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Visual object categorization with
new keypoint-based adaBoost features

Taoufik Bdiri, Fabien Moutarde, and Bruno Steux

Abstract— We present promising results for visual object
categorization, obtained with adaBoost using new dinal
“keypoints-based features”. These weak-classifiersrpduce a
boolean response based on presence or absence ie thsted
image of a “keypoint” (a kind of SURF interest poirt) with a
descriptor sufficiently similar (i.e. within a given distance) to a
reference descriptor characterizing the feature. A first
experiment was conducted on a public image datasebntaining
lateral-viewed cars, yielding 95% recall with 95% pecision on
test set. Preliminary tests on a small subset of pedestrians
database also gives promising 97% recall with 92 Yrecision,
which shows the generality of our new family of femres.
Moreover, analysis of the positions of adaBoost-ssited
keypoints show that they correspond to a specificagnt of the
object category (such as “wheel” or “side skirt” inthe case of
lateral-cars) and thus have a “semantic” meaning. W also
made a first test on video for detecting vehiclesdm adaBoost-
selected keypoints filtered in real-time from all e@tected
keypoints.

. INTRODUCTIONAND RELATED WORK

ne of the key features for enhancing safety inligent
vehicles is efficient and

adaBoost for visual object class detection aregutsia Haar-
like features initially proposed by Viola & Jones face and
pedestrian detection.

However, adaBoost outcome may strongly depend en th
family of features from which the weak classifiare drawn.
Recently, several teams [4][5] have reported irstiEmg
results with boosting using other kinds of featuda®ctly
inspired from the Histogram of Oriented GradientO)
approach. Our lab has been successfully invegtigati
boosting with pixel-comparison-based features named
“control-points” (see [6] for original proposal, é&n7] for
recent results with a new variant).

In the present work we investigate boosting of fant

presence features”, where “keypoint” are a var@&BURF

points implemented in our lab (see below), and aalye
successfully applied to real-time person re-ideatfon

[11]. To our knowledge, the idea of using interpsint

descriptors as boosting features was first proptse@pelt
et al. in [8], but it was in a more general framewy@nd they
were considering SIFT points and descriptors [Qicitare
quite slow to compute, compared to the SURF paamis
descriptors [10].

reliable detection ofThe paper is organized as follows: in section Il hviefly

surrounding  moving objects such as pedestrians apgesent the principle of the “Camellia keypointse ware

vehicles. It is particularly interesting to be aldeproperly
detect laterally incoming cars that could lead #dedal
collisions.

using; section Ill explains how we use keypointsiédine a
new original family of weak classifiers, and howrésalized
the feature-selection in this family during eaclo&ting step;

Many techniques have been proposed for visual bbjegection IV presents experimental results on a plybli

detection and classification (see e.g. [3] foraaw of some
of the state-of-the-art methods for pedestrian diete,
which is the most challenging). Of the various naeh
learning approaches applied to this problem, oely fire

available image dataset of laterally-viewed cargd a
preliminary evaluation on a small pedestrians ddtas
section V presents our first step in building aigioal object

detection scheme that could be used with our pdatic

able to process videos in real-time. Among those tkeypoint-based classifier; and section VI draws eom

boosting algorithm with feature selection was sesfidly
extended to machine-vision by Viola & Jones [2].

The adaBoost algorithm was introduced in 1995 by Y.

Freund and R. Shapire [1], and its principle isbtold a

conclusions and perspectives.

Il. CAMELLIA “KEYPOINTS’

strong classifierassembling weighted weak classifiers, thosghe interest point detection and descriptor contjnriais

being obtained iteratively by using successive g of
the examples in the training set. Most publishedk&aising
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performed using “key-points” functions available the
Camellia  bttp://canellia. sourceforge. net)
image processing library. These Camellia key-points
detection and descriptor functions — named CamKieypo
implement a variant of SURF [10]. SURF itself is an
extremely efficient method (thanks to the use dégdnal
images) inspired from the more classic and widedgdu
interest point detector and descriptor SIFT [9].
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Fig. 1. SURF interest points (Ieft V.S. Cfnelliapmints (right);
they are very similar except for voluntary suppi@sof multiple
imbricated blobs at different scales (cf. uppet)lef

) : : ’ E l

As for SURF interest points, the detection of Cdimel
keypoints is a “blob detector” based on findingdbkessian
maxima, those being efficiently obtained by appmading
second order derivatives with box filters computsith
integral image. Our keypoints are however not dyattie

same as SURF points (as can be seen on figurenl),

particular because multiple imbricated blobs atiots
scales are voluntarily avoided. In contrary to SU&fH
SIFT, CamKeypoint scale selection
overlapping octaves, but on a set of discrete schlem

Ill. ADABOOST WITH"“KEYPOINT PRESENCE FEATURES

Our object recognition approach uses the same aener
feature-selecting boosting framework as pioneered b
Viola&Jones in [2]. The originality of our work t® define
and use as weak classifiers a new original feafangly,
instead of Haar features. This new feature typa iseak
classifier that answers positively on an imageni anly if,
among all the Camellia keypoints detected in thagen
there is at least one of them whose descriptorinsles
enough to the “reference keypoint descriptor” aisded
with the weak-classifier.

More formally, each “keypoint presence” weak-classiis
defined by a keypoint SURF descriptor D iif*, and a
descriptor difference threshold scalar value d.sTheak-
cjassifier h(D,d,l) answers positively on an imdgé and
only if | contains at least one keypoint whose desar D’ is
such that| D-D’ | <d, where the “sum of absolute difference”

is not based d®AD) Ll-distance is used: if two keypoints; kand K

respectively have {Desgfi], i = 1...64} and {Desg][i], i =

which the scale of a keypoint is derived by quddratl...64}, then, the distance between K1 and K2 is milg

interpolation. This speeds up the keypoints dedactirt. to
SURF by a factor of 2 without sacrificing the qtabf scale
information, as was shown by some experiments.

The descriptor used for each Camellia keypoinirslar to
the SURF descriptor : an image patch correspontirte
keypoint location and scale is divided in 4x4=16b-su
regions, on each of which are efficiently computied using
integral image approach) the following 4 quantities

> dx
S
2 dy
2 [y

wheredx anddy are respectively the horizontal and vertical

gradient. The total descriptor size is thereforex 6= 64. In

order to avoid all boundary effects in which thesat@tor

abruptly changes when a keypoint physically chantés
linear extrapolation is used to distribute eachtlodé 4

guantities above into 4 sub-regions. Experiment® lsown

that this really improves the quality of the destoi wrt.

SURF. In addition to this, CamKeypoints supportocol
images by adding 32 elements of gradient informatiy

color channel (U and V) to the signature, resulimg 128

descriptor size for color descriptors.

Another main difference between Camellia Keypoiatsl
SUREF lies in that the Camellia implementation usésger-
only computations — even for the scale interpotatipwhich
makes it even faster than SURF, and particularlj-sugted

for potential embedding in camera hardware. SIFT arf

SURF make extensive use of floating point compaoites;
which makes these algorithms power hungry.

equation 1 below:
Dist(K,,K,) =" abs(Desfi] -Deseli]) (1)

The rationale of boosting “keypoint presence fesgurfor
image categorization is that it should be possilolea given
object category, to determine a set of characteristerest
points whose simultaneous presence would be repiedse
of that particular category. This is similar inrpibut with a
completely different algorithm, to the “part basegiproach
proposed by [12].

The training method is the standard feature-selgcti
adaBoost algorithm, in which, at each boosting ,stbp
SURF descriptor D is chosen among all descriptougd in
positive example images. More formally, let the training se
pe composed of positive images Ipl, 1p2, ...., and of
negative images Inl, In2, ...We first apply the Cdimel
keypoint detector on alpositive images Ip1, Ip2, ..., and
build the “positive keypoints set” Spk = {KK, K, ..., Ko}

as the union of all Camellia keypoints detected amy
positive examples of the training set. The adaBetiure-
selection has to select, at each boosting steparécylar
“keypoint presence” weak classifier defined by aD64
descriptor and a scalar threshold. The descriptdlr be
chosen among those of positive keypoints collettegpk.

In order to choose a threshold value, we apply &iyp
detection on all negative images as well, so thatoan
compare descriptors of the positive keypoints irk $p
descriptors of all keypoints found in training ineag We
define the “distance” between any given keypoirard any
iven image | as the smallest descriptor differebetveen
K and all keypoints Klj found in image I:

dist(K,|)=min Klj keypoint found in image I{ diSt(KyKlj) } (2)



where dist(K,Klj) is the SAD of descriptors as defil in there seems to be no clear improvement on testetatar
equation (1). This allows us to build a matrix Mdi$tances boosting steps T>150.

between positive keypoints and all training imagskere
Mij = dist(Ki , Ij). As illustrated on figure 2, th QxN matrix
(with Q the number of positive keypoints and N thenber
of training images) has at least one zero on g@aeh dn the
column corresponding to the positive image in whibb
keypoints was found.

Tot Tpo Lz It Too Lz

0 x x x x

Fig.3. Some positive (2 left columns) end negdtigat column)
examples from the training set
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Fig. 2. Matrix of distances between keypoints foomgositive
image example (one for each row) and all N trainimgqges

(positives and negatives, one for each column) oo
0.04
We make a growing sorting of the distance matrixrbiv 002
by row, and then we take tmeiddle of each two successive ,
distancesin the sorted matrix to build the set T, o 2 I
k=1,...,N} of candidate threshold values for a feattesting o Gl Evitor
presence of the corresponding positive keypojnt K Fig.4. Typical evolution, during successive boassteps,

. L of errors on training and test
At each boosting step, we choose among all (Ki,Edples

the one that gives the lowest weighted error ontrt&i@ing

set: (i*,k*) = argmin (ZN_le [h(Ki,Tik,lj) - lj| ), and the Figure 5 shows the precision-recall curve, computedhe

= independent test set, for boosted strong classifigith
respectively 10 and 300 “keypoint presence” wealssifiers
assembled. The classification result is very goedh a
recall of ~95% for a precision of ~95%.

selected weak classifier is h{ -, . ).

IV. EXPERIMENTS AND RESULTS

A. Lateral cars database
‘PrecisionRecall 10WC ———

For a first evaluation of our approach, we usedphikelicly : - PrecisonRecal 300 WC
available http://I2r.cs.uiuc.edu/~cogcomp/Data/Qdateral-

car dataset collected by Agarwal et al. [12]. Tidabase 0
contains 550 positive images and 500 negative imalger
training, we use 352 positive images, and 322 negat
images, the rest being used as a test set foratiaiu Note

06

Precision

that the partition between training and testing setbis ot
random. Some examples from the training set arevistam

figure 3. 02
Figure 4 shows the typical error evolution durirdpBoost .

training: as is usual with boosting, the trainingoe quickly
falls to zero, and the error on test set contirtoediminish
afterwards. This shows that boosting by assembéatures
extracted from our new “keypoint presence” familged
work and allow to build a strong classifier able to
discriminate a given object category. On this patér case,

Recall

Fig. 5. Precision-recall curve computed on tesf k&
strong boosted classifier assembling 10 and 30kwksssifiers
selected from our new “keypoint presence” family.



In order to further analyze how the obtained cfaessivorks,
we looked at the evolution of strong classifierputton test
images as a function of the boosting step. As @sden on
figure 6a, we typically obtain, on positive imagemly
positive votes by the first few weak-classifiersidathen
some negative votes decrease the global output,thzut
weighted vote remains largely above the 0.5 thrieshar
positive classification.

p—

05
| e e Fig. 7. lllustration on one positive image and oregative image
of the positively responding adaboost-selected dieyg some of
08 them do vote positive on some negative imageshbugtrong

classifier still correctly classifies those negatvimages.

Viote
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B. Pedestrians database
As a quick check for the generality of our new fignaif

04

02 features, we have applied our method syl subseobf the
publicly available pedestrians database collectetMbnder
o : : ‘ : ; : ; and Gavrila [3]. For training computation time reas, we
0 50 100 150 200 250 300 30 400 o A A |
Shomalsseifer Evalion used only 550 positive images and 500 negative éndmm
Fig. 6a. Evolution with increasing boosting stepsténg their first training set, and split them as 2/3 éar training,
classifier output on a given positive image and 1/3 for our testing.

The typical strong classifier output evolution oagative _' Y
image is roughly symmetric, as illustrated on feg6b. ﬂ

1

0s
‘Instant Yote'

Wote
o
@

Fig. 8. Some examples from the pedestrians datahdsset.

o4 The boosting with our new family of features indeed
learns normally, as can be checked on the evolutitih

o boosting steps of training and testing errors shawn
figure 9.

a 50 100 150 200 250 300 350 400

StrongClassifier Evolution 'SCerror_testixt! em—
Fig. 6b. Evolution with increasing boosting stepsténg
classifier output on a given negative image

We also checked how the boosting-selected “keypoi .
presence” features respond on positive and negatiages.
As illustrated on figure 7, some of the adabookteted
features vote positive on negative images, butdbiss not
prevent correct classification as negative by tleng
classifier. 0

0 2 0 &0 80 100

boosting steps

Fig. 9. Evolution during successive boosting stepshe training
and testing errors on the subset of pedestrianalzie.



The precision-recall curve computed on the testisetso
correctly evolving to the upper-right corner, attag a good
97% recall / 92% precision with a 100-features rgjro
classifier, as can be seen on figure 10. Howevee, t
classification performance of our method on the migger
full-sized pedestrians database still remains tevaduated.

Precision

PRTI0DAK ———
PRT_S0X ——t—
PRT_I0X ——

05 06 07 08 LE] 1

Recall

Fig. 10. Precision-recall curves computed on tesf at boosting
steps 10 (lower curve), 50 (middle curve) and 1Q@péun curve).

This clearly shows that the keypoints selectedespond to
specific parts of the object category, such aswtheels or
the side skirt,
signification relative to the object category.

Weak
Classifier
40

Image 1

Fig. 12. Position of adaBoost-selected positivelsponding
keypoints cumulated on all positive example images.

Image 2 Specificity

Keypoints concentrated
onthe rectangular side

of the car

230 Keypoints concentrated
under the car between

the two wheels

300 Keypoints concentrated

on wheels

Another motivation for these new kind of adaBoeasitéires
is that, by nature of the features, it should besjfie to
derive the localizations in the image of objects thé
searched category quite straightforwardly by sornmg lof
clustering, or possibly a Hough-like method, applte the

Finally, we illustrate on figure 11 what are thepositions of positively-responding keypoints, thanaking

adaboost-selected keypoints replying “positive” some
typical positive examples. It can be noticed thame
keypoints typically seem to circle the head, oththe
shoulder, and others the “upper inter-leg” part

Fig.11. lllustration on some positive exampleshef positively
responding adaboost-selected keypoints

V. OBJECT DETECTION FROM KEYPOINTS

There are several motivations for our new featype.t One
is that a classifier based on the simultaneousepues of
several characteristic keypoints matches the intuilve can
have on how human do categorize image by spottinges
characteristic parts. In order to check if our ape®-
selected keypoints make sense from this point efvyiwe
decided to check on positive images where are ddctte
“positively responding keypoints” for a given feawf the
strong classifier.

Figure 12 illustrates the positions of all keypsjrtumulated
on all positive example images, that are withindbscriptor
distance threshold of one given adaBoost-seleagddints.

costly window-scanning unnecessary.

As a first test, we computed all keypoints on aewidand
filtered them to keep only the positively-resporgdones, as
illustrated on figure 13, where one can see thtdrdily
incoming car on upper-right part of field is ratheell
delineated as a single group of positive keypoints.

Note that the computation of all keypoints, as veslltheir
filtering for keeping only the positively-respondirones is
donein real-timeon the video.

Fig. 13. First detection test on a video: all keyys on the left
side, and only positively-reponding keypoints anright side.

which means they have a semantic



VI. CONCLUSIONS AND PERSPECTIVES

“keypoint presence features”, to be used for bagsfor
object category visual recognition. We have obthifiest
successful test of boosting “keypoint presence ufeat,
applied to lateral car recognition, yielding 95%at with

95% precision on test set. Moreover, analysis dc th

positions of adaBoost-selected keypoints show that

correspond to a specific part of the object categsuch as
“wheel” or “side skirt”) and thus have a “semantin&aning.
Preliminary test on a small subset of a pedestriatabase
also gives promising results, showing that our fewily of

features can be used for recognition of variousesypf

object categories.

Perspectives include tests on other datasets, rircydar
for other object categories. Also, an optimizatioh the
keypoint-threshold selection is underway, as therect
version makes training rather computer-intensive l&oge
datasets.

More importantly, we are currently developing arecb
localization method based on the analysis of pmstiof
positively-responding keypoints. Finally, we arensidering
exploiting the relative positions of keypoints,taed of only
their simultaneous presence, for further improvenuérthe
performances.
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