Real-time observation of non-equilibrium liquid condensate confined at tensile crack tips in oxide glasses - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of the American Ceramic Society Année : 2006

Real-time observation of non-equilibrium liquid condensate confined at tensile crack tips in oxide glasses

Résumé

Since crack propagation in oxide materials at low crack velocities is partly determined by chemical corrosion, proper knowledge of the crack tip chemistry is crucial for understanding fracture in these materials. Such knowledge can be obtained only from in situ studies because the processes that occur in the highly confined environment of the crack tip are very different from those that take place at free surfaces, or that can be traced post mortem. We report the occurrence of hydrous liquid condensate between the two fracture surfaces in the vicinity of the tip of tensile cracks in silica. Observations are performed in real-time by means of atomic force microscopy (AFM) at continuously controlled crack velocities in the regime of stress corrosion. Condensate formation and changes in extent and shape are demonstrated for a wide range of macroscopic humidity at different crack speeds. Its liquid character is confirmed by the study of AFM phase-contrast data. It is believed that this evidence of a nanoscale liquid hydrous phase at the crack tip will enable novel insights in the chemistry of failure of oxide materials.

Dates et versions

hal-00424984 , version 1 (19-10-2009)

Identifiants

Citer

L. Wondraczek, M. Ciccotti, A. Dittmar, C. Oelgardt, F. Celarie, et al.. Real-time observation of non-equilibrium liquid condensate confined at tensile crack tips in oxide glasses. Journal of the American Ceramic Society, 2006, 89 (2), pp.746-749. ⟨10.1111/j.1551-2916.2005.00765.x⟩. ⟨hal-00424984⟩
70 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More