Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Groupes linéaires finis permutant deux fois transitivement un ensemble de droites

Abstract : Let n >1 be an integer, and G a doubly transitive subgroup of the symmetric group on X={1,...,n}. In this paper we find all linear group representations rho of G on an euclidean vector space V which contains a set of equiangular vector lines GG={< v_1>,...,} such that : (1) V is generated by v_1,...,v_n, (2) for all i in X and all g in G, = . Then we illustrate our construction when G=SL_d(q), q odd and d > 1.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

Cited literature [11 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00422673
Contributor : Lucas Vienne <>
Submitted on : Sunday, December 13, 2009 - 3:45:17 PM
Last modification on : Monday, March 9, 2020 - 6:15:52 PM
Document(s) archivé(s) le : Thursday, September 23, 2010 - 10:56:26 AM

Files

vienne-groupes.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00422673, version 2
  • ARXIV : 0910.1655

Collections

Citation

Lucas Vienne. Groupes linéaires finis permutant deux fois transitivement un ensemble de droites. 2009. ⟨hal-00422673v2⟩

Share

Metrics

Record views

239

Files downloads

206