 1996) to study spatio-temporal variations of
species composition. Another extension, concordance
analysis (Fig. 3e; Lafosse and Hanafi 1997) is suitable
for coupling k tables with a reference table and can be
used to study the relationships between the environ-
ment and various groups of species. Lastly, co-inertia
is useful in the case of the analysis of a series of k
pairs of tables (STATICO, Fig. 3g; Simier et al. 1999,
Thioulouse et al. 2004). The STATICO method is par-
ticularly well adapted to the study of the modifications
of species–environment relationships during several
sampling years.

APPLICATION

In this section we provide an ecological example to
illustrate the co-inertia approach. We use the program
COMPAS (Minchin 1987) to create species responses
to a two-dimensional environmental space. This pro-
gram has been used in many papers to compare the
results of different ordination methods (e.g., Austin et
al. 1995, McCune 1997). The sampling pattern was a
10 3 10 grid over the entire ecological space. Species
responses were generated for 40 species without sys-
tematic trend and noise. Species responses are sym-
metrical and parameters have been chosen as follows:
lograndom distribution of modal abundances, normal
distribution of ranges on the two gradients, and uniform
random distribution of modal coordinates on the gra-
dients. The average richness was 21 species per sam-
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FIG. 3. Some extensions based on the co-inertia criterion.
Y is a sites-by-species table, and X is a sites-by-environ-
mental-variables table. (a) Classical co-inertia analysis. (b)
Coupling an environmental table and principal coordinates
obtained by the principal coordinate analysis (PCoA) of a
distance matrix. (c) RLQ analysis to link environmental var-
iables with species traits through Y. (d) Multiple co-inertia
analysis to link k tables measuring k sets of variables for the
same sites. (e) Concordance analysis to link k tables to a
reference table. (f) Between-class or within-class co-inertia
analysis to study the species–environment relationships ac-
cording to groups of sites. (g) STATICO to link k couples of
tables.

FIG. 4. Environmental-constrained sites scores of canon-
ical correspondence analysis (CCA) (a, c, and e) and co-
inertia analysis COIA (b, d, and f) for various data sets. In
the first data set analyzed (a and b) the two environmental
variables consist of the coordinates of samples in the eco-
logical space. We add 20 random variables to the two original
ones for the second data set (c and d). For the third data set,
20 correlated variables are added to the two original ones (e
and f).

pling unit (range 6–32 species) and the b diversity for
gradient 1 was 2.42 standardized half changes (1.02 R
units) and for gradient 2, 1.71 standardized half chang-
es (0.99 R units) (see Minchin [1987] for R units]. We
performed two-dimensional ordinations of the simu-
lated data (100 sites and 40 species). Environmental
variables was orthogonal and consist of coordinates (x,
y) of the nodes of the grid in the ecological space.

Procrustean analysis (Digby and Kempton 1987) is
used to quantitatively compare the configuration of
sites given by the two environmental variables to the
configuration of sites obtained by the first two envi-
ronmental-constrained scores of ordination. We mea-
sure the fit between original data and ordination results
by m, the sum of singular values of procrustes analysis
(Jackson 1995, Dray et al. 2003). The m statistic in-
creases when the fit between the two configurations is
better.

We first perform CCA (canonical correspondence
analysis) and CA–PCA COIA (correspondence analy-

sis–principle-component analysis) on simulated data
sets. The two methods produce similar results (mCOI 5
mCCA 5 0.98) and environmental scores of sites pro-
duced by the two methods are very similar to the orig-
inal data (Fig. 4a and b). This confirms that results
obtained by CCA and CA–PCA COIA are very similar
in most cases.

We next create random environmental variables from
a random number generator with a uniform distribution
between 0 and 1. We apply CCA and CA–PCA COIA
with 22 environmental variables (the two original var-
iables and 20 random environmental variables). Al-
though the two methods are affected by this noise (Fig.
4c and d), it seems that results are better for CCA than
for COIA (mCOI 5 0.93, mCCA 5 0.97). This trend is
confirmed by the decrease of the m statistic when we
add from 1 to 40 random environmental variables (Fig.
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FIG. 5. Influence of the number (a) random and (b) cor-
related variables on the results of CCA (canonical corre-
spondence analysis) and COIA (co-inertia analysis). We mea-
sure the fit between original environmental variables and the
environmental-constrained sites scores for the first two axes
by the m statistic (sum of singular values of Procrustean anal-
ysis). The dashed lines correspond to COIA, and the solid
lines to CCA.

TABLE 2. Consistency between coefficient (Coef.) and cor-
relation (Cor.) of environmental variables with the first en-
vironmental-constrained axis of CCA and CA-PCA COIA.

Variables

CA–PCA COIA

Coef. Cor.

CCA

Coef. Cor.

Env1
Env2
Cor1
Cor2
Cor3
Cor4
Cor5
Cor6
Cor7
Cor8
Cor9

0.22
0
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22

1
0
1
1
1
1
1
1
1
1
1

21.3
0

20.5
1.37

20.55
20.22
20.04

0.9
0.87
0.92

20.36

0.99
0
0.98
0.99
0.98
0.98
0.98
0.99
0.98
0.99
0.98

Cor10
Cor11
Cor12
Cor13
Cor14
Cor15
Cor16
Cor17
Cor18
Cor19
Cor20

0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22

1
1
1
1
1
1
1
1
1
1
1

0.3
0.36
0.02

20.37
20.55
20.45
20.33
20.13

2.34
21.64

0.19

0.99
0.98
0.98
0.98
0.98
0.98
0.99
0.98
0.99
0.98
0.98

Notes: CCA 5 canonical correspondence analysis; CA 5
correspondence analysis, PCA 5 principle-component anal-
ysis, and COIA 5 co-inertia analysis. The first two original
variables are named Env1 and Env2, and the 20 variables
correlated to Env1 are named Cor1, . . . , Cor20.

5a) and is not very surprising. CCA maximizes the
proportion of variance in the species matrix that is
explained by the environmental matrix while COIA
maximizes the square covariance between the species
score and the environmental score. This difference is
due to the Mahalanobis metric of CCA, which is linked
to the underlying regression step. Adding random en-
vironmental variables implies that the multiple regres-
sion of CCA explains the species matrix better. If the
number of variables is equal to the number of sites
minus 1, the results of CCA are the same as those given
by CA of the species data because the species matrix
is fully explained by the environmental matrix. As the
simulated data are very structured, CA produces good
results (mCA 5 0.86) and so the decrease of mCCA is low
(Fig. 5a). Concerning the results of CA–PCA COIA,
adding random environmental variables increases the
total inertia of the environmental table while the struc-
tured inertia (due to the two original environmental
variables) is constant. Therefore, the structured-inertia
part decreases and the principle axes of PCA maxi-
mizing the projected variance of the sites are mostly
defined by the random variables. This has an influence
on COIA, which finds a compromise among the vari-
ance of sites in the species viewpoint, the variance of
sites in the environmental viewpoint, and the square
correlation. The random variables modify the ordina-
tion of sites in the environmental hyperspace and COIA
finds an arrangement of sites in this hyperspace that is

less correlated to the original one but with high ‘‘ran-
dom’’ variance and so high covariance.

We then create variables very correlated to the first
original environmental variables by adding a noise
(normal distribution with mean 5 0 and varying stan-
dard deviation) to this variable. We apply CCA and
CA–PCA COIA with 22 environmental variables (the
two original variables and 20 correlated environmental
variables). In this case, COIA is not affected by the
new correlated variables (Fig. 4f, mCOI 5 0.98) whereas
CCA results are affected (Fig. 4e, mCCA 5 0.97). This
trend is confirmed when we add from 1 to 40 correlated
environmental variables (Fig. 5b). In that case, the
structured-inertia part of the environmental table does
not change and so the results of COIA are very stable.
For CCA, the same problem appears: the number of
variables increases, the species table is better ex-
plained, and results lead to those of CA. However, the
problem of collinearity, which is well known in the
case of multivariate linear regression (e.g., Legendre
and Legendre 1998:518–521), is also present in CCA.
The collinearity among environmental variables im-
plies instability for coefficients of environmental var-
iables used to construct axes and the ecological inter-
pretation of biplot is then very dubious (Table 2). In
this case, it is very important to observe the consistency
(same sign and similarity of values) between coefficient
of environmental variables and correlation of these var-
iables with axes (ter Braak 1990, ter Braak and Looman
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FIG. 6. Ability of the four methods to detect a pollution effect (decrease of abundances of all species in 30 sites). Species-
constrained sites scores are presented (without numeric scales, since it is the shape of the cloud of points that is of interest);
polluted sites are represented by solid black circles.

1994). COIA is not affected by collinearity and the
consistency between correlation and coefficient is very
good (Table 2), but this is not case for CCA, which
produces results difficult to interpret. Indeed, there are
many inconsistencies concerning coefficients values of
variables that are very correlated to the first axis (e.g.,
coefficient for Env1 is 21.3 while coefficient for Cor18
is 2.34, Table 2).

Lastly, we simulate the effect of pollution by mul-
tiplying by 0.3 the abundance values of all species in
30 sites randomly selected. We apply CCA, RDA (re-
dundancy analysis), CA–PCA COIA and PCA–PCA
COIA on this data to test if these methods can detect
this decrease of global abundance due to pollution. We
plot species-constrained sites scores for the four meth-
ods (Fig. 6). In this situation, CCA and CA–PCA
COIA, which are based on species composition, are

inefficient. RDA and PCA–PCA COIA, which focus
on absolute composition, are able to identify the effects
of pollution.

DISCUSSION

Analyses with respect to instrumental variables (e.g.,
CCA [canonical correspondence analysis], RDA [re-
dundancy analysis], etc.) require a small number of
environmental variables, and CANCOR (canonical cor-
relation analysis) requires a small number of species
and environmental variables compared to the number
of sites (Fig. 2). This comes from the two simultaneous
multivariate regressions in CANCOR, and from the
multivariate regression in analyses with respect to in-
strumental variables. In contrast, co-inertia analysis
(COIA) is linked to partial least-squares regression, a
robust alternative to classical regression (Tenenhaus
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1998). In the case of qualitative environmental vari-
ables, the dimension of the environmental space in-
creases quickly with the number of variables, and co-
inertia analysis is often the only alternative. If there
are few uncorrelated (i.e., orthogonal) variables, the
multivariate-regression step is simply an extension of
univariate regression (Legendre and Legendre 1998)
and CCA or RDA are very efficient. If there are many
variables, results of CCA tend toward those of CA
(correspondence analysis) and the results of RDA to-
ward those of PCA (principle component analysis). If
the variables are correlated, CCA and RDA become
unstable. For these cases, COIA is a good alternative.
Another alternative could be to (1) perform PCA on
environmental variables to obtain uncorrelated vari-
ables and (2) apply CCA between the species matrix
and principal axes of the previous PCA. This second
alternative provides exactly the same results as COIA
of the two original tables except that, unlike COIA, it
does not allow one to plot directly the original envi-
ronmental variables, which have been replaced by their
principal axes. In the same way, CANCOR between
the principal axes of two tables is equivalent to COIA
of the original tables.

The previous considerations concerning the number
of variables, the species response model, the units of
interest, the point of reference of the study, and the
significance of species absence must be taken into ac-
count in order to chose the ‘‘good’’ statistical method.
The theoretical framework induced by co-inertia will
probably introduce new coupling methods. Adding new
methods will not make the choice for ecologists easier
but we hope that the previous considerations will give
practical elements to guide this choice. Experience
shows that in many cases different methods will give
similar results, but that in particular situations the re-
sults of a study can greatly depend on the choice of
the multivariate method. This can be illustrated by the
detection of pollution by RDA or PCA–PCA COIA
while CCA or CA–PCA COIA fail (Fig. 6).

Moreover, the generalization of the co-inertia cri-
terion for linking more than two tables provides new
efficient tools to study species–environment relation-
ships. The introduction of species traits and the pos-
sibility to study simultaneously the spatial and tem-
poral variations will probably greatly improve the qual-
ity of results in ecological studies. Even if some an-
swers to these questions are given by classical
coupling, the use of more sophisticated methods pro-
vides additional results of great interest to ecologists.

All these methods are available in the free ADE-4
software (Thioulouse et al. 1997), which is also dis-
tributed under the form of an R package (Ihaka and
Gentleman 1996).
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à l’étude des relations pathologie végétale-environment.
Revue de Statistique Appliquée 47:31–46.

Soberon, J. M., and J. B. Llorente. 1993. The use of species
accumulation functions for the prediction of species rich-
ness. Conservation Biology 7:480–488.

Strahler, A. H. 1978. Binary discriminant analysis: a new
method for investigating species–environment relation-
ships. Ecology 59:108–116.
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