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Abstract – The instability of a fluid inside a precessing cylinder is studied theoretically and experimentally.
This study is motivated by aeronautics and geophysics applications. Precessional motion forces hydrody-
namics waves called Kelvin modes whose structure and amplitude are predicted by a linear inviscid theory.
When a forced Kelvin mode is resonant, a viscous and weakly nonlinear theory has been developed to
predict its saturated amplitude. We show that this amplitude scales as Re1/2 for low Reynolds numbers
and as θ1/3 (where θ is the precessing angle) for high Reynolds numbers. These scalings are confirmed by
PIV measurements. For Reynolds numbers sufficiently large, this forced flow becomes unstable. A linear
stability analysis based on a triadic resonance between a forced Kelvin mode and two free modes has
been carried out. The precessing angle for which the flow becomes unstable is predicted and compared
successfully to experimental measurements. A weakly nonlinear theory was developed and allowed to show
that the bifurcation of the instability of precession is subcritical. It also showed that, depending on the
Reynolds number, the unstable flow can be steady or intermittent. Finally, this weakly nonlinear theory
allowed to predict, with a good agreement with experiments, the mean flow in the cylinder; even if it is
turbulent.

Key words: Precession / Kelvin modes / instability / triadic resonance

Résumé – Dynamique d’un fluide dans un cylindre en précession. L’instabilité d’un fluide dans un
cylindre en précession est étudiée théoriquement et expérimentalement. Les domaines d’application de cette
étude se retrouvent en aéronautique et en géophysique. La précession force des ondes hydrodynamiques
appelées modes de Kelvin, dont la structure et l’amplitude sont prédites par une théorie linéaire non
visqueuse. Quand un mode de Kelvin forcé est résonnant, une théorie visqueuse et faiblement non linéaire
a été développée pour prédire la saturation de son amplitude. Nous montrons que cette amplitude varie
comme Re1/2 pour des faibles nombres de Reynolds, et comme θ1/3 (θ étant l’angle de précession) pour
les grands nombres de Reynolds. Ces scalings sont confirmés par des mesures PIV. Pour des nombres de
Reynolds suffisamment grands l’écoulement forcé devient instable. Une analyse de stabilité linéaire basée
sur un mécanisme de résonance triadique entre le mode de Kelvin forcé et deux modes de Kelvin libres
a été développée. L’angle de précession pour lequel l’écoulement devient instable est prédit et confirmé
par les expériences. Une théorie faiblement non linéaire a été développée et a permis de montrer que la
bifurcation de l’instabilité est sous critique. Cette théorie a également montré qu’en fonction du nombre de
Reynolds, l’écoulement instable peut être stationnaire ou intermittent. Finalement cette théorie faiblement
non linéaire permet de prédire, en bon accord avec les expériences, l’écoulement moyen dans le cylindre,
même lorsque cet écoulement est turbulent.

Mots clés : Précession / modes de Kelvin / instabilité / résonance triadique
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Nomenclature

A Amplitude of the resonant base flow

A∗ Complex conjugate of A

A0 Amplitude of the geostrophic mode

A1 Amplitude of the first free Kelvin mode

A2 Amplitude of the second free Kelvin mode

d2 Second root of the Bessel function of the first kind and of order 5

f Forcing parameter

H Cylinder height

h Aspect ratio of the cylinder

i Complex number
√
−1

Jm Bessel function of the first kind and of order m

J
′

m Derivative of Jm

k Axial wavenumber of the resonant base flow

k1 Axial wavenumber of the first free Kelvin mode

k2 Axial wavenumber of the second free Kelvin mode

m Azimuthal wavenumber of the resonant base flow

m1 Azimuthal wavenumber of the first free Kelvin mode

m2 Azimuthal wavenumber of the second free Kelvin mode

N1 Non-linear coupling term between the resonant base flow and the second free Kelvin mode

N2 Non-linear coupling term between the resonant base flow and the first free Kelvin mode

R Radius of the cylinder

r Classical cylindrical coordinate

Re Reynolds number

Ro Rossby number

S1 Boundary viscous effects for the first free Kelvin mode

S2 Boundary viscous effects for the second free Kelvin mode

uϕ Classical unit vector of the cylindrical base

V1 Volume viscous effects for the first free Kelvin mode

V2 Volume viscous effects for the second free Kelvin mode

z Cylindrical coordinate along the cylinder axis. z = 0 being the mid-height of the cylinder

δ Parameter of the constitutive relation for the resonant base flow

δ1 Parameter of the constitutive relation for the first free Kelvin mode

δ2 Parameter of the constitutive relation for the second free Kelvin mode

σ Growth rate of the instability

θ Precessing angle

ν Kinematic viscosity

ξ Interaction coefficient between the geostrophic mode and the resonant base flow

ξ1 Interaction coefficient between the geostrophic mode and the first free Kelvin mode

ξ2 Interaction coefficient between the geostrophic mode and the second free Kelvin mode

ϕ Classical cylindrical coordinate

χ1 Non-linear coefficient for the first free Kelvin mode

χ2 Non-linear coefficient for the second free Kelvin mode

Ω Axial component of the fluid rotation vector

Ω1 Angular frequency of the cylinder

ω1 Dimensionless angular frequency of the first free Kelvin mode

Ω2 Angular frequency of the platform, rad.s−1

ω2 Dimensionless angular frequency of the second free Kelvin mode

ω Frequency ratio
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1 Introduction

The knowledge of the flow forced by a precessional mo-
tion is of critical importance in several domains. In aero-
nautics, a flying object whose liquid propellant is forced
by precession can have its trajectory dangerously modi-
fied. In geophysics the Earth precession modifies the flow
of its liquid core and is therefore of significative impor-
tance in understanding the dynamo effect (among other
effects such as convection, boundary layers, elliptic or
tidal instability [1]).

Experiments such as the one carried out by McE-
wan [2] clearly show that the container precession forces
a flow which can be decomposed as a sum of inertial
waves (also called Kelvin modes). For low Reynolds num-
bers this flow is stable. For large Reynolds numbers it
becomes unstable and can degenerate into a turbulent
flow. This behavior was also reported by Manasseh [3–5],
and Kobine [6]. Among several scenarios, Kerswell [7] sug-
gested that a given Kelvin mode can trigger a triadic reso-
nance with two other Kelvin modes leading to an instabil-
ity. We have demonstrated that this mechanism of triadic
resonance between Kelvin modes (which bears similarity
with the elliptic instability [8, 9]) is indeed responsible of
the instability of precession.

The paper is organized as follows. Section 2 is dedi-
cated to a presentation of the problem. Parameters and
dimensionless numbers are introduced and a short presen-
tation of the experimental set-up is described. In Section 3
the base flow, ie. the flow before the instability, is pre-
sented. Classical results concerning a non-resonant flow
are recalled and extended in the case of a resonant flow. In
Section 4 the instability is experimentally presented and
a linear stability analysis is described. Finally, a weakly
nonlinear theory is developed in Section 5 in order to ex-
plain the transition from an unstable and stationary flow
to an unstable and intermittent flow.

2 Presentation of the problem

The flow inside a precessing cylinder of height H
and radius R, full of fluid of kinematic viscosity ν is
considered. This cylinder rotates at the angular frequency
Ω1 around its axis. It is mounted on a platform which ro-
tates at the angular frequency Ω2 as shown in Figure 1.
The angle between the two axes of rotation is the preces-
sion angle θ. In the following, variables are made dimen-
sionless by using R and Ω = Ω1 +Ω2 cos θ as characteris-
tic length and frequency. The dynamics of this precessing
system depends on four dimensionless numbers:

– the aspect ratio h = H/R;
– the frequency ratio ω = Ω1/Ω;
– the Rossby number Ro = Ω2 sin θ/Ω;
– the Reynolds number Re = ΩR2/ν.

An experimental set-up was built in the laboratory, allow-
ing Particle Image Velocimetry (PIV) measurements of
the velocity fields in a transverse section of the cylinder.

1

2
Ω

Ω

θ

H

2R

Fig. 1. Sketch of a precessing cylinder.

To perform the acquisition of a PIV field, small mark-
ers illuminated with a thin light sheet created by a Yag
pulsed laser were used. Particle images were recorded by a
camera mounted on the rotating platform. The horizontal
velocity and the axial vorticity fields in the cylinder frame
of reference were thus measured. More details about PIV
treatment can be found in [10] and a precise description
of the experimental set-up is given in [11].

3 Base flow

In Figure 2a the axial flow vorticity is showed in
the cylinder reference frame for a small Rossby num-
ber: Ro = 0.0031, and a moderate Reynolds number:
Re = 3500. Two counter rotating vortices are observed.
It corresponds to a Kelvin mode which is forced by pre-
cession. Owing to the time and azimuthal dependence of
the precession forcing, this Kelvin mode has an azimuthal
wavenumber m = 1 and an angular frequency ω (see [12]).
Its velocity field is

Vb = Avb (r, z) ei(ωt+ϕ) + c.c (1)

where A is the amplitude, c.c denotes the complex conju-
gate and

vb (r, z) =

⎛

⎜

⎜

⎝

ub (r) sin (kz)

vb (r) sin (kz)

wb (r) cos (kz)

⎞

⎟

⎟

⎠
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⎪

⎪
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⎪

⎪

⎪

⎩

ub (r) = i
ωrδJ

′

1 (δr) + 2J1 (δr)

2r (ω2 − 4)

vb (r) =
2rδJ

′

1 (δr) + ωJ1 (δr)

2r (4 − ω2)

wb (r) = i
k

2ω
J1 (δr)

(2)

In this expression J1 (r) is the Bessel function of the first

kind and J
′

1 (r) its r-derivative.
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Fig. 2. (a) Vorticity field of the first Kelvin mode measured
by PIV at its first resonance, in the absence of instability (h =
1.62, ω = 1.18, Re ≈ 3500, Ro = 0.0031). (b) Amplitude of
the first Kelvin mode obtained at the first (solid line), second
(dashed line) and third (dotted line) resonance. Symbols are
experimental results (h = 1.8, θ = 2◦).

The parameter δ satisfies the constitutive relation

δ2 =
4 − ω2

ω2
k2 (3)

where the axial wavenumber k depends on ω according to
the following dispersion relation with m = 1

ωδJ
′

m (δ) + 2mJm (δ) = 0 (4)

At a given ω this dispersion relation has an infinite num-
ber of solutions. Each solution corresponds to a Kelvin
mode forced at the frequency ω. The Kelvin mode showed
in Figure 2 is the first Kelvin mode. It corresponds to the
mode with the smallest axial wavenumber k.

A classical linear and inviscid theory can predict the
amplitude A of a forced Kelvin mode. This theory shows
that A ∼ Ro and depends on ω. However, when the mode
is resonant (i.e. k = nπ/h, with n an odd number) its

amplitude A diverges. A viscous [13] and weakly nonlin-
ear [11] theory is then necessary to predict the amplitude
saturation. Figure 2b represents the saturation of the first
Kelvin mode as a function of Re for its first three reso-
nances. We showed [11] that for small Reynolds numbers

(viscous regime, Re1/2Ro2/3 ≪ 1), A scales as Ro
√

Re
due to viscous effects in the Ekman layers. For larger
Reynolds numbers (nonlinear regime, Re1/2Ro2/3 ≫ 1)),
A scales as Ro1/3. Predictions of [11] are in good agree-
ment with PIV measurements represented by symbols in
Figure 2b.

4 Instability

As shown in the literature [5,6], the flow inside a pre-
cessing cylinder becomes unstable when the Reynolds or
the Rossby number is increased. Figure 3 is a PIV mea-
surement of the axial and instantaneous vorticity field for
Re = 6500 and Ro = 0.0031. For such a value of Re and
Ro the flow depicted in Figure 2a is unstable and the un-
stable mode exhibits a ring with 10 lobes of vorticity with
alternate signs. It corresponds to a free Kelvin mode with
azimuthal wavenumber m1 = 5. Its velocity field is

V1 = A1v1 (r, z) ei(ω1t+m1ϕ) + c.c (5)

where

v1 (r, z) =

⎛

⎜

⎜

⎝

u1 (r) sin (k1z)

v1 (r) sin (k1z)

w1 (r) cos (k1z)

⎞

⎟

⎟

⎠

with

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u1 (r) = 2i
ω1rδ1J

′

m1
(δ1r) + 2m1Jm1

(δ1r)

r (ω2
1 − 4)

v1 (r) = 2
2rδ1J

′

m1
(δ1r) + m1ω1Jm1

(δ1r)

r (4 − ω2
1)

w1 (r) = 2i
k1

ω1
Jm1

(δ1r)

(6)

In (5) and (6), ω1 is the dimensionless frequency of the
mode m1 = 5 and k1 its axial wavenumber. The param-
eter δ1 satisfies the constitutive relation (3) with ω1 and
k1 instead of ω and k. Parameters ω1 and δ1 also satisfy
the dispersion relation (4) with m = 5.

If the position of the PIV laser sheet is moved from
z = h/4 to z = 0 (mid-height of the cylinder) a second
free Kelvin mode is observed. It exhibits 12 lobes of vor-
ticity with alternate signs and thus corresponds to a free
Kelvin mode whose azimuthal wavenumber is m2 = 6. Its
velocity field is

V2 = A2v2 (r, z) ei(ω2t+m2ϕ) + c.c (7)
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(a)

(b)

Fig. 3. Vorticity field of the free modes which constitute the
instability of a precessing cylinder. (a) Vorticity field measured
at mid-height of the cylinder. (b) Vorticity field measured at
z = h/4 showing the mode m = 5 superimposed with the
forced Kelvin mode of Figure 2a (h = 1.62, ω = 1.18, Re ≈
6000, Ro = 0.0031).

where

v2 (r, z) =

⎛

⎜

⎜

⎝

u2 (r) cos (k2z)

v2 (r) cos (k2z)

w2 (r) sin (k2z)

⎞

⎟

⎟

⎠

where
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⎪

⎪

⎪

⎨
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⎪

⎪

⎪

⎪

⎪

⎩

u2 (r) = 2
ω2rδ2J

′

m2
(δ2r) + 2m2Jm2

(δ2r)

r (ω2
2 − 4)

v2 (r) = 2i
2rδ2J

′

m2
(δ2r) + m2ω2Jm2

(δ2r)

r (ω2
2 − 4)

w2 (r) = −2
k2

ω2
Jm2

(δ2r)

(8)

In (7) and (8), ω2 is the dimensionless frequency of the
mode m2 = 6 and k2 its axial wavenumber. The param-
eter δ2 satisfies the constitutive relation (3) with ω2 and
k2 instead of ω and k. Parameters ω2 and δ2 also satisfy
the dispersion relation (4) with m = 6.

The frequencies of the two free Kevin modes shown
in Figure 3 were experimentally measured and their axial
wavenumbers were deduced. We have demonstrated that
the resonant base flow and the free Kelvin modes satisfy
the resonant condition m2 − m1 = 1, ω2 − ω1 = ω and
k2 − k1 = k. This corresponds to a mechanism of triadic
resonance between the three Kelvin modes.

More information about experimental results pre-
sented here can be found in [14].

To better confirm this mechanism of triadic resonance,
a linear stability analysis has been developed. The first
step is to find the free Kelvin modes satisfying the res-
onant condition. They correspond to the crossing points
of the two dispersion relations shown in Figure 4a. When
these points are determined, the structure of the asso-
ciated free Kelvin modes is known. Then, because of a
solvability condition, equations of evolution for the am-
plitudes A1 and A2 of the two free Kelvin modes can be
obtained. If the base flow is a forced Kelvin mode of am-
plitude A, these equations are

{

∂tA1 = A∗N1A2 − 1√
Re

S1A1 − 1
ReV1A1

∂tA2 = AN2A1 − 1√
Re

S2A2 − 1
ReV2A2

(9)

where

N1 = iπh

(

k

ω
− k2

ω2

) ∫ 1

0

∣

∣

∣

∣

∣

∣

∣

u2 u∗
b u∗

1

v2 v∗b v∗1

w2 w∗
b w∗

1

∣

∣

∣

∣

∣

∣

∣

rdr

/

v1 ⊙ v1

(10)

N2 = iπh

(

k

ω
− k1

ω1

) ∫ 1

0

∣

∣

∣

∣

∣

∣

∣

∣

ub u1 u∗
2

vb v1 v∗2

wb w1 w∗
2

∣

∣

∣

∣

∣

∣

∣

∣

rdr

/

v2 ⊙ v2

(11)

where |.| is the determinant and the scalar product ⊙
between two vectors U1 = (U1r, U1ϕ, U1z) and U2 =
(U2r, U2ϕ, U2z) being defined as

U1 ⊙ U2 =

∫ 1

0

∫ 2π

0

∫ h/2

−h/2

(

U∗
1rU2r + U∗

1ϕU2ϕ + U∗
1zU2z

)

× r dr dϕdz (12)

The terms N1 and N2 represent the interaction, through
the nonlinear term of the Navier Stokes equation, of a
free Kelvin mode with the resonant base mode. The terms
1/Re represent the influence of volume viscous effects and

terms 1/
√

Re the influence of boundary viscous effects
through Ekman suction. Constants S1, S2, V1, V2 can be
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Fig. 4. (a) Dispersion relations of the Kelvin modes. The solid
lines (resp. dashed lines) correspond to the first five branches
of the Kelvin modes with azimuthal wavenumber m1 = 5
(resp. m2 = 6). Solid lines have been translated by k = π/h
and dashed lines have been translated by ω = 1.18. Verti-
cal dotted lines correspond k = nπ/h, with n an integer. (b)
Critical Rossby number as a function of the Reynolds number.
Circles represent stable experiments and triangles unstable ex-
periments. The theory is represented using a solid green curve.
h = 1.62, ω = 1.18.

analytically calculated (see Kudlick [15] for the peculiar
case of a Kelvin mode with an azimuthal wavenumber
m = 1 and with ω = 1).

Looking for A1 and A2 with exponential time de-
pendence eσt, the equation for the growth rate σ is the
following

(

σ +
1√
Re

S1 +
1

Re
V1

) (

σ +
1√
Re

S2 +
1

Re
V2

)

=

|A|2 N1N2 (13)

Table 1. Values of the parameters for the base flow (at the
first resonance) and the two free Kelvin modes m1 = 5 and
m2 = 6, h = 1.62.

ω k f S ξ

1.18 1.939 – 0.452 1.86 – 0.42i 0.165

ω1 k1 S1 V1 ξ1 N1

– 0.416 1.940 1.605 − 0.058i 87.159 −0.066 −0.418

ω2 k2 S2 V2 ξ2 N2

0.766 3.880 1.813 − 0.129i 102.676 −0.365 −0.614

The inviscid growth rate of the instability is then σ =
|A|

√
N1N2. The study of the signs of N1 and N2 (given

by (10) and (11)) shows that the free Kelvin modes as-
sociated to a crossing point between branches of the dis-
persion relation with same monotony cannot lead to an
instability. This fact was underlined using energetic meth-
ods by [16].

Including viscous effect in the calculus of σ we showed
that for h = 1.62 and ω = 1.18 (first resonance of the
first Kelvin mode) the interaction between free Kelvin
modes with azimuthal wavenumbers equals 5 and 6 are
the most unstable, as observed in the experiments. We
also plotted the stability diagram in the plane (Re,Ro) in
Figure 4b. It shows (green solid curve) that the critical
Rossby number scales as Re−3/2 for Re ≪ 3000 and as
Re−1 for Re ≫ 3000. These two scale factors were well
confirmed by PIV measurements.

5 Weakly nonlinear theory

It is possible to add nonlinear interactions between the
different modes. It results in a supplementary mode with
a cylindrical symmetry and whose structure, determined
experimentally, is

V0 = A0J5 (d2r)uϕ (14)

In this expression A0 is the amplitude of the geostrophic
mode, d2 is the second root of J5 (i.e. d2 = 12.339) and
uϕ is the unit vector of the cylindrical base.

This mode is essential because it saturates the growth
rate of the instability thanks to ‘detuning’ effects. The dy-
namics of the precessing flow is then entirely determined
by the following amplitude equations

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂tA = 2ifRo− 1√
Re

SA − iξA0A

∂tA1 = A∗N1A2 −
1√
Re

S1A1 − iξ1A0A1

∂tA2 = AN2A1 −
1√
Re

S2A2 − iξ2A0A2

∂tA0 =
1√
Re

(−2

h
A0 + χ1 |A1|2 + χ2 |A2|2

)

(15)
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Fig. 5. (a) Amplitude of the free Kelvin mode m1 = 5 as a
function of the dimensionless time, for three different Reynolds
numbers. For Re = 4000 (blue dotted line) the flow is stable.
For Re = 5000 (green solid line) the flow is unstable and
stationary. For Re = 6000 (red dashed line) the flow is unsta-
ble and intermittent: h = 1.62, ω = 1.18, Ro = 0.0031. (b)
Amplitude of the free Kelvin mode m1 = 5 as a function of
Ro. The bifurcation for the transition from a stable flow to
an unstable flow is subcritical. The one which corresponds to
the transition from an unstable and stationary flow to an un-
stable and intermittent flow is supercritical. The fixed point
calculated from the weakly nonlinear theory is represented by
the continuous red curve and is extended using a dashed line
when the flow becomes unstable and intermittent. Continuous
purple curves represent the maximum and the minimum of os-
cillations of A1. Green triangles (resp. red) represent unstable
and stationary experiments (resp. unstable and intermittent).
Parameters are: h = 1.62, ω = 1.18, Re = 3664.

Unstable

(a)

(b)

Fig. 6. Amplitude of the mode m1 = 5 (a) and of the base
mode (b) as a function of RoRe (Volume viscous effects were
neglected). The fixed point (red continuous curve and then
discontinuous) is compared with the experimental mean val-
ues 〈A1〉 et 〈A〉. These values are represented by blue circles
(stable flow), green triangles (unstable and stationary flow)
or red triangles (unstable and intermittent flow). Parameters
are: h = 1.62, ω = 1.18.

Terms ξA0A, ξ1A0A1 and ξ2A0A2 are the ‘detuning’ ef-
fects mentioned previously. They can be calculated ana-

lytically (see [11]). Terms χ1 |A1|2 and χ2 |A2|2 represent
the nonlinear interactions of a free Kelvin mode with it-
self. They were assumed to be equal and they were fitted
from experiments (χ1 = χ2 = 10 000).

A numerical solution of (15) is shown in Figure 5a.
Parameters are given in Table 1. Figure 5a represents the
temporal evolution of A1 as a function of the Reynolds
number, for h = 1.62 and ω = 1.18. For a Reynolds
number slightly over the threshold, the instability sat-
urates and the amplitudes (A1 but also A, A2 and A0)
are stationary. Amplitudes become intermittent when the
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Reynolds number is increased, and the dynamics can even
be chaotic for very high Reynolds numbers. This dynam-
ics was confirmed by experiments (Fig. 5b). The resolu-
tion of (15) also showed that the instability is subcritical
(Fig. 5b). Experimentally, we were not able to verify the
nature of the bifurcation because it would require to vary
the precessing angle with 1/100-degree increments.

For high Re, the theory showed that the fixed point of
the amplitude equations only depends on ReRo (Fig. 6).
The amplitude A1 (resp. A) scales as Ro1/4 (resp. Ro1/2)
for high ReRo. By comparing this fixed point with the
experimental mean value of the amplitudes (〈A〉 et 〈A1〉),
we observed that the scalings are preserved and remain
pertinent even if the flow becomes turbulent.

6 Conclusion

Particle Image Velocimetry measurements showed
that the fluid dynamics inside a precessing cylinder con-
sists in a stable flow for low Reynolds numbers and an un-
stable flow for larger Reynolds numbers. The stable flow
can be predicted by a linear inviscid model and is shown
to be a superposition of Kelvin modes. In the peculiar
case of a resonant flow, a viscous and weakly nonlinear
theory was developed to predict the amplitude saturation
of the resonant Kelvin mode. This theory was confirmed
by experimental results.

For larger Reynolds numbers, the structure of the
unstable flow was measured using PIV. It was demon-
strated that the mechanism of the precession instability
is a triadic resonance between the forced base flow and
two free Kelvin modes. A stability analysis based upon a
this mechanism allowed to predict the most unstable free
Kevin modes and to obtain an analytical expression for
the growth rate. A stability diagram was also established
in good agreement with experiments.

A weakly nonlinear analysis has also been carried
out to take into account the interaction between the
Kelvin modes. It showed that a geostrophic mode
appears whose effect is to saturate the instability
and that the bifurcation of the precession instability
is subcritical. It also showed that, depending on the
Reynolds number, the unstable flow can be steady or
intermittent. Finally, the fixed point of the nonlinear
amplitude equations allowed to predict correctly the
scaling of the mean value mode amplitudes. Although
this weakly nonlinear theory is based on a limited number

of modes, it gives remarkable good results when compared
to the experiments, even if the flow appears turbulent in
this case.
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