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Abstract 

 

We need an integrated assessment of the bioenergy production at landscape scale for at least 

three main reasons: i) it is predictable that we will soon have landscapes dedicated to bioenergy 35 
productions; ii) a number of “win-win” solutions combining several dedicated energy crops has been 

suggested for a better use of local climate, soil mosaic and production systems; and iii) “well-to-

wheels” analyses for the entire bioenergy production chain urges us to optimize the life cycle of 

bioenergies at large scales. In this context, we argue that the new generation of landscape models 

allow in silico experiments to estimate bioenergy distributions (in space and time) that are helpful for 40 
this integrated assessment of the bioenergy production. The main objective of this paper was to 

develop a detailed modelling methodology for this purpose. We aimed at illustrating and discussing 

the use of mechanistic models and their possible association to simulate future distributions of fuel 

biomass.  

We applied two separated landscape models dedicated to human-driven agricultural and 45 
climate-driven forested neighbouring patches. These models were combined in the same theoretical 

(i.e. virtual) landscape for present as well as future scenarios, by associating realistic agricultural 

production scenarios and B2-IPCC climate scenarios depending on the bioenergy type (crop or forest) 

concerned in each landscape patch. We then estimated esthetical impacts of our simulations by using 

3D visualizations and a quantitative “depth” index to rank them.  50 
Results first showed that the transport cost at landscape scale was not correlated to the total 

biomass production, mainly due to landscape configuration constraints. Secondly, averaged index 

values of the four simulations were conditioned by agricultural practices, while temporal trends were 

conditioned by gradual climate changes. Thirdly, the most realistic simulated landscape combining 

intensive agricultural practices and climate change with atmospheric CO2 concentration increase 55 
corresponded to the lowest and unwanted bioenergy conversion inefficiency (the biomass production 

ratio over hundred years divided by the averaged transport cost) and to the most open landscape. 

Managing land use and land cover changes at landscape scale is probably one of the most powerful 

way to mitigate negative (or magnify positive) effects of climate and human decisions on overall 

biomass productions.  60 
 

Keywords: Formal grammar; landscape modelling; heterogeneity; agricultural production system; 

Tree-growth model; Mediterranean forests; evergreen oak; dendrochronology; CO2 fertilization effect.  
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1 Introduction 
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There exists a debate about the interest of bioenergy to enhance energy security, to reduce 

Green House Gas (GHG) emissions and to provide economical transport. No one is today able to 

predict the contribution of each bioenergy source to our needs (Connor and Minguez 2006). However, 70 
it is clear that the use of biomass to supplement and replace oil for liquid transportation fuel will 

happen as oil supplies decline and become every day more costly. In addition, a major challenge 

linked to bioenergy is to manage the natural environment to provide both fuel and food for a large and 

energy-demanding world population. We will need to provide both with the lowest impact on 

environment (Connor and Minguez 2006) and the lowest esthetical impact on our landscapes (Ervin 75 
2001), among other criteria. In this paper, we aim at discussing this broad question by focusing on 

biomass assessment and highlighting the role of landscape-based studies and modelling.  

To our opinion, three arguments justify an “integrated assessment” of bioenergy production at 

landscape scale. First, it is predictable that what has been proposed to extract energy from our existing 

landscapes will not satisfy the growing energy demand of the world population. Collecting agriculture 80 
or forestry wastes to extract cellulose-based energy or harvesting our meadows to produce C4 grass 

bioenergy will not fill our needs. It is therefore obvious that we will soon need some territories 

dedicated to bioenergy production. Such landscapes would have to mitigate negative incomes such as 

fertilizers, to manage water supply and probably to use non-arable soils to leave them available for 

food production (Connor and Minguez 2006). By the way, if only parts of the landscapes would be 85 
covered by high grasses, hedgerows and forests for this purpose, their heights and densities would 

strongly “close” these landscapes (i.e. vanishing horizon and reducing depth). This point suggests 

simultaneously estimating esthetical impacts of landscapes managed for the bioenergy production. 

Esthetical assessment is even critical for the acceptation of bioenergy production by local populations 

(Sheppard 2005), as we have already observed it for wind-based energy production.  90 
Secondly, we will rapidly need a wide range of mitigation actions to conserve global 

sustainability of such landscapes. We need well-thought bioenergy productions to manage 

conservation acreage for stabilizing soils, for providing wildlife communities, for reducing infestation 

and fire risks. We also have the objective to reduce the net GHG emissions by such bioenergy 

production because bioenergies recycle carbon dioxide that has been extracted from the atmosphere in 95 
producing biomass. Yet, it is certainly wrong to think that changing land covers from forests or 

savannahs to bioenergy crops will reduce the GHG sequestration by atmosphere (Fargione et al. 2008). 

Moreover, we received indications that mixing various bioenergies within the same energy-dedicated 

landscape would be a promising way for increasing its sustainability (Cormeau and Gosse 2008). 

Indeed, a number of “win-win” solutions combining several dedicated energy crops would allow a 100 
better use of local climate (mainly temperature), of resources (soil and water supply), and of 

production systems. To mix bioenergies also supposes to find the appropriate scale for minimizing the 
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possible threats (parasite and fire risks) that bioenergy production will have to face (Butler et al. 

2007).  

Thirdly, the broad cost-and-benefit analysis for the entire bioenergy production chain urges us 105 
to think this production at landscape scale. We need to quantify bioenergy impacts on ecosystems or 

territories, and on the world’s economy. The global energy balance associated to each bioenergy 

production is the energy output / energy input ratio and depends on the energy types and origins. 

Furthermore, computing this efficiency ratio implies to quantify the input and output energies at the 

same scale and within equivalent (spatial and temporal) boundaries. This attempt is always difficult to 110 
achieve: we need a detailed “well-to-wheels” analysis to quantify all the bioenergy impacts on the 

basis of complete life-cycles (JRC Europe 2006). For example, we can no more consider the bioenergy 

crop to be produced in a field without location. Working in such spatially implicit scheme would hide 

local specificities of the field (soils, micro-climate conditions…) and would forget to take into account 

for the relative position of biorefinery associated to the field. We believe that the biorefinery location 115 
choices would benefit from an overall strategy at the appropriate scale, including transport costs and 

possible routes leading from the field to the biorefinery.  

 

In this context, we argue that it is now time to perform an integrated assessment of the 

bioenergy production. Furthermore, the new generation of landscape models allow in silico 120 
experiments to estimate bioenergy distributions (in space and time) that would have been difficult or 

even impossible for future assessments in real landscapes. The main objective of this paper was to 

develop a detailed methodology for achieving this integrated assessment objective at landscape scale. 

In a second objective, we aimed at illustrating and at discussing the use of mechanistic models and 

their possible association to simulate future distributions of fuel biomass.  125 
We illustrate the advantages of this modelling methodology by combining several models to 

simulate spatial distributions of fuel biomass within a chosen landscape. A major problem for this 

purpose concerned the high diversity of landscape drivers, either human decisions or natural forcing, 

which are responsible of the various bioenergy evolutions and their interactions in space. Landscape 

models are rarely exploring both human and natural drivers simultaneously (Monticino et al. 2007), 130 
while there exists today many process-based models to be coupled or simply combined. We intended 

to apply two landscape models dedicated to human-driven agricultural (DYPAL model (Gaucherel et 

al. 2006; Houet and Gaucherel 2005)) and climate-driven forested (MAIDEN model (Gaucherel et al. 

2008a; Misson 2004)) neighbouring patches, after detailed calibration and validation stages. These 

models were then combined (not coupled) on the same theoretical (i.e. virtual) landscape, at different 135 
dates, to quantify the biomass fine scale distribution. The main hypothesis of this work was that 

scenarios having the highest economical benefits are not necessarily leading to the landscapes having 

the highest biomass. This assertion is partly due to the various biomass transport costs and to the 
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spatial distribution of the produced biomass, as biomass located nearby its biorefinery would save 

money compared to the same biomass amount located further.  140 
This illustration was computed for present and future, by associating realistic agricultural land 

uses and B2-IPCC climate scenarios depending on the bioenergy type concerned in each patch (either 

crops, grasslands or forest-trees). First, landscape simulations consisted in maps and curves of the 

biomass annual variation per hectare and the associated transport cost per landscape unit. Second, 

some of the simulations were provided with 3D visualizations for helping “visual inference” and 145 
landscape managements useful to estimate esthetical impacts of our projections (Ervin 2001). Here, 

the working hypothesis was that various landscape changes may have a strong and possibly negative 

visual impact. Such impacts could be quantified by the use of a “closure index” to help identifying 

scenarios that mitigate these impacts. We assume that such an illustration may encourage combining 

and, even more, coupling complex process-based (mechanistic) landscape models to help managing 150 
bioenergy production.  

 

Methods 

 

The methodology of this paper is detailed in the following four sections (Fig. 1). The idea was to 155 
combine models dedicated to various assessments to perform a more integrated estimation of the 

biomass dynamics within a landscape. The study area is theoretical but is based on a set of real 

conditions, namely landscapes where agriculture is very intensive and located in Brittany (north-

western France), and forested sites located on calcareous soils in PACA region (southeast France). 

Quantitative assessments mainly depended on human-driven and climate-driven changes in 160 
landscapes, and were based on a careful choice of landscape scenarios. Qualitative assessments used 

an adapted visualizing explorer associated to an index to rank simulations according to their esthetical 

impacts.  

 

Data and Scenarios 165 
For this theoretical study, agricultural simulations were made on an extended study site (13.9 km², 

1481 landscape units) located in France. We chose it to exhibit intensive agriculture, with a dense 

remaining hedgerow network with relatively small fields such as some observed in France (Houet and 

Gaucherel 2005; Houet and Hubert-Moy 2006). Land cover changes over 789 landscape agricultural 

units (or patches) come from agricultural practices such as crop successions. At a coarser scale, land 170 
cover changes depend on the spatial distribution of farms and their adaptation to economic constraints 

and policies (Thenail and Baudry 2004). The study site was composed by 23 farms made of four 

possible land covers (crop type one, crop type two, grasslands and forests), with proportions equal to 

16.2, 14.5, 43.2 and 26.1 % respectively. In order to favour forests that are less productive than crops, 
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more than half of this site forests have been located along to hedgerows and roads, the other half 175 
belonging to forested patches.  

For comparison requirements, two simulations have been run on this agricultural site: a first reference 

simulation (noted R) was performed with randomly chosen crop and grassland rotations (and no 

change on forest units). Second simulation (A) is based on a scenario aiming at forecasting plausible 

future for 2030-40. Scenario is based on agricultural trends and assumes that no major changes in land 180 
uses will occur. Farmers would pursue intensive dairy production and convert part of the cash crop 

production into bio-motor fuel production (corn and wheat for bio-ethanol). Thus, regional agriculture 

specialisation means that all farms of the study site would be characterized by the same land use and 

production system. This simplified system is characterized in term of mean land cover proportions 

annually observed at the farm scale (i.e. without forest areas): 55 % of hay (temporary grassland) and 185 
30 % of crop type one (corn) completed by 15 % of crop type two (wheat). In addition, crop rotations 

were chosen so that the grassland presence frequency remained quite close to the one observed over 20 

years in some French agricultural landscapes. Grasslands and part of the crop production are feeding 

cattle.  

Forest simulations were made for Holm oak forests located in France. We used dendrochronological 190 
data from a Holm oak (Quercus ilex) stand for the second part of this theoretical study. An observed 

series have been used to calibrate some parameters of the tree growth model described below 

(Gaucherel et al. 2008a; Misson et al. 2004). Biological, ecological and topographical factors were 

also recorded at the concerned stand and used to help in calibrating several physiological processes. 

Observed daily temperatures and precipitation series serving as inputs of the ecophysiological model 195 
are obtained from a nearby Mediterranean (Météo-France) meteorological station.  

Natural forcing is a symmetrical driver compared to agricultural human decisions. Climatic 

simulations for the 21th  century were obtained from the global climate model ARPEGE-IFS (Gibelin 

and Deque 2003) driven by the IPCC-B2 scenario radiative forcing including greenhouse gases. 

Doubling of atmospheric CO2 concentration occurs towards the end of the 21st century with 610 ppm, 200 
while the 20th century concentrations are the observed values. The ARPEGE model, for which the time 

step is 30 minutes, provides daily maximum and minimum air temperatures as well as daily 

precipitations for the 1960-2000 and then 2000-2099 periods (Deque et al. 1994). The grid point used 

for regional extrapolation has a 0.5°  0.5° cell size that we have interpolated as a function of latitude 

and longitude using a two-dimensional (2D) bi-cubic technique, then averaged over the 500  700 km² 205 
region. Two simulations have been run on these forests (Gaucherel et al. 2008b): a first climatic 

simulation was performed without any atmospheric CO2 increase during the 21st century (simulations 

noted R and A). The second more realistic climatic simulation assumed a doubling of atmospheric 

CO2 concentration towards the end of the 21st century growing gradually (RCO2 and ACO2).  

 210 
Models 
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Concerning the agricultural model, we have implemented a formal grammar formalism (close to L-

systems (Lindenmayer 1968; Prusinkiewicz 2004)) into the L1 modelling platform (called DYPAL, 

for Dynamic PAtchy Landscape, in its most recent version) to mechanistically simulate landscape 

dynamics. The model used here is extensively described in (Gaucherel et al. 2006; Houet and 215 
Gaucherel 2005) and we only detail in this section the DYPAL management of landscape driving 

rules. DYPAL has been developed with a modular architecture and was designed around a kernel, 

which provides a stable organisational data structure (scenarios, time steps…) and a generic landscape 

description. The generic landscape is driven by rules, decomposed in many key processes, resulting 

from a set of single/elementary actions manipulating landscape units. These successive entities form a 220 
template which may be viewed as the main specificity of the DYPAL platform. The DYPAL model 

works with various scales and landscape types (field, farm, region…) and intends to simulate the unit 

dynamics of fields as well as dynamic linear networks such as hedgerows or roads. The main 

modelling difficulty appears when handling the set of rules and their action decomposition for each 

human decision and process, changing the neighbourhood graph and generating spatiotemporal 225 
conflict emergence (such as different land covers for the same unit at the same step).  

This is one of the benefits from the L-systems framework to offer a friendly context to manipulate 

landscape driving rules (Prusinkiewicz 2004). The landscape driving rules are already handled by the 

use of various algorithms, while the corresponding formal grammar equations are not yet developed 

and are in progress. One of the main originalities of DYPAL is to allow attributive as well as 230 
geometrical actions (shape changes) of landscape units. Attributive modification only implies a change 

(or no change) of the main unit property, as in land use and land cover change (LUCC) models 

(Verburg et al. 2002), while geometrical modifications (absent in this study) refer to a limited number 

of unit deformations. When changing, each unit can dilate or erode, split into two or more distinct 

units, merge with one or more other units into a single unit, appear (with various forms) or disappear. 235 
Each action on units is developed within an independent function, gathering one or more algorithms. 

These functions can either be used in their original form, or be inherited (in an object-oriented 

scheme) and modified to take into account the unit context of real situations. In our realistic simulation 

A, to change the land cover of a grassland field depends on its age and its distance to the farmstead 

and needs specific algorithms (Fig. 2a).  240 
Concerning the tree-growth model, we have used the process-based MAIDEN model extensively 

described in (Misson 2004; Misson et al. 2004). The model calculates processes such as 

photosynthesis, stomatal conductance, carbon allocation and forest development. The water balance is 

computed at the ecosystem level, including canopy water interception, transpiration, soil evaporation, 

soil water transfer, drainage and runoff. MAIDEN separates daily net primary production (NPP) 245 
between carbon pools (leaf, bole, root and storage) according to phenological phase-dependent rules. 

These phases are (1) winter: no activity, (2) spring: leaf and root expansion, (3) summer: bolewood 

production, (4) early falls: carbohydrate-reserve accumulation, (5) late fall: leaf and root senescence. 
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An original modelling procedure of carbon storage and mobilization was developed to reproduce the 

temporal autocorrelation structure of tree ring series (Guiot 1986). The annual increment of bole 250 
carbon pool at stand level is the modeled variable that will be compared with the observed 

dendrochronological tree-ring series. To be applied to a given species at a given site, the model needs 

several input variables such as altitude, latitude, maximum absolute Leaf Area Index (LAI), specific 

leaf area, initial bole biomass, soil thickness and soil textural classes, which can be obtained from site 

measurements. Moreover, it also needs eleven internal parameters that can be tuned to fit at best 255 
available ecophysiological and dendrochronological data, as explained in (Gaucherel et al. 2008a). 

Climatic driving variables are daily minimum and maximum temperature and precipitation.  

 

Visualizations  

Such quantitative computations have been completed by a qualitative assessment of landscape 260 
simulations. In order to help perceiving simulations, we used the Seamless Landscape Explorer 

software (Griffon and Auclair 2009) to build 3D visual representations in year 2100 with the same 

point of view than a 2004 photograph (location: Lat. -5.56315° / Long. 48.39433° (in decimal 

degrees); direction: WSW (255°)). The representation of 3D landscape models requires a variety of 

components and corresponding spatial data types. These include terrain texture (ortho-imagery, raster 265 
maps), digital height models (DEM, DSM), land cover data (vector-based 2D geo-objects), 3D objects, 

and object textures. The spectrum of these components ranges from very large spatial objects to large 

numbers of complex and possibly dynamic 3D objects. These data types have very different 

characteristics and requirements in terms of management, visualisation and multi-scale representation. 

Technically, a dynamically optimized elevation mesh is computed and can be textured with the 270 
“texture splatting” technique (Bloom 2000; Tyrväinen and Tahvanainen 2000) or satellite imageries 

and thematic maps.  

We also establish a fixed grid around the camera to manage the vegetation data for each layer of plants 

and other natural objects. Each grid cell contains all of the data to render its layer in the physical space 

it occupies. For each layer, we establish a distance from the camera that the layer needs to generate 275 
visuals; this determines the size of our virtual grid. This operation is done in real time and care must 

be taken to ensure that planting is a fast operation. Collecting polygons in a grid cell are done quickly 

by using an AABB tree or a similar data structure and it is also effective to queue up this task so that 

we spend only a relatively fixed amount of CPU on the task for each frame. The different layers of 

vegetation consist in trees, shrubs, small plants, rocks, and other debris to complete the illusion of 280 
natural complexity. We apply random transforms to vary their size and orientation as we pick our 

planting points. Some of these can be represented as textured planes (billboards) just as grass is, but 

the richness of the environment is enhanced when we mix in an assortment of geometric objects, as 

well. 

 285 
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Simulation methodology 

We chose to model biomass production on a virtual landscape as no exhaustive data set were available 

on the same site. We modelled the following simulations over the agricultural landscape described 

above with the oak forest located in its forested patches. To improve effect of land use on biomass we 

modelled agricultural land uses based on random (R) and realistic (A) simulations of crop successions. 290 
Similarly, to enhance influence of climate change on biomass production, we modelled landscape 

evolution over hundred years (2000 – 2100) based on two climate change hypotheses controlling tree 

growth even if agricultural land use changes remain plausible until 2030-2040. Four simulations (R, 

A, RCO2 and ACO2) were run only one time as these mechanistic (and almost deterministic) simulations 

are robust and never exhibit in our tests more than 1 to 2 percent variation indices. 295 
We computed two synthetic indices at each step of the four simulations: i) the total biomass 

production of the landscape (Ib, expressed in tons); ii) the averaged transport cost per landscape unit 

(Ic) supposed to be proportional to the transported biomass and the distance (by road, with the same 

vehicle) of each landscape unit to the transformation industry (biorefinery); and iii) biomass 

production ratio / the averaged transport cost (rI, in unit per m) to quantify the bioenergy conversion 300 
inefficiency of each landscape over hundred years. As farmers would usually seek minimizing 

transportation costs and maximizing biomass production, we expect high conversion inefficiency ratio 

to be preferred and be more relevant. For these computations spatial biomass distributions at each time 

step were available. The industry has been arbitrary located at the centre of the landscape (coordinates 

(267; 359) pixels of 8 8 m² each), in order to quantify the importance of landscape unit locations. We 305 
checked that results are qualitatively the same for other industry locations.  

We chose the consensual bioenergy conversion that one ton equivalent petrol (tep) is equivalent to 

three tons of vegetal biomass, whatever is the vegetation concerned (Cormeau and Gosse 2008). We 

conservatively supposed the four land covers of our landscape to produce Ib = 6, 3, 2 and 6 t/ha/year 

biomass for crop type 1, crop type 2, grassland and forest respectively. We chose exploitation ratio so 310 
that it corresponds to biomass production ratios effectively used at landscape scale equal to r = 0.2, 

0.1, 0.066 and 0.1 tep/ha/year for crop types 1 and 2, grassland and forest respectively. To work with 

comparable values, we considered indeed that one tenth of the crop production and one twentieth of 

the wood production is collected every year (i.e. corresponding to a 20-year forest management). This 

quite high forest production considered all tree-compartments for wood biomass production (Rambal 315 
et al. 2004) and should be calibrated according to real landscape observations.  

The more qualitative assessment of esthetical impacts of simulations has been achieved on the basis of 

an index quantifying the “depth” (Id) of each image. We have developed a fragment program that run 

on GPU to compute for each pixel of the viewport the distance to the nearest object. The depth is 

defined as the distance between the photographer (the view-point) and the landscape element (a tree, a 320 
piece of soil…) composing the pixel, then normalized by the maximum distance displayed in the 

image. This index equals the average of the distances over the whole image, standardized between the 
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four simulations. Infinite distances (the sky) have previously been removed. This preliminary depth 

index aimed at capturing the broad idea that we have from “closed” or more open landscapes, and has 

been computed for the four simulations from the same view-point. In a first approximation, we expect 325 
lower depth index values to have higher esthetical qualities according to the French culture. 

 

Results 

 

Results are threefold: first quantitative assessments of model specific landscape simulations; second, 330 
quantitative assessments of the combined model simulations; and third esthetical assessments of the 

visualization model.  

 

Independent (crop and forest) simulations 

A first result was that randomly generated landscapes drastically differed from the rule-based 335 
landscapes (Fig. 2a). As simulations were made with landscape unit entities, a rule applied on a 

specific land cover modified its proportion and/or position (spatial distribution) in the landscape. 

While simulation R led to heterogeneous land uses (33 % of agricultural fields in average), simulation 

A increased the relative grassland surfaces (55 %), with specific positions in the landscape (Fig. 2b). 

The stabilization period due to a great number of compulsory rotations occurring onto all landscape 340 
units of the study site took several years only. Simulation A differed from simulation R (dominant 

frequency equals to ~ 0.33, Table 1) by adding some high frequencies (short term appearances): 0.7 

and 0.95 (Fig. 2c). It corresponded to a grassland appearance every 3.05, 1.43 and 1.05 years 

respectively, estimations being averaged over the 789 agricultural landscape units.  

 345 
#Table 1 approximately here# 

The bole Carbon allocation was simulated to be around 250  40 g/mm² for the oak species. This gives 

the C allocation per ground area unit, roughly corresponding to half the wood production. The oak 

MCMC calibration of MAIDEN model with dendrochronological series observed between years 1960 

and 2000 showed a modal fit at r² = 0.50  0.06 (Fig. 3a). Differences between the calibrated bole 350 
increment simulation and observations were quite homogeneous, showing the ability of the model to 

simulate a large variability of growth. The fact that the model was able to simulate the negative trend 

of the oak growth observed since the beginning of the year 70’s may confirm its climatic origin 

because inputs into the model concerns meteorological data alone (without CO2 effect). However, 

when including the direct effect of atmospheric CO2 into the model (Fig. 3b), mean oak growth 355 

increased by about + 24.1  5.6 %. As highlighted by the twenty-year window moving average curve, 

the trend of regional oak growth with and without CO2 direct effect (Fig. 3b) showed a progressive 

productivity increase throughout the 21st century with CO2 direct effect versus a decrease with 

constant CO2. The gain due to CO2 direct effect is optimum at low elevations (not shown). Tree 
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growth evolution for constant CO2 concentration reached a maximum around year 2005 for the species 360 
which may be caused by drought variations. The period around 2005 indeed was simulated by the 

ARPEGE climatic model as the most humid of the period. Afterwards, drought increased 

considerably, inducing an important growth deficit that CO2 direct effect did not compensate.  

 

Combined simulations 365 
The four simulations were rather similar in average over hundred years (Fig. 4), due to the chosen 

biomass intakes (one tenth and one twentieth per year for crops and forests resp.). The lowest biomass 

production was found for landscape A (Ib = 0.40  0.032 103 t) and the highest for landscape RCO2 (Ib = 

0.51  0.028 103 t) (Table 1). Landscape R and ACO2 converged to similar biomass productions (Fig. 

4a). A and ACO2 landscapes showed higher biomass production standard deviations (ΔIb ~ 0.03 103 t) 370 
than R and RCO2 landscapes (ΔIb ~ 0.028 103 t), but their biomass production always remained 

significantly different. As excepted, atmospheric CO2 concentration absence were always prejudicial 

to biomass production, R and A simulations showing decreasing trends in these cases.  

Transport cost computations did not lead to the same simulation order (i.e. hierarchy, Table 1). A 

landscape exhibited quite low transport costs, but only during the second part of the simulation. R 375 

landscape had a lower averaged transport cost (Ic = 0.17  0.01 t  km/unit). RCO2 showed a quite high 

averaged transport cost, but ACO2 had a higher averaged transport cost (Ic = 0.21  0.022 t  km/unit). 

Atmospheric CO2 concentration absence clearly reduced, by indirect effects, transport costs at 

landscape scale. Transport cost standard deviations along to each simulation appeared to be closely 

linked to random or agricultural scenarios and not to climate influences (Fig. 4b), and were lower for 380 

R and RCO2 simulations (ΔIc ~ 0.01 compared to 0.022 t  km/unit). Averaged transport costs are not 

significantly different between simulations.  

Finally, biomass production ratios / transport costs appeared to be the lowest for ACO2 landscape (rI = 

2.16 unit/m), the most realistic one (Table 1). Unrealistic R and RCO2 simulations showed the highest 

and more relevant conversion inefficiencies (rI ~ 2.77 unit/m). Averaged values of each index were 385 
mainly related to land cover proportions imposed by agricultural practices. The trend of biomass and 

transport cost evolutions was mainly due to effects of climate change on tree growth, as agricultural 

land cover proportions were stabilized along to every simulation. Landscape biomass maps 

highlighted the spatial distribution of biomass according to both anthropogenic and natural drivers and 

their articulation (Fig. 4a inset).  390 
 

Visualizations 

3D visualizations of the contrasted R and ACO2 simulations helped to infer landscape esthetic at the 

end of the twenty-first century (Fig. 5). We clearly observed (about 1.65 times) more grasslands and 

(about 24 %) higher forests in the more realistic ACO2 simulation image than in the former one. A real 395 
2004 photograph of the landscape chosen as a template is shown for reference (Fig. 5b). We 
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configured, for each layer in the land cover of these images, a texture that was draped over the terrain 

when rendering and a list of possible objects in this landscape including: i) the type of object (plants, 

rocks, human buildings…); ii) object densities in a specific landscape units and iii) the size variation 

information used to generate variations in the appearance of objects. The R simulation appeared to be 400 
the closest simulation (Id = -1.22) because the camera was located in the middle of a maize field with a 

lot of plants reducing the image depth (table 1). The RCO2 simulation was the most open in these terms 

(Id = 0.91). A and ACO2 simulations are more interesting to be compared, with the ACO2 landscape 

being slightly more open.  

 405 

Discussion  
 

Specific crop and forest dynamics 

On the one hand, the agricultural production simulation (A) was close to landscape evolutions 

observed in the recent years, for which all farms adopted the same production system. This point 410 
combines with past studies based on connectivity indices (Gaucherel et al. 2006) to confirm a correct 

calibration of the DYPAL model in this case study. Dominant grassland frequencies (roughly equal to 

0.25, 0.7 and 0.9 over one century) were close yet less pronounced than for real landscape 

observations during the past two decades. Such modes of frequency distribution were caused by 

empirical farm allocation properties chosen by farmers (Gaucherel et al. 2006; Verburg et al. 2002). 415 
Our approach here is original, as we have modeled a patchy landscape with mechanistic rules 

intending to mimic human decisions and directly impacting land cover distributions. It suggests that 

more elaborated rules (using mixed agricultural managements for example (Houet and Gaucherel 

2005) or bioenergy dedicated scenarios) and scenarios (using multiple plausible futures) would 

improve the simulation realism and assessment.  420 
On the other hand, the MAIDEN model, once calibrated, has shown a correct ability to simulate tree 

growth of oak species under various environmental conditions (Fig. 3a). This model has for example 

already been used with Quercus Ilex under Mediterranean environment as well as Quercus petraea 

under temperate environment (Misson et al. 2004). Some previous works succeeded in such modelling 

using remote sensing (LAI) calibration (Anselmi et al. 2004). Our approach is, in a way, different and 425 
original, as we have calibrated a complex ecophysiological model, using dendrochronological time 

series (Gaucherel et al. 2008a; Misson 2004). The simulation is realistic from year 1960 to 1997. If we 

do not take into account for CO2 fertilization effect, we find that tree growth has reached a maximum 

around year 2005 (Fig. 3a): this should not be taken as a precise date for the optimum of these species; 

it rather shows that the climate changes might not beneficiate to these species in the future in terms of 430 
ecophysiological processes at large scales in average. With the direct effect of CO2, oak species has a 

significant increase in productivity (+24.1 %, Fig. 3b). Higher CO2 concentration allows the tree to 

close its stomata, leading to a better efficiency in the water use, even if the water budget decreases, 
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such as after year 2030. This fertilizing effect even has a stronger impact than climate change on the 

basis of our data and modelling. We are confident about the simulation of this forcing because CO2 435 
fertilizing effect has been calibrated and validated by using the observed atmospheric CO2 

concentrations for the 20th century. However, this effect might not be reasonable because the model 

does not take into account for acclimation of photosynthesis to progressive increase in CO2 in the 

atmosphere.  

 440 
Quantitative biomass assessment 

Once independent models have been calibrated, we finally modelled contrasted simulations of 

landscape dynamics to estimate biomass production evolution up to year 2100 in this virtual 

landscape. For this purpose, we combined two process-based models dedicated to either (human-

based) agricultural practices or to tree growth under (natural-based) climate forcing, thus leading to 445 
four simulations (A, ACO2, R to RCO2). Such combination of mechanistic models at landscape scales 

has, to our knowledge, never been done (Monticino et al. 2007). Each model, independently, would 

have been capable assessing biomass production in the respective parts of this landscape (crops on one 

hand, forests on the other hand (Gaucherel et al. 2008b)), but not for the whole landscape.  

These simulations leaded to three main results. First, the transport cost at landscape scale is not 450 
correlated to total biomass production (table 1). Such calculation supposed knowing how much and 

where each biomass quantity is produced to sum their respective contributions and would not have 

been possible without such mechanistic spatially explicit models. Second, absolute (averaged) index 

values along to simulations were conditioned by agricultural practices, while relative values (temporal 

trends) were conditioned by gradual climate changes (Fig. 4). Such processes have different causes 455 
and were due to our choices of (i) a generalized intensive agricultural context combining dairy and 

bioenergy production in the landscape, (ii) a specific landscape configuration corresponding to a crop / 

forest surface ratio close to unity (1.17) and (iii) the fact that on tenth of the crop production and one 

twentieth of the wood production is collected every year (Rambal et al. 2004). These choices leaded to 

comparable crop and forest biomass productions, yet having different dynamics.  460 
Third, among the R and RCO2 realistic scenarios, the highest conversion inefficiency ratio (biomass 

production ratio over hundred years / the averaged transport cost rI) was associated to the less biomass 

productive scenario (table 1, ACO2 column). As farmers would usually seek minimizing transportation 

costs and maximizing biomass production, we expect high conversion inefficiency ratio to be 

preferred and be more relevant. This point confirmed our main hypothesis that the landscape scenario 465 
providing the highest biomass should not be the one leading to the highest economical benefits. 

Hence, to spatially organize biomass production in landscape would likely increase economical profits 

too. Process-based simulations were necessary to observe that simulation A has a higher ratio (rI = 

2.28) than the simulation ACO2 ratio (2.16). This scenario ranking suggested that CO2 increase and 

LUCC may interplay to lead to an optimum landscape configuration for which the conversion 470 
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inefficiency ratio would be maximized. It offers the opportunity, at least in this case, to manage subtle 

land use and cover changes in order to reduce the effect of CO2 increase (Lambin et al. 2000). This 

may have strong ecological implications, as species conservation or environmental threats are closely 

dependant at landscape scales to agricultural practices too.  

 475 
Qualitative assessment 

In parallel, we have shown here that there exist today powerful tools to estimate future esthetical 

aspects of landscape simulations. With such methods, visual changes of the landscape can be shown 

very impressively and can allow for an intuitive assessment of the visual landscape simulation quality 

(Fig. 5). The users can explore the landscape, find environmental issues that are relevant (here to 480 
mitigate threshold effect of an increased biomass production), compare scenarios and discuss their 

opinions to form strategies for overcoming them (Ervin 2001; Griffon and Auclair 2009; Tyrväinen 

and Tahvanainen 2000). The results can then be used either individually by the policy-maker as a 

decision tool, or as a support for discussion and negotiation. Such esthetical criterion is obviously one 

of the possible constraints of future landscape studies (Nassauer and Corry 2004). Other economical or 485 
environmental constraints should be quantified too (see this landscape ecology special issue), before 

managing a landscape and finally deciding its required trajectory. These indicators could be presented 

using different 2D, 3D and iconic world-views (Bishop et al. 2005). For example, an abstract 3D view 

which does not display the landscape as realistic, but rather displays abstract symbols that show the 

dispersion of the indicator over the landscape.  490 
In this case, the ACO2 simulation showed a landscape with more grasslands and highest forests, 

probably closer to what decision-makers would favour in such landscape managements. In addition to 

the communication tool, such 3D visualisations may become a scientific tool if associated with 

objective indicators to rank them. A measure of the landscape openness (or its closure, when 

landscape units reduce the overall landscape visibility) viewed from the same view-points indicated 495 
here that simulation A was slightly closer than simulation ACO2, thus corresponding to a higher 

esthetical quality according to the French culture. Other view-points (randomly chosen, in random 

directions) and other esthetical indices may be added to improve this visual assessment of a scenario 

and to statistically confirm this rough estimation.  

 500 
Process-based model advantages and limits 

Mechanistic landscape models are still simplistic, but the few major agricultural / ecophysiological 

processes today taken into account already give some clues about future biomass productions. It has 

been explained how process-based models help to better understand ecosystems (Guiot et al. 2008). 

We may be more confident when extrapolating this kind of models, because they are based on causal 505 
relationships such as with human agricultural practices here. Biases are often well controlled, 
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whatever if they concern distribution of the extremes or some external constraints, such as 

atmospheric CO2 increase in this study.  

At the contrary, mechanistic models need to be fed by numerous parameters, to be carefully calibrated. 

To achieve our goal, we chose various parameter values for these biomass simulations that may be 510 
tuned and should be discussed. We simulated a precise landscape configuration, with a defined 

forest/crop composition ratio (~ 1.17); we imposed constant biomass production ratios for each land 

cover and a constant bioenergy / biomass conversion rate between vegetation types (one ton equivalent 

petrol (tep) is equivalent to three tons of vegetal biomass (Cormeau and Gosse 2008)), a precise 

industry location for biomass transformation, considered to be unique for various land covers; and we 515 
supposed only part of the landscape to be dedicated to bioenergy production. Finally, we built a virtual 

landscape gathering properties of both French agricultural and Mediterranean climate landscapes.  

Yet, we argue that such choices and the associated results are not decisive. The idea was rather to 

illustrate that such a methodology is relevant and reproducible in more concrete study cases. For this 

work, we also assumed that production, transport and transformation occurred at landscape scale. 520 
Nevertheless, we are conscious how idealistic is this assumption. Bioenergy is often produced at one 

place (depending on various geographical scales), transported over large distances and transformed at 

another remote place (Cormeau and Gosse 2008). Yet, we highlighted by such study the role of space 

over the whole energetic chain. As a consequence, it is crucial to start defining limits of the studied 

agro-ecosystem.  525 
 

Conclusions and recommendations 

We reached our first objective by showing that the new generation of landscape models allow 

estimating spatial and temporal bioenergy distributions that are helpful for an integrated assessment of 

the bioenergy production. As a key result for this study, economical benefits would not always be 530 
related to biomass production increase. The spatial distribution of biomass in landscapes may be 

critical too, as it partly conditioned transport costs. We should keep this observation in mind when 

(locally) managing bioenergy. When trying to develop a sustainable future on the basis of bioenergy, 

these results highlighted that: i) to adjust biomass production will not straightforwardly affect this 

benefit (as transport and other transformation costs may play important roles); that ii) to improve our 535 
economical benefit is possible in some cases; and that iii) we may manage various and possibly 

compensating causes to counteract unwanted changes. For example, it should be possible to 

compensate trends of climate effects by an opposite biomass production with LUCC changes. As a 

recommendation, we should remember that the spatial arrangement of LUCC at landscape scale is 

probably one of the most powerful manners to mitigate negative (or magnify positive) effects of 540 
climate and human decisions on landscapes.  

Our second objective for this work adopted a more methodological point of view. As shown in this 

illustration, mechanistic models should be developed for their extrapolation qualities. Yet, we would 
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certainly gain at modelling a real coupling between anthropogenic and natural drivers of the landscape 

and, thus, of biomass and bioenergy productions (Stokstad 2008). This coupling has not been 545 
investigated in this study, for which crop-growth and/or sylvicultural modules should be developed. 

Models exist for each of these processes (e.g. (De Coligny 2006; de Noblet-Ducoudre et al. 2004)). As 

far as we know, these models have never been coupled into the same landscape for applied 

assessments such as bioenergy topics. In particular, it is probable that such coupled modelling should 

be very sensitive to neighbouring influences between various crop/forest landscape patches. We 550 
should not neglect the effort necessary to collect data for calibration and validation of such coupled 

process-based models, which partly explains why such modelling developments have been delayed up 

to now. Yet, they would allow testing in silico biomass and bioenergy production mosaic in space and 

time and assessing environmental/esthetical impacts.  
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Figure captions 
 

Figure 1: Methodology of the integrated biomass production assessment performed in this work. The 

different models used (dark grey), their associated landscape driving factors (light grey), and their 565 
relative contributions (arrows) to intermediate and final assessment results (dashed rectangles) are 

highlighted. Models combine quantitative and qualitative assessments in different ways.   

 

Figure 2: Crop successions for the chosen agricultural production of simulation A (a). Compulsory and 

authorized rotations (changes) are schematized according to the distance of the farmsteads and to ages 570 
of the Temporary Grasslands (noted TG). One example of virtual landscape simulations at year 2100 

in case of simulation A (b). Gray levels, from dark to light, successively feature: forest, crop types 1 

and 2, and temporary grassland land covers on a (black) unchanged background. Grassland appearance 

frequencies (c) of the virtual landscape during the hundred-year long landscape simulations are 

highlighted by arrows. Adapted from (Houet and Gaucherel 2005).  575 
 

Figure 3: Indexed tree-ring series (dotted line) and bole carbon allocation simulated by the MAIDEN 

model after MCMC calibration (plain line) evergreen oak series in a Mediterranean site (a). Both 

simulations are based on a calibration stage obtained after the convergence of five draws (5000 steps 

each). Evolutions of the mean annual production of oak species were simulated on the basis of the 580 
ARPEGE simulation, with (up) and without (down) direct effect of atmospheric CO2 (b). The two 

smoothed curves correspond to 20 year window moving averages of both evolution curves.  

 

Figure 4: Total landscape biomass (a, in 103 t) and biomass transport cost (b, in t  km per landscape 

unit) evolutions of the hundred-year long landscape simulation: simulations A (dashed line), ACO2 585 
(plain line), R (dash-doted line), and RCO2 (doted line). Years 1 to 100 have been assimilated to years 

2000 to 2100 for comparison. The inset shows the biomass production map (gray levels in tep/ha/year) 

at the hundredth year of the most realistic ACO2 simulation.  

 

Figure 5: 3D visualization of the virtual landscape for ACO2 (a) and R (c) simulation, compared to a 590 
photograph taken from the same view-point and with the same orientation in year 2004 (b). Fields, 

hedgerows and forest patches are clearly visible and vary from one image to the other.  

 

 

595 
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Table 1  

 
Compilation of the mean index values over the four hundred-year simulations: simulations A, ACO2, R, 

and RCO2. Indices concern dominant grassland frequencies as well as total landscape biomass (in 103 t), 

the transport costs (in t  km per landscape unit) and an adimensional depth index for visualization 

ranking. The most favourable situation between agricultural simulations are highlighted in bold.  

 

Indices / 

Simulations 

Agricultural 

simulation A  
 

Agriculture with  

CO 2 increase ACO2 

Random 

simulation R 

Random with  

CO 2 increase 

RCO2 

Grassland 

frequencies 

0.25, (0.7), 0.9 0.25, (0.7), 0.9 0.33 0.33 

     

Biomass  

(Ib in 103 t) 
0.40  0.032 0.44  0.031 0.47  0.028 0.51  0.028 

Transport cost  

(Ic in t  km/unit) 

0.18  0.022 0.21  0.022 0.17  0.010 0.19  0.010 

Transport cost / 

Biomass ratio  

(rI in unit/m) 

2.28 (rank 3) 2.16 (rank 4)  2.77 (rank 1) 2.57 (rank 2) 

Depth index (Id) 0.15 (rank 2) 0.16 (rank 3)  -1.22 (rank 1) 0.91 (rank 4) 
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