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1. Introduction

Recent advances in technology have made possible the emergence of Health Smart Homes
(Chan et al., 2008) designed to improve daily living conditions and independence for the
population with loss of autonomy. Health smart homes are aiming at assisting disabled and
the growing number of elderly people which, according to the World Health Organization
(WHO), is forecasted to reach 2 billion by 2050. Of course, one of the first wishes of this pop-
ulation is to be able to live independently as long as possible for a better comfort and to age
well. Independent living also reduces the cost to society of supporting people who have lost
some autonomy. Nowadays, when somebody is loosing autonomy, according to the health
system of her country, she is transferred to a care institution which will provide all the neces-
sary supports. Autonomy assessment is usually performed by geriatricians, using the index
of independence in Activities of Daily Living (ADL) (Katz & Akpom, 1976), which evaluates
the person’s ability to realize different activities of daily living (e.g., doing a meal, washing,
going to the toilets . . . ) either alone, or with a little or total assistance. For example, the AG-
GIR grid (Autonomie Gérontologie Groupes Iso-Ressources) is used by the French health system.
Seventeen activities including ten discriminative (e.g., talking coherently, orientating himself,
dressing, going to the toilets...) and seven illustrative (e.g., transports, money management,
...) are graded with an A (the task can be achieved alone, completely and correctly), a B (the
task has not been totally performed without assistance or not completely or not correctly) or
a C (the task has not been achieved). Using these grades, a score is computed and, according
to the scale, a geriatrician can deduce the person’s level of autonomy to evaluate the need for
medical or financial support.
Health Smart Home has been designed to provide daily living support to compensate some
disabilities (e.g., memory help), to provide training (e.g., guided muscular exercise) or to de-
tect harmful situations (e.g., fall, gas not turned off). Basically, an health smart home contains
sensors used to monitor the activity of the inhabitant. The sensors data is analyzed to detect
the current situation and to execute the appropriate feedback or assistance. One of the first
steps to achieve these goals is to detect the daily activities and to assess the evolution of the
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monitored person’s autonomy. Therefore, activity recognition is an active research area (Albi-
nali et al., 2007; Dalal et al., 2005; Duchêne et al., 2007; Duong et al., 2009; Fleury, 2008; Moore
& Essa, 2002) but, despite this, it has still not reached a satisfactory performance nor led to
a standard methodology. One reason is the high number of flat configurations and available
sensors (e.g., infra-red sensors, contact doors, video cameras, RFID tags, etc.) which may not
provide the necessary information for a robust identification of ADL. Furthermore, to reduce
the cost of such an equipment and to enable interaction (i.e., assistance) the chosen sensors
should serve not only to monitor but also to provide feedback and to permit direct orders.
One of the modalities of choice is the audio channel. Indeed, audio processing can give infor-
mation about the different sounds in the home (e.g., object falling, washing machine spinning,
door opening, foot step . . . ) but also about the sentences that have been uttered (e.g., distress
situations, voice commands). Moreover, speaking is the most natural way for communication.
A person, who cannot move after a fall but being concious has still the possibility to call for
assistance while a remote controller may be unreachable.
In this chapter, we present AUDITHIS— a system that performs real-time sound and speech
analysis from eight microphone channels — and its evaluation in different settings and exper-
imental conditions. Before presenting the system, some background about health smart home
projects and the Habitat Intelligent pour la Santé of Grenoble is given in section 2. The related
work in the domain of sound and speech processing in Smart Home is introduced in section 3.
The architecture of the AUDITHIS system is then detailed in section 4. Two experimentations
performed in the field to validate the detection of distress keywords and the noise suppres-
sion are then summarised in section 5. AUDITHIS has been used in conjunction with other
sensors to identify seven Activities of Daily Living. To determine the usefulness of the audio
information for ADL recognition, a method based on feature selection techniques is presented
in section 6. The evaluation has been performed on data recorded in the Health Smart Home
of Grenoble. Both data and evaluation are detailed in section 7. Finally, the limits and the
challenges of the approach in light of the evaluation results are discussed in section 8.

2. Background

Health smart homes have been designed to provide ambient assisted living. This topic is
supported by many research programs around the world because ambient assisted living is
supposed to be one of the many ways to aid the growing number of people with loss of au-
tonomy (e.g., weak elderly people, disabled people . . . ). Apart from supporting daily living,
health smart homes constitute a new market to provide services (e.g., video-conferencing,
tele-medicine, etc.). This explains the involvement of the major telecommunication compa-
nies. Despite these efforts, health smart home is still in its early age and the domain is far
from being standardised (Chan et al., 2008). In the following section, the main projects in this
field — focusing on the activity recognition — are introduced. The reader is referred to (Chan
et al., 2008) for an extensive overview of smart home projects. The second section is devoted
to the Health Smart Home of the TIMC-IMAG laboratory which served for the experiments
described further in this chapter.

2.1 Related Health Smart Home Projects
To be able to provide assistance, health smart homes need to perceive the environment —
through sensors — and to infer the current situation. Recognition of activities and distress
situations are generally done by analyzing the evolution of indicators extracted from the sen-
sors raw signals. A popular trend is to use as many as possible sensors to acquire the most

information. An opposite direction is to use the least number of sensors as possible to reduce
the cost of the smart home. For instance, the Edelia company1 evaluates the quantity of wa-
ter used per day. A model is built from these measurements and in case of high discrepancy
between the current water use and the model, an alert to the relatives of the inhabitant is gen-
erated. Similar work has been launched by Zojirushi Corporation2 which keeps track of the
use of the electric water boiler to help people stay healthy by drinking tea (which is of par-
ticular importance in Japan). In an hospital environment, the Elite Care project (Adami et al.,
2003) proposed to detect the bedtime and wake-up hours to adapt the care of patients with
Alzheimer’s disease.
These projects focus on only one sensor indicator but most of the research projects includes
several sensors to estimate the ‘model’ of the lifestyle of the person. The model is generally
estimated by data mining techniques and permits decision being made from multisource data.
Such smart homes are numerous. For instance, the project House_n from the Massachusetts
Institute of Technology, includes a flat equipped with hundreds of sensors (Intille, 2002). These
sensors are used to help performing the activities of daily living, to test Human-Machine
Interfaces, to test environment controller or to help people staying physically and mentally
active. This environment has been designed to easily assess the interest of new sensors (e.g.,
RFID, video camera, etc.). A notable project, The Aware Home Research Initiative (Abowd et al.,
2002) by the Georgia Institute of Technology, consists in a two-floor home. The ground floor
is devoted to an elderly person who lives in an independent manner whereas the upper floor
is dedicated to her family. This family is composed of a children mentally disabled and his
parents who raise him while they work full-time. This house is equipped with motion and
environmental sensors, video cameras (for fall detection and activity recognition (Moore &
Essa, 2002) and short-term memory help (Tran & Mynatt, 2003)) and finally RFID tags to find
lost items easily. Both floors are connected with flat screens to permit the communication of
the two generations. The AILISA (LeBellego et al., 2006) and PROSAFE (Bonhomme et al.,
2008) projects have monitored the activities of the person with presence infra-red sensors to
raise alarms in case of abnormal situations (e.g., changes in the level of activities). Within the
PROSAFE project, the ERGDOM system controls the comfort of the person inside the flat (i.e.,
temperature, light...).
Regarding the activity detection, although most of the many researches related to health smart
homes is focused on sensors, network and data sharing (Chan et al., 2008), a fair number of
laboratories started to work on reliable Activities of Daily Living (ADL) detection and clas-
sification using Bayesian (Dalal et al., 2005), rule-based (Duong et al., 2009; Moore & Essa,
2002), evidential fusion (Hong et al., 2008), Markovian (Albinali et al., 2007; Kröse et al., 2008),
Support Vector Machine (Fleury, 2008), or ensemble of classifiers (Albinali et al., 2007) ap-
proaches. For instance, (Kröse et al., 2008) learned models to recognize two activities: ‘going to
the toilets’ and ‘exit from the flat’. (Hong et al., 2008) tagged the entire fridge content and other
equipments in the flat to differentiate the activities of preparing cold or hot drinks from hy-
giene. Most of these approaches have used Infra-red sensors, contact doors, videos, RFID tags
etc. But, to the best of our knowledge, only few studies include audio sensors (Intille, 2002)
and even less have assessed what the important features (i.e. sensors) for robust classification
of activities are (Albinali et al., 2007; Dalal et al., 2005). Moreover, these projects considered
only few activities while many daily living activities detection is required for autonomy as-
sessment. Our approach was to identify seven activities of daily living that will be useful for
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the automatic evaluation of autonomy, and then to equip our Health Smart Home with the
most relevant sensors to learn models of the different activities (Portet et al., 2009). The next
section details the configuration of health smart home.

2.2 The TIMC-IMAG’s Health Smart Home
Since 1999, the TIMC-IMAG laboratory in Grenoble set-up, inside the faculty of medicine of
Grenoble, a flat of 47m2 equipped with sensing technology. This flat is called HIS from the
French denomination: Habitat Intelligent pour la Santé (i.e., Health Smart Home). The sensors
and the flat organization are presented in Figure 1. It includes a bedroom, a living-room, a
corridor, a kitchen (with cupboards, fridge. . . ), a bathroom with a shower and a cabinet. It
has been firstly equipped with presence infra-red sensors, in the context of the AILISA project
(LeBellego et al., 2006) and served as prototype for implementation into two flats of elderly
persons and into hospital suites of elderly people in France. Important features brought by
the infra-red sensors have been identified such as mobility and agitation (Noury et al., 2006)
(respectively the number of transitions between sensors and the number of consecutive detec-
tions on one sensor) which are related to the health status of the person (Noury et al., 2008).
The HIS equipment has been further complemented with several sensors to include:

• presence infra-red sensors (PIR), placed in each room to sense the location of the person in
the flat;

• door contacts, for the recording of the use of some furniture (fridge, cupboard and
dresser);

• microphones, set in each room to process sounds and speech; and
• large angle webcams, that are placed only for annotation purpose.

Doors contacts

Presence Infra−

Red sensors

Large Angle 

Webcamera

Temperature and

Hygrometry sensors

Phone

Microphones

Fig. 1. The Health Smart Home of the TIMC-IMAG Laboratory in Grenoble

The cost of deployment of such installation is reduced by using only the sensors that are the
most informative. This explains the small number of sensors compared to other smart homes
(Intille, 2002). The technical room contains 4 standard computers which receive and store,
in real time, the information from the sensors. The sensors are connected with serial port
(contact-doors), USB port (webcams), wireless receiver (PIRs) or through an analog acquisi-
tion board (microphones). Except for the microphones these connections are available on ev-
ery (even low-cost) computer. These sensors were chosen to enable the recognition of activities
of daily living, such as sleeping, preparing and having a breakfast dressing and undressing,
resting, etc. The information that can be extracted from these sensors and the activities they
are related to are summarised in Table 5 presented in section 7.

It is important to note that this flat represents an hostile environment for information acquisi-
tion similar to the one that can be encountered in real home. This is particularly true for the
audio information. For example, we have no control on the sounds that are measured from
the exterior (e.g., the flat is near the helicopter landing strip of the local hospital). Moreover,
there is a lot of reverberation because of the 2 important glazed areas opposite to each other
in the living room. The sound and speech recognition system presented in section 4 has been
tested in laboratory and gave an average Signal to Noise Ratio of 27dB in-lab. In the HIS, this
fell to 12dB. Thus, the signal processing and learning methods that are presented in the next
sections have to address the challenges of activity recognition in such a noisy environment.

3. State of the Art in the Context of Sound and Speech Analysis

Automatic sound and speech analysis are involved in numerous fields of investigation due
to an increasing interest for automatic monitoring systems. Sounds can be speech, music,
songs or more generally sounds of the everyday life (e.g., dishes, step,. . . ). This state of the art
presents firstly the sound and speech recognition domains and then details the main applica-
tions of sound and speech recognition in smart home context.

3.1 Sound Recognition
Sound recognition is a challenge that has been explored for many years using machine
learning methods with different techniques (e.g., neural networks, learning vector quantiza-
tions,. . . ) and with different features extracted depending on the technique (Cowling & Sitte,
2003). It can be used for many applications inside the home, such as the quantification of
water use (Ibarz et al., 2008) but it is mostly used for the detection of distress situations. For
instance, (Litvak et al., 2008) used microphones to detect a special distress situation: the fall.
An accelerometer and a microphone are both placed on the floor. Mixing sound and vibration
of the floor allowed to detect fall of the occupant of the room. (Popescu et al., 2008) used
two microphones for the same purpose, using Kohonen Neural Networks. Out of a context of
distress situation detection, (Chen et al., 2005) used HMM with the Mel-Frequency Cepstral
Coefficients (MFCC) to determine the different uses of the bathroom (in order to recognize
sequences of daily living). (Cowling, 2004) applied the recognition of non-speech sounds as-
sociated with their direction, with the purpose of using these techniques in an autonomous
mobile surveillance robot.

3.2 Speech Recognition
Human communication by voice appears to be so simple that we tend to forget how variable
a signal speech is. In fact, spoken utterances even of the same text are characterized by large
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differences that depend on context, speaking style, the speaker’s dialect, the acoustic environ-
ment... Even identical texts spoken by the same speaker can show sizable acoustic differences.
Automatic methods of speech recognition must be able to handle this large variability in a
fault-free fashion and thus the progress in speech processing are not as fast as hoped at the
time of the early work in this field.
The phoneme duration, the fundamental frequency (melody) and the Fourier analysis have
been used for studying phonograph recordings of speech in 1906. The concept of short-term
representation of speech, where individual feature vectors are computed from short (10-20
ms) semi-stationary segments of the signal, were introduced during the Second World War.
This concept led to a spectrographic representation of the speech signal and to underline the
importance of the formants as carriers of linguistic information. The first recognizer used a
resonator tuned to the vicinity of the first formant vowel region to trigger an action when a
loud sound were pronounced. This knowledge-based approach were abandoned by the first
spoken digit recognizer in 1952 (Davis et al., 1952). (Rabiner & Luang, 1996) published the
scaling algorithm for the Forward-Backward method of training of Hidden Markov Model
recognizers and at this time modern general-purpose speech recognition systems are gener-
ally based on HMMs as far as the phonemes are concerned. Models of the targeted language
are often used. A Language model is a collection of constraints on the sequence of words
acceptable on a given language and may be adapted to a particular application. The speci-
ficities of a recognizer are related to its adaptation to a unique speaker or to a large variety of
speakers, and to its capacities of accepting continuous speech, and small or large vocabularies.
Many computer softwares are nowadays able to transcript documents on a computer from
speech that is uttered at normal pace (for the person) and at normal loud in front of a mi-
crophone connected to the computer. This technique necessitates a learning phase to adapt
the acoustic models to the person. That is done from a given set of sentences uttered by the
speaker the first time he used the system. Dictation systems are capable of accepting very
large vocabularies, more than ten thousand words. Another kind of application aims to rec-
ognize a small set of commands, i.e. for home automation purpose or on a vocal server (of an
answering machine for instance). This can be done without a speaker adapted learning step
(that would be too complicated to set-up). Document transcription and command recognition
use speech recognition but have to face different problems in their implementation. The first
application needs to be able to recognize, with the smallest number of mistakes, a large num-
ber of words. For the second application, the number of words is lower, but the conditions
are worst. Indeed, the use of speech recognition to enter a text on a computer will be done
with a good microphone, well placed (because often associated to the headphone) and with
relatively stable conditions of noise on the measured signal. In the second application, the mi-
crophone could be, for instance, the one of a cell phone, that will be associated to a low-pass
filter to reduce the transmissions on the network, and the use could be done in every possible
conditions (e.g., in a train with a baby crying next to the person).
More general applications are for example related to the context of civil safety. (Clavel et al.,
2007) studied the detection and analysis of abnormal situations through fear-type acoustic
manifestations. Two kinds of application will be presented in the continuation of this section:
the first one is related to people aids and the second one to home automation.

3.3 Speech and Sound Recognition Applied to People Aids
Speech and sound recognition have been applied to the assistance to the person. For example,
based on a low number of words, France Telecom Research and Development worked on a

pervasive scarf that can be useful to elderly or dependant people (with physical disabilities
for instance) in case of problem. It allows to call, easily (with vocal or tactile commands) a
given person (previously registered) or the emergencies.
Concerning disabled or elderly people, (Fezari & Bousbia-Salah, 2007) have demonstrated the
feasibility to control a wheel chair using a given set of vocal commands. This kind of com-
mands uses existing speech recognition engines adapted to the application. In the same way,
Renouard et al. (2003) worked on a system with few commands able to adapt continuously to
the voice of the person. This system is equipped with a memory that allows the training of a
reject class.
Finally, speech recognition can be used to facilitate elderly people access to new technologies.
For example, Kumiko et al. (2004) aims at assisting elderly people that are not familiar with
keyboards through the use of vocal commands. Anderson et al. (1999) proposed the speech
recognition of elderly people in the context of information retrieval in document databases.

3.4 Application of Speech and Sound Recognition in Smart Homes
Such recognition of speech and sound can be integrated into the home for two applications:

• Home automation,
• Recognition of distress situations.

For home automation, (Wang et al., 2008) proposed a system based on sound classification,
this allows them to help or to automatize tasks in the flat. This system is based on a set of
microphones integrated into the ceiling. Classification is done with Support Vector Machines
from the MFCC coefficients of the sounds.
Recognition of distress situations may be achieved through sound or speech analysis; a dis-
tress situation being recognized when some distress sentences or key words are uttered, or
when some sounds are emitted in the flat like glass breaking, screams or object falling. This
was explored by (Maunder et al., 2008) which constructed a database of sounds of daily life
acquired by two microphones in a kitchen. They tried to differentiate sounds like phone,
dropping a cup, dropping a spoon, etc. using Gaussian Mixture Models. (Harma et al., 2005)
collected sounds in an office environment and tried unsupervised algorithms to classify the
sounds of daily life at work. Another group, (Istrate et al., 2008), aimed at recognizing the
distress situations at home in embedded situations using affordable material (with classical
audio sound cards and microphones).
On another direction, researches have been engaged to model the dialogue of an automated
system with elderly people (Takahashi et al., 2003). The system performs voice synthesis,
speech recognition, and construction of a coherent dialogue with the person. This kind of
research have application in robotics, where the aim is then to accompany the person and
reduce his loneliness.
Speech and sound analyses are quite challenging because of the recording conditions. Indeed,
the microphone is almost never placed near the speaker or embedded, but often set in the
ceiling. Surrounding noise and sound reverberation can make the recognition very difficult.
Therefore, speech and sound recognition have to face different kind of problems. Thus a signal
processing adapted to the recording conditions is requested. Moreover, automatic speech
recognition necessitates acoustic models (to identify the different phonemes) and languages
models (recognition of words) adapted to the situation. Elderly people tends to have voice
characteristics different from the active population (Wilpon & Jacobsen, 1996). (Baba et al.,
2004) constructed specifically acoustic models for this target population to asses the usefulness
of such adaptation.
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Our work consists in a complete sound recognition system to identify the different sounds in
the flat in order to recognize the currently performed activity of daily living, associated to a
speech recognition system in French to search for distress keywords inside the signal mea-
sured. The implementation and test of this complete system is described in the next sections.

4. The AUDITHIS and RAPHAEL Systems

The term AUDITHIS is built from the names audit and audition, and the acronym HIS (Habitat
Intelligent pour la Santé - Health Smart Home) and the merger of audio and audit, because the
system aims at sound and speech analysis in a health smart home. Therefore, AUDITHIS is
able to analyze, in real-time, information from eight microphones placed at different location
of a smart home. Figure 2 depicts the general organization of the AUDITHIS audio analysis
system and its interaction with the Autonomous Speech Recognizer RAPHAEL.
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Fig. 2. Architecture of the AUDITHIS and RAPHAEL systems

Both systems are running in real-time as independent applications on the same GNU/Linux
operating system and they are synchronized through a file exchange protocol. Each of the 8
microphones is connected to an analog input channel of the acquisition board. Each sound
is processed independently and sucessively by the different modules thanks to a queuing
management protocol:

1. Data Acquisition and preprocessing, which is in charge of signal acquisition, SNR es-
timation, noise cancellation;

2. Detection, which estimates the beginning and end of a sound to analyse and manage
the simultaneous audio events;

3. Segmentation, which classifies each audio event as being speech or sound of daily liv-
ing;

4. Sound classification or Speech Recognition (RAPHAEL), which determines which
class of sound or which phrase has been uttered; and

5. Message Formatting.

These modules run as independent threads synchronized by a scheduler. The following sec-
tions detail each of the modules.

4.1 Data Acquisition and preprocessing
Data acquisition is operated on the 8 input channels simultaneously at a 16 kHz sampling
rate by the first module. Data of each channel is stored in a buffer and processed sequentially
and separately. Noise level is also evaluated by this module to assess the Signal to Noise
Ratio (SNR) of each acquired sound. The SNR of each audio signal is very important for the
decision system to estimate the reliability of the corresponding analysis output. Moreover,
noise suppression techniques are incorporated in this module in order to suppress on the fly
the noise emitted by known sources like TV or radio; this part of the module is described in
section 4.2.

4.2 Known Source Noise Suppression
Listening to the radio and watching TV are very frequent everyday activities; this can seri-
ously disturb a sound and speech recognizer. Because of that, sound and speech analysis
must solve two problems: firstly, sounds or speech emitted by the person in the flat can be
altered by the loudspeaker and badly recognized, and secondly, radio and TV sounds will be
analyzed as well although their information is not relevant. It will be then mandatory to take
into account the fact that the radio or the TV is up to suppress this noise or to exploit the re-
sulting information in an other way. Sound x(n) emitted by a loudspeaker in the health smart
home is a noise source that will be altered by the room acoustics depending on the position of
the microphone in the room. The resulting noise y(n) of this alteration may be expressed by a
convolution product in the time domain (Equation 1), h being the impulse response and n the
discrete time.

y(n) = h(n) ∗ x(n) (1)

This noise is then superposed to the interesting signal e(n) emitted in the room: speech uttered
by the person or everyday life sound. The signal recorded by the microphone is then y(n) =
e(n) + h(n) ∗ x(n). Various methods were developed in order to cancel the noise (Michaut &
Bellanger, 2005), some methods attempt to obtain ĥ(n) an estimation of the impulse response
of the room in order to remove the noise as shown on Figure 3. The resulting output is given
in Equation 2.

v(n) = e(n) + y(n)− ŷ(n) = e(n) + h(n) ∗ x(n)− ĥ(n) ∗ x(n) (2)

These methods may be divided into 2 classes: Least Mean Square (LMS) and Recursive Least
Square (RLS) methods. Stability and convergence properties are studied in (Michaut & Bel-
langer, 2005). The Multi-delay Block Frequency Domain (MDF) algorithm is an implementa-
tion of the LMS algorithm in the frequency domain (Soo & Pang, 1990). In echo cancellation
systems, the presence of audio signal e(n) (double-talk) tends to make the adaptive filter di-
verge. To prevent this problem, robust echo cancellers require adjustment of the learning
rate to take the presence of double talk in the signal into account. Most echo cancellation
algorithms attempt to explicitly detect double-talk but this approach is not very successful,
especially in presence of a stationary background noise. A new method (Valin & Collings,
2007) was proposed by the authors of the library, where the misalignment is estimated in
closed-loop based on a gradient adaptive approach; this closed-loop technique is applied to
the block frequency domain (MDF) adaptive filter.
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section 4.2.
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Listening to the radio and watching TV are very frequent everyday activities; this can seri-
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discrete time.
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This noise is then superposed to the interesting signal e(n) emitted in the room: speech uttered
by the person or everyday life sound. The signal recorded by the microphone is then y(n) =
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verge. To prevent this problem, robust echo cancellers require adjustment of the learning
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algorithms attempt to explicitly detect double-talk but this approach is not very successful,
especially in presence of a stationary background noise. A new method (Valin & Collings,
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Fig. 3. Echo Cancellation System used for Noise Suppression

The echo cancellation technique used introduces a specific noise into the v(n) signal and a
post-filtering is requested. This algorithm is implemented in the SPEEX library under GPL Li-
cense (Valin, 2007) for echo cancellation system. The method implemented in this library is the
Minimum Mean Square Estimator Short-Time Amplitude Spectrum Estimator (MMSE-STSA)
presented in (Ephraim & Malah, 1984). The STSA estimator is associated to an estimation of
the a priori SNR. The formulated hypothesis are following:

• added noise is Gaussian, stationary and the spectral density is known;
• an estimation of the speech spectrum is available;
• spectral coefficients are Gaussian and statistically independents;
• the phase of the Discrete Fourier Transform follows a uniform distribution law and is

amplitude independent.
Some improvements are added to the SNR estimation (Cohen & Berdugo, 2001) and a psycho-
acoustical approach for post-filtering (Gustafsson et al., 2004) is implemented. The purpose
of this post-filter is to attenuate both the residual echo remaining after an imperfect echo
cancellation and the noise without introducing ‘musical noise’ (i.e. randomly distributed, time-
variant spectral peaks in the residual noise spectrum as spectral subtraction or Wiener rule
does (Vaseghi, 1996)). The post-filter is implemented in the frequency domain, which basically
means that the spectrum of the input signal is multiplied by weighting coefficients. Their
weighted values are chosen by taking into account auditory masking. Noise is inaudible if
it is too close to the useful signal in frequency or time; therefore noise components which lie
below the masked threshold of the ear are inaudible and can thus be left unchanged. This
method leads to more natural hearing and to less annoying residual noise.

4.3 Detection
The detection module is in charge of signal extraction, i.e. to detect the beginning and the end
of the audio event. The first step detects the portion of signal that corresponds to a sound
segment. It evaluates the background noise of the room and determines a threshold of detec-
tion from this. If this adaptive threshold is exceeded by the energy of wavelet trees of highest
order level (3 level depth), the signal of the channel is recorded until its energy becomes lower
than a second adaptive threshold. Each event is stored in a file for further analysis by the
segmentation and recognition modules. The complete method for the detection of the bounds
of a given event and also the associated evaluations is described in (Istrate et al., 2006).

4.4 Segmentation
The segmentation module is a Gaussian Mixture Model (GMM) classifier which classifies each
audio event as everyday life sound or speech. The segmentation module was trained with an
everyday life sound corpus (Vacher et al., 2007) and with the Normal/Distress speech corpus
recorded in our laboratory (Vacher et al., 2008). Acoustical features are Linear-Frequency Cep-
stral Coefficients (LFCC) with 16 filter banks; the classifier uses 24 Gaussian models. These
features are used because life sounds are better discriminated from speech with constant band-
width filters, than with Mel-Frequency Cepstral Coefficients (MFCC), on a logarithmic Mel
scale (Vacher et al., 2007). MFCC are the most widely used features for speech recognition.
Acoustical features are evaluated using frames whose width is of 16 ms, with an overlap of
50%.

4.5 Sound Classification
Everyday life sounds are classified with either a GMM or Hidden Markov Model (HMM)
classifier; the classifier is chosen at the beginning of the experiment. The models were trained
with our corpus containing the eight classes of everyday life sounds, using LFCC features (24
filter banks) and 12 Gaussian models. The sound classes are: dishes sounds, door lock, door
slap, glass breaking, object falls, ringing phone, screams and step sounds. This corpus is made
of 1985 sounds and its total duration is 35 min 38 s. The HMM classifier gives best results in
noiseless conditions but we chose the GMM classifier that gives best results when the SNR is
under +10 dB. The models could be extended to include more daily living sounds requested
to operate in the real life.

4.6 Speech Recognition: the RAPHAEL ASR
The autonomous speech recognizer RAPHAEL (Vacher et al., 2008) is running as an inde-
pendent application. It analyzes the speech events resulting from the segmentation module,
through a file exchange protocol. As soon as an input file is analyzed, it is deleted, and the 5
best hypothesizes are stored in a file. This event allows the AuditHIS scheduler to send the
next queued file to the recognizer. Moreover, each sentence file is stored in order to allow
future analysis with different recognition parameters of the recognizer. The architecture of
the ASR is described by Figure 4. The first stage is the audio interface in charge of acoustical
feature extraction in each 16 ms frame with a 50% overlay. The next 3 stages working together
are:

• the phoneme recognizer stage;
• the word recognition stage constructing the graph of phonemes; and
• the sentence recognition stage constructing the graph of words.

The data associated with these stages are respectively the acoustic models (HMMs), the phonetic
dictionary and the language models (tri-grams). The output of the recognizer is made of the 5
best hypothesis lattices.
The training of the acoustic models was made with large corpora in order to ensure good
speaker independence. These corpora were recorded by 300 French speakers by our team
(BRAF100) (Vaufreydaz et al., 2000) and at the LIMSI laboratory (BREF80 and BREF120) (Gau-
vain et al., 1990). The phonetic dictionary consists in the association of each word in French
with its phoneme sequence using the SAMPA coding. Some phonetic variants were added
to take into account the possible liaison between word or a possible incorrect pronunciation
(e.g., the confusion between the closed vowel [e] and the open vowel [E]).
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noiseless conditions but we chose the GMM classifier that gives best results when the SNR is
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pendent application. It analyzes the speech events resulting from the segmentation module,
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best hypothesizes are stored in a file. This event allows the AuditHIS scheduler to send the
next queued file to the recognizer. Moreover, each sentence file is stored in order to allow
future analysis with different recognition parameters of the recognizer. The architecture of
the ASR is described by Figure 4. The first stage is the audio interface in charge of acoustical
feature extraction in each 16 ms frame with a 50% overlay. The next 3 stages working together
are:

• the phoneme recognizer stage;
• the word recognition stage constructing the graph of phonemes; and
• the sentence recognition stage constructing the graph of words.

The data associated with these stages are respectively the acoustic models (HMMs), the phonetic
dictionary and the language models (tri-grams). The output of the recognizer is made of the 5
best hypothesis lattices.
The training of the acoustic models was made with large corpora in order to ensure good
speaker independence. These corpora were recorded by 300 French speakers by our team
(BRAF100) (Vaufreydaz et al., 2000) and at the LIMSI laboratory (BREF80 and BREF120) (Gau-
vain et al., 1990). The phonetic dictionary consists in the association of each word in French
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Sample Domotic Order Distress Sentence Usual Sentence

1 Allume la lumière A l’aide Allo c’est moi
2 Eteins la lumière Je suis tombé Allo c’est qui
3 Ferme la porte Une infirmière vite Bonjour Monsieur
4 Ouvre la porte Appelez une ambulance Dehors il pleut
5 Fermez les volets Aïe aïe aïe Euh non
6 Ouvrez les volets Je ne peux plus bouger J’ai bu du café
7 Il fait très chaud Je ne me sens pas bien du tout J’ai fermé la fenêtre
8 Il fait très froid Je me sens très mal J’ai sommeil
9 J’ai très chaud J’ai mal Tout va bien
10 J’ai très froid J’ai de la fièvre A demain

Table 1. Excerpt of the colloquial corpus

The language model of this system is a small vocabulary statistical system (299 words in French).
The language model is made of 299 uni-grams, 729 bi-grams and 862 trigrams, it is obtained
using textual information of a colloquial corpus in French. Our main requirement is the correct
detection of a possible distress situation through keyword detection, without understanding
the patient’s speech. This colloquial corpus contains the sentences in the Normal/Distress
speech corpus (Vacher et al., 2006), along with sentences currently uttered during a phone
conversation: ‘Allo oui’, ‘A demain’, ‘J’ai bu ma tisane’, ‘Au revoir’ etc. and sentences that may
be a command for a home automation system. The Normal/Distress language corpus is com-
posed of 126 sentences in French in which 66 are every day sentences: ‘Bonjour’ (‘Hello’), ‘Où
est le sel?’ (‘Where is the salt?’) . . . and 60 are distress phrases: ‘Aouh !’, ‘Aïe !’, ‘Au secours !’
(‘Help !’), ‘Un médecin vite !’ (‘A doctor! hurry!’) along with incorrect grammatically phrases
such as ‘Ça va pas bien’ (‘I’m not well’). . . The entire colloquial corpus is made of 415 sentences:
39 home automation orders, 93 distress sentences, the others are usual sentences. Examples of
phrases are given in Table 1.

5. Distress Situation Detection Evaluation

The next sections present the evaluation of the AUDITHIS and RAPHAEL systems. Our
evaluation is oriented to distress situation detection. First the results of the evaluation of the
sound recognition system and the performances of our ASR in the recording conditions of
a flat are assessed. During this experiment, a person is alone in his home and is uttering
sentences which are or not distress sentences; this experiment aims to evaluate AUDITHIS
and especially the distress keyword detection by RAPHAEL as explained in section 4.6.

Speaker Identifier 1 2 3 4 5 6 7 8 9 10

Sentences with distress keyword (197) 21 19 20 18 20 19 17 21 21 21
Sentences without distress keyword (232) 24 25 23 24 22 24 23 20 24 23

Table 2. Experimental Recorded Corpus: best SNR sentences

Secondly the known source noise suppression system presented in section 4.2 is evaluated in
presence of music or radio broadcasting.

5.1 Sound Recognition and Normal/Distress Sentence Recognition
5.1.1 Experiment set up
To validate the system in uncontrolled conditions, we designed a scenario in which every
subject had to utter 45 sentences (20 distress sentences, 10 normal sentences and 3 phone
conversations made up of 5 sentences each) and to perform different sounds inside the flat. For
this experiment, 10 subjects volunteered, 3 women and 7 men (age: 37.2 ± 14 years, weight: 69
± 12 kg, height: 1.72 ± 0.08 m). To realize these successions of sentences, we chose 30 typical
sentences from the colloquial corpus that we randomly scrambled 5 times; then we realized 5
real phone conversations containing 5 successions of sentences, and we picked randomly 3 of
the 5 phone conversations.
The experiment took place during daytime – hence we did not control the environmental
conditions of the experimental session (such as noises occurring in the hall outside the flat).
The sentences were uttered in the flat, with the subject sat down or stood up. The subjects
were situated between 1 and 10 meters away from the microphones and have no instruction
concerning their orientation with respect to the microphones (they could choose to turn their
back to the microphone direction). Microphones were set on the ceiling and directed vertically
to the floor. The phone was placed on a table in the living room. The uttered sentences were
chosen from the colloquial corpus presented in section 4.6.
Each subject was asked to first enter the flat and close the door, and then to play a scenario
(close the toilet door, make a noise with a cup and a spoon, let a box fall on the floor and
scream ‘Aïe !’). This whole scenario was repeated 3 times for each subject. Then, he had to
go to the living room, and close the communication door between the kitchen and the living
room, go to the bed room and read the first half of one of the lists of sentences containing 10
normal and 20 distress sentences. Afterwards, he had to go to the living room and utter the
second half of the set of sentences. Each subject was finally called 3 times and must answer
the phone and read the phone conversation given (5 sentences each).
Every audio signal was recorded by the application, analyzed on the fly and finally stored
on the computer. Each detected signal was first segmented (as sound or speech), and then
classified (as one of the eight classes) for a sound, or, in case of a speech event, the 5 more
probable hypothesis were stored. For each sound, an XML file was generated, containing the
important information.
During this experiment, 2,019 audio signals with an SNR of less than 5 dB were not kept; this
5 dB threshold was chosen because of the poor results given by classification and recognition
under this value (Vacher et al., 2006). The number of audio signals collected in this experiment
was 3,164 with an SNR of 12.65 ± 5.6 dB.
After classification, 1008 sounds and 2156 sentences were kept with a mean SNR of 14.4 ± 6.5
dB. When a sentence was uttered by the speaker, more than one audio signal was recorded
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7 Il fait très chaud Je ne me sens pas bien du tout J’ai fermé la fenêtre
8 Il fait très froid Je me sens très mal J’ai sommeil
9 J’ai très chaud J’ai mal Tout va bien

10 J’ai très froid J’ai de la fièvre A demain

Table 1. Excerpt of the colloquial corpus

The language model of this system is a small vocabulary statistical system (299 words in French).
The language model is made of 299 uni-grams, 729 bi-grams and 862 trigrams, it is obtained
using textual information of a colloquial corpus in French. Our main requirement is the correct
detection of a possible distress situation through keyword detection, without understanding
the patient’s speech. This colloquial corpus contains the sentences in the Normal/Distress
speech corpus (Vacher et al., 2006), along with sentences currently uttered during a phone
conversation: ‘Allo oui’, ‘A demain’, ‘J’ai bu ma tisane’, ‘Au revoir’ etc. and sentences that may
be a command for a home automation system. The Normal/Distress language corpus is com-
posed of 126 sentences in French in which 66 are every day sentences: ‘Bonjour’ (‘Hello’), ‘Où
est le sel?’ (‘Where is the salt?’) . . . and 60 are distress phrases: ‘Aouh !’, ‘Aïe !’, ‘Au secours !’
(‘Help !’), ‘Un médecin vite !’ (‘A doctor! hurry!’) along with incorrect grammatically phrases
such as ‘Ça va pas bien’ (‘I’m not well’). . . The entire colloquial corpus is made of 415 sentences:
39 home automation orders, 93 distress sentences, the others are usual sentences. Examples of
phrases are given in Table 1.

5. Distress Situation Detection Evaluation

The next sections present the evaluation of the AUDITHIS and RAPHAEL systems. Our
evaluation is oriented to distress situation detection. First the results of the evaluation of the
sound recognition system and the performances of our ASR in the recording conditions of
a flat are assessed. During this experiment, a person is alone in his home and is uttering
sentences which are or not distress sentences; this experiment aims to evaluate AUDITHIS
and especially the distress keyword detection by RAPHAEL as explained in section 4.6.

Speaker Identifier 1 2 3 4 5 6 7 8 9 10

Sentences with distress keyword (197) 21 19 20 18 20 19 17 21 21 21
Sentences without distress keyword (232) 24 25 23 24 22 24 23 20 24 23

Table 2. Experimental Recorded Corpus: best SNR sentences

Secondly the known source noise suppression system presented in section 4.2 is evaluated in
presence of music or radio broadcasting.

5.1 Sound Recognition and Normal/Distress Sentence Recognition
5.1.1 Experiment set up
To validate the system in uncontrolled conditions, we designed a scenario in which every
subject had to utter 45 sentences (20 distress sentences, 10 normal sentences and 3 phone
conversations made up of 5 sentences each) and to perform different sounds inside the flat. For
this experiment, 10 subjects volunteered, 3 women and 7 men (age: 37.2 ± 14 years, weight: 69
± 12 kg, height: 1.72 ± 0.08 m). To realize these successions of sentences, we chose 30 typical
sentences from the colloquial corpus that we randomly scrambled 5 times; then we realized 5
real phone conversations containing 5 successions of sentences, and we picked randomly 3 of
the 5 phone conversations.
The experiment took place during daytime – hence we did not control the environmental
conditions of the experimental session (such as noises occurring in the hall outside the flat).
The sentences were uttered in the flat, with the subject sat down or stood up. The subjects
were situated between 1 and 10 meters away from the microphones and have no instruction
concerning their orientation with respect to the microphones (they could choose to turn their
back to the microphone direction). Microphones were set on the ceiling and directed vertically
to the floor. The phone was placed on a table in the living room. The uttered sentences were
chosen from the colloquial corpus presented in section 4.6.
Each subject was asked to first enter the flat and close the door, and then to play a scenario
(close the toilet door, make a noise with a cup and a spoon, let a box fall on the floor and
scream ‘Aïe !’). This whole scenario was repeated 3 times for each subject. Then, he had to
go to the living room, and close the communication door between the kitchen and the living
room, go to the bed room and read the first half of one of the lists of sentences containing 10
normal and 20 distress sentences. Afterwards, he had to go to the living room and utter the
second half of the set of sentences. Each subject was finally called 3 times and must answer
the phone and read the phone conversation given (5 sentences each).
Every audio signal was recorded by the application, analyzed on the fly and finally stored
on the computer. Each detected signal was first segmented (as sound or speech), and then
classified (as one of the eight classes) for a sound, or, in case of a speech event, the 5 more
probable hypothesis were stored. For each sound, an XML file was generated, containing the
important information.
During this experiment, 2,019 audio signals with an SNR of less than 5 dB were not kept; this
5 dB threshold was chosen because of the poor results given by classification and recognition
under this value (Vacher et al., 2006). The number of audio signals collected in this experiment
was 3,164 with an SNR of 12.65 ± 5.6 dB.
After classification, 1008 sounds and 2156 sentences were kept with a mean SNR of 14.4 ± 6.5
dB. When a sentence was uttered by the speaker, more than one audio signal was recorded
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Results

Clap Step Phone Dishes Lock Break Falls Scream Speech
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Clap 81.25 % 0 % 0 % 0 % 0 % 0 % 18.75 % 0 % 0 %
Phone 0 % 0 % 100 % 0 % 0 % 0 % 0 % 0 % 0 %
Dishes 0 % 0 % 0 % 42.86 % 0 % 0 % 0 % 4.76 % 52.38 %
Falls 19.05 % 0 % 0 % 4.76 % 0 % 0 % 76.19 % 0 % 0 %
Scream 8.7 % 0 % 0 % 8.7 % 0 % 0 % 30.43 % 30.43 % 21.74 %

Table 3. Confusion matrix for sound classification (bold values corresponds to the well classi-
fied sounds, some sounds are classified as speech).

by the 7 microphones, depending on his position in the room, but only the signal with the
best SNR was kept. At the end, the recorded speech corpus was composed of 429 sentences
(7.8 minutes of signal), 7 sentences were not kept because of signal saturation (see Table 2).
The repartition of the sentences among the speakers is quite well balanced. This corpus was
then indexed manually because the speakers did not follow strictly the instructions given
at the beginning of the experiment. Moreover, when two sentences were uttered without a
sufficient silence between them, some of these couples were considered as one sentence by the
audio analysis system. For these reasons, the number of sentences with and without distress
keyword was not the same for each speaker.
This first experiment will be used in the two following sections for the evaluation of first the
sound recognition and then the identification of distress keywords in the transcribed speech
of the AuditHIS system.

5.1.2 Normal/Distress Situation Recognition from Sounds
The results of this experiment are summed-up in the confusion matrix of the global system
(Table 3). Rows are the actions performed, and columns give the result. The bold values are
the correct decisions that were taken by the system.
This table shows the classes that are (e.g. object fall and doors clapping or dishes and normal
sentences) difficult to separate. Some of the classes are very well recognized (phone ringing
for instance) but dishes sounds for instance is very difficult to identify, especially because it is
not correctly segmented (it is recognized as speech instead of sound). To complete this table,
we could add that the global performances of the system are 89.76% of good differentiation
sound/speech and 72.14% of well-classified sounds.

5.1.3 Normal/Distress Situation Recognition from Speech
The 429 sentences were analysed by RAPHAEL using both acoustical and language models
presented in section 4.6. The uttered sentences were recorded at various input levels depend-
ing on the position of the speaker in the room; therefore the dynamic of the signal was in-
creased; the maximal input level for each file was set to 50% of the maximal level if requested.
These sentences are distress sentences (DS) or normal sentences (NS).
Distress keywords are extracted by a subsequent process from the complete recognized sen-
tences: it is a Missed Alarm (MA) if the uttered sentence is a distress sentence and if there is
no distress keyword in the recognized sentence. In the opposite way, it is a False Alarm (FA)
if the uttered sentence is a usual conversation sentence or a home automation order sentence
and if the recognized sentence contains a distress keyword. We define the Missed Alarm Rate
(MAR), the False Alarm Rate (FAR) and the Global Error Rate (GER) in Equation 3 as:

Error Type MAR FAR GER

Error Rate 29.5% 4% 15.6%

Table 4. Distress Keyword Performance for the Experimental Corpus

MAR =
nMA
nDS

, FAR =
nFA
nNS

, GER =
nMA + nFA
nDS + nNS

(3)

n referring to the ‘number of’.

Fig. 5. GER and MAR as a function of the speaker

The results are shown as a function of the speaker on Figure 5 and given overall in Table 4.
The FAR is too low to be displayed as a function of the speaker. MAR and GER highly depend
on the speaker. For one speaker the MAR is about 5% but for another one, it is above 50%; this
speaker uttered distress sentences like a film actor, so some sentences are very different from
the sentences of the corpus and this led to errors. For example the French article ‘je’ was not
uttered at the beginning of one sentence. For another speaker, a woman, the MAR is upper
40%. This speaker walked when she uttered the sentences and made noise with her high-
heeled shoes, this noise was added to the speech signal. More generally, one distress sentence
is ‘help!’, this sentence is well recognized if it was uttered with a French pronunciation but
not with an English pronunciation because the phoneme [h] does not exist in French. When a
sentence was uttered in the presence of an environmental noise or after a tongue clicking, the
first phoneme of the recognized sentence will be preferentially a fricative or an occlusive and
the recognition process may be altered.

5.2 Noise Suppression Evaluation
TV and radio signals are perturbing the hearing in the room but a speaker can distinguish
easily this noise from speech even if the SNR is about 0 dB. It is not the case for automatic sys-
tems, thus it is of great interest to evaluate their performances in conjunction with suppression
techniques.
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of the AuditHIS system.
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the correct decisions that were taken by the system.
This table shows the classes that are (e.g. object fall and doors clapping or dishes and normal
sentences) difficult to separate. Some of the classes are very well recognized (phone ringing
for instance) but dishes sounds for instance is very difficult to identify, especially because it is
not correctly segmented (it is recognized as speech instead of sound). To complete this table,
we could add that the global performances of the system are 89.76% of good differentiation
sound/speech and 72.14% of well-classified sounds.

5.1.3 Normal/Distress Situation Recognition from Speech
The 429 sentences were analysed by RAPHAEL using both acoustical and language models
presented in section 4.6. The uttered sentences were recorded at various input levels depend-
ing on the position of the speaker in the room; therefore the dynamic of the signal was in-
creased; the maximal input level for each file was set to 50% of the maximal level if requested.
These sentences are distress sentences (DS) or normal sentences (NS).
Distress keywords are extracted by a subsequent process from the complete recognized sen-
tences: it is a Missed Alarm (MA) if the uttered sentence is a distress sentence and if there is
no distress keyword in the recognized sentence. In the opposite way, it is a False Alarm (FA)
if the uttered sentence is a usual conversation sentence or a home automation order sentence
and if the recognized sentence contains a distress keyword. We define the Missed Alarm Rate
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The results are shown as a function of the speaker on Figure 5 and given overall in Table 4.
The FAR is too low to be displayed as a function of the speaker. MAR and GER highly depend
on the speaker. For one speaker the MAR is about 5% but for another one, it is above 50%; this
speaker uttered distress sentences like a film actor, so some sentences are very different from
the sentences of the corpus and this led to errors. For example the French article ‘je’ was not
uttered at the beginning of one sentence. For another speaker, a woman, the MAR is upper
40%. This speaker walked when she uttered the sentences and made noise with her high-
heeled shoes, this noise was added to the speech signal. More generally, one distress sentence
is ‘help!’, this sentence is well recognized if it was uttered with a French pronunciation but
not with an English pronunciation because the phoneme [h] does not exist in French. When a
sentence was uttered in the presence of an environmental noise or after a tongue clicking, the
first phoneme of the recognized sentence will be preferentially a fricative or an occlusive and
the recognition process may be altered.

5.2 Noise Suppression Evaluation
TV and radio signals are perturbing the hearing in the room but a speaker can distinguish
easily this noise from speech even if the SNR is about 0 dB. It is not the case for automatic sys-
tems, thus it is of great interest to evaluate their performances in conjunction with suppression
techniques.
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5.2.1 Noise Suppression Experiments
Two microphones were set in a room, the Reference Microphone in front of the Speaker System
in order to record music or radio news (radio broadcasting news all the day) and the Signal
Microphone in order to record a speaker uttering sentences in the room as shown on Figure
6. The two microphones are connected to AUDITHIS in charge of echo-cancellation; the re-
sulting signal after echo-cancellation with or without post-filtering is then sent to RAPHAEL
and stored for further analysis. For this experiment the French speaker is standing in the
centre of the recording room, he is not facing the signal microphone. He has to speak with a
normal voice level, the level of the radio is set to be rather strong and then the SNR may be
approximately 0 dB but there is no real control of the SNR.
Another way is to record separately the reference and the noise after propagation in the room.
The speech signal may then be added to the resulting noise at different SNR levels; the Nor-
mal/Distress corpus recorded during precedent studies (Vacher et al., 2006) may be used for
this purpose. Echo-cancellation is operated in batch accorded to the reference and the addition
of speech and noise. So it is possible to proceed with the same signal using different settings
of the echo-canceller. This mixing experiment allows a full control of the SNR.
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Fig. 6. Setting of the microphones and speaker system in the recording room

5.2.2 Noise Cancellation Results for the Mixing Experiment
The reference signal and the resulting noise in the room were recorded on the 2 microphones
during 30 minutes at 16 kHz sampling rate. 126 sentences uttered by one speaker were ex-
tracted from the Normal/Distress corpus and mixed with the resulting noise at 9 SNR levels:
-12, -9, -6, -3, 0, 3, 6, 9 and 12 dB. Each SNR level was obtained by adjusting the level of both
the recorded noise and the audio file of the corpus. The resulting signal was then processed
by the echo-cancellation system and the 126 sentences were extracted and sent to the ASR.
This process was iterated a second time by the echo-cancellation system with post-filtering.
The language model of the ASR was a medium vocabulary statistical system (9958 words in

French). This model is obtained by extraction of textual information from the Internet and
from the French newspaper “Le Monde”. Then it was optimized using our conversation cor-
pus (refer to Table 1). The recognition results for these two processing methods are presented
on Figure 7. The buffer size of the algorithm was 256 samples in order to improve the process-
ing time; the filter size was 8192 samples enough to take into account the size of the room and
the delay after reverberation on walls and windows.
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Fig. 7. MAR with France-Info broadcast news

In the absence of echo-cancellation, distress keywords are badly recognized, the MAR is fast
increasing under +10 dB SNR. The MAR curve is nearly flat between -3 dB and + 12 dB when
echo-cancellation is processed, the post-filtering does not improve significantly speech recog-
nition in this interval, the MAR is even greater at +12 dB. On the contrary, the post-filtering is
important below -6 dB and allows the MAR to be 55% (78% for echo-cancellation alone).
The echo-cancellation system was tested with the same corpus with 2 different noise sources:
classical music (The 3rd symphony opus 55 by Beethoven) and pop music (Artificial Animals
Riding on Neverland by AaRON). Results are displayed on Figure 8, they are very different
from the results obtained with the news and the error rate increases linearly with noise level.
Thus this kind of noises, and especially pop music, are more difficult to suppress because of
the presence of large band sources like percussion instruments.

5.2.3 Noise Cancellation Results for the Real-Time Experiment
In complement, 4 speakers (3 men, 1 woman, between 22 and 55 years old) uttered 20 distress
sentences of the Normal/Distress corpus in the recording room, this process was operated
by each speaker 2 or 3 times. The echo-cancellation was operated in real-time by the Audio
System analysis. Results are shown on Figure 9. The level of the radio France-Info was set
in order to achieve a near 0 dB SNR level, each speaker was standing in the centre of the
recording room. The MAR, global for all the speakers, is 27%. The results depend on the voice
level of the speaker during this experiment and on the speaker himself. Resulting noise at
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-12, -9, -6, -3, 0, 3, 6, 9 and 12 dB. Each SNR level was obtained by adjusting the level of both
the recorded noise and the audio file of the corpus. The resulting signal was then processed
by the echo-cancellation system and the 126 sentences were extracted and sent to the ASR.
This process was iterated a second time by the echo-cancellation system with post-filtering.
The language model of the ASR was a medium vocabulary statistical system (9958 words in

French). This model is obtained by extraction of textual information from the Internet and
from the French newspaper “Le Monde”. Then it was optimized using our conversation cor-
pus (refer to Table 1). The recognition results for these two processing methods are presented
on Figure 7. The buffer size of the algorithm was 256 samples in order to improve the process-
ing time; the filter size was 8192 samples enough to take into account the size of the room and
the delay after reverberation on walls and windows.
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In the absence of echo-cancellation, distress keywords are badly recognized, the MAR is fast
increasing under +10 dB SNR. The MAR curve is nearly flat between -3 dB and + 12 dB when
echo-cancellation is processed, the post-filtering does not improve significantly speech recog-
nition in this interval, the MAR is even greater at +12 dB. On the contrary, the post-filtering is
important below -6 dB and allows the MAR to be 55% (78% for echo-cancellation alone).
The echo-cancellation system was tested with the same corpus with 2 different noise sources:
classical music (The 3rd symphony opus 55 by Beethoven) and pop music (Artificial Animals
Riding on Neverland by AaRON). Results are displayed on Figure 8, they are very different
from the results obtained with the news and the error rate increases linearly with noise level.
Thus this kind of noises, and especially pop music, are more difficult to suppress because of
the presence of large band sources like percussion instruments.

5.2.3 Noise Cancellation Results for the Real-Time Experiment
In complement, 4 speakers (3 men, 1 woman, between 22 and 55 years old) uttered 20 distress
sentences of the Normal/Distress corpus in the recording room, this process was operated
by each speaker 2 or 3 times. The echo-cancellation was operated in real-time by the Audio
System analysis. Results are shown on Figure 9. The level of the radio France-Info was set
in order to achieve a near 0 dB SNR level, each speaker was standing in the centre of the
recording room. The MAR, global for all the speakers, is 27%. The results depend on the voice
level of the speaker during this experiment and on the speaker himself. Resulting noise at
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the beginning and at the end of the sentence alters the recognition; it may then be useful for
detecting these 2 moments with a good precision to use shorter silence intervals.

6. Method for Assessment of the Usefulness of Sound and Speech Recognition
for Classification of Activities of Daily Living in Health Smart Homes

To assess the impact of the sound and speech processing on the ADL classification, we have
applied several feature selection methods with numerous machine learning schemes. At-
tribute selection (also called feature selection) is the process of finding a subset of attributes
that leads to a good representation of the original data generally for classification (Saeys et al.,
2007). Apart from reducing the data set which eases the learning (i.e., less time and memory
used) this often leads to better classification performance as useless information (i.e., noise)
can degrade the learning phase. This also leads to a more compact classifier representation
which is more humanly interpretable (according to the model learned). The usefulness of
the audio processing for ADL classification is assessed by the number of audio attributes
selected by the attribute selection methods and the impact of this selection on the learning
performance. This section presents the machine learning methods retained and the attribute
selection techniques applied.

6.1 Supervised Learning
Supervised learning consists in building a classifier Model from a learning set L composed
of N instances (also called examples or individuals) described by M attributes A1 × A2 ×
⋅ ⋅ ⋅ × AM, where Am represents the domain of the mth attribute, plus a specific attribute C,
which represents the class (i.e., concept to learn) in a finite discrete domain (i.e., no regression).
The Model is then used to predict the class of new unclassified instances (i.e., for which C is
unknown). The prediction results, on a specific testing set, is used to assess the score of Model.

Fig. 9. MAR with Echo-Cancellation in Real-Time

In this work, the learning induction algorithms used are: Decision Tree (C4.5), Decision Table
Majority (DTM), Naïve Bayesian Network (NBayes) and Support Vector Machine (SVM). They have
been chosen for their popularity in data mining applications and because they represent quite
different approaches to learning.
Although most of the chosen algorithms can handle numerical attributes (C4.5, NBayes, SVM),
L has been discretized using supervised discretization. The method consists in dividing the
continuous domain of the attribute with respect to the class into discrete intervals containing
the smallest information as possible (i.e., the sub-interval values are similar). As our numerical
attributes are derived from categorical ones and as they do not respect normal distribution,
this transformation is clearly justified.

6.2 Attribute Selection
Attribute selection techniques are generally divided into two families filter and wrapper (embed-
ded attribute selection is sometimes considered as another family) (Saeys et al., 2007). Broadly
speaking, supervised attribute selection by filter consist in either ranking each attribute accord-
ing to its value with respect to C or finding a subset SA ⊆ A1 × A2 × ⋅ ⋅ ⋅× AM which describes
the most the class C. Wrapper method consists in finding a subset SA ⊆ A1 × A2 × ⋅ ⋅ ⋅ × AM
for which the Model learned with the target learning algorithm leads to a score better than or
close to Model learned with L. Single attribute evaluation (for ranking) makes only use of a
specific metrics. To test the impact of attribute selection on the learning performance a small
subset of each method type has been chosen.

• Correlation-based Attribute Selection (CorrFA) searches for subsets of attributes that are
highly correlated with the class but with minimal inter-correlation with each other. This
method is thus well suited to discover non redundant attributes sets such as one could
expect in health smart home.

• Consistency-based Attribute Selection (ConsFA) searches for subsets of attributes that are
consistent with C. An attribute subset is inconsistent if there are more than one instance
with same attribute values but associated with different classes.

• Wrapping method is an attribute subset selection method that uses the targeted learning
algorithm score at each node as evaluator. This method is more time consuming but
leads generally to higher performance than the previous described as it fits the learning
algorithm.
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that leads to a good representation of the original data generally for classification (Saeys et al.,
2007). Apart from reducing the data set which eases the learning (i.e., less time and memory
used) this often leads to better classification performance as useless information (i.e., noise)
can degrade the learning phase. This also leads to a more compact classifier representation
which is more humanly interpretable (according to the model learned). The usefulness of
the audio processing for ADL classification is assessed by the number of audio attributes
selected by the attribute selection methods and the impact of this selection on the learning
performance. This section presents the machine learning methods retained and the attribute
selection techniques applied.

6.1 Supervised Learning
Supervised learning consists in building a classifier Model from a learning set L composed
of N instances (also called examples or individuals) described by M attributes A1 × A2 ×
⋅ ⋅ ⋅ × AM, where Am represents the domain of the mth attribute, plus a specific attribute C,
which represents the class (i.e., concept to learn) in a finite discrete domain (i.e., no regression).
The Model is then used to predict the class of new unclassified instances (i.e., for which C is
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been chosen for their popularity in data mining applications and because they represent quite
different approaches to learning.
Although most of the chosen algorithms can handle numerical attributes (C4.5, NBayes, SVM),
L has been discretized using supervised discretization. The method consists in dividing the
continuous domain of the attribute with respect to the class into discrete intervals containing
the smallest information as possible (i.e., the sub-interval values are similar). As our numerical
attributes are derived from categorical ones and as they do not respect normal distribution,
this transformation is clearly justified.

6.2 Attribute Selection
Attribute selection techniques are generally divided into two families filter and wrapper (embed-
ded attribute selection is sometimes considered as another family) (Saeys et al., 2007). Broadly
speaking, supervised attribute selection by filter consist in either ranking each attribute accord-
ing to its value with respect to C or finding a subset SA ⊆ A1 × A2 × ⋅ ⋅ ⋅× AM which describes
the most the class C. Wrapper method consists in finding a subset SA ⊆ A1 × A2 × ⋅ ⋅ ⋅ × AM
for which the Model learned with the target learning algorithm leads to a score better than or
close to Model learned with L. Single attribute evaluation (for ranking) makes only use of a
specific metrics. To test the impact of attribute selection on the learning performance a small
subset of each method type has been chosen.

• Correlation-based Attribute Selection (CorrFA) searches for subsets of attributes that are
highly correlated with the class but with minimal inter-correlation with each other. This
method is thus well suited to discover non redundant attributes sets such as one could
expect in health smart home.

• Consistency-based Attribute Selection (ConsFA) searches for subsets of attributes that are
consistent with C. An attribute subset is inconsistent if there are more than one instance
with same attribute values but associated with different classes.

• Wrapping method is an attribute subset selection method that uses the targeted learning
algorithm score at each node as evaluator. This method is more time consuming but
leads generally to higher performance than the previous described as it fits the learning
algorithm.
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Sensors Attributes Number Domain value Information

Seven Nb_sound_w 7 N Number of times a sound is detected in
a room during the time window.

Microphones Nb_sound_x 9 N Number of times a detected sound has
been classified in one of the 9 classes.

Seven
Presence in_y 7 [0,1] Ratio of time spent in each room (room

occupation) during the time window.

Infra-Red
sensors Nb_in_y 7 N Number of detections in each room

(agitation) during the time window

Three Doors z_state 3 {open, close}
Most used position in the window
(Cooking: use of the cupboard and
fridge; dressing: use of the dresser).

contacts Nb_z_open 3 N Number of times the doors have been
opened during the time window.

One in-home
weather
station

temperature, hy-
grometry 2 R+

Differential measure for the last 15
minutes for temperature and hygrom-
etry (use of the shower).

w ∈ { kitchen, WC, corridor, bedroom_window, bedroom_wall, living_room_window, living_room_wall }, x ∈ {
foot_step, dishes_sound, door_closing, door_locker, glass_breaking, speech, scream, phone_ring, object_fall
}, y ∈ { doorway, bathroom, corridor, WC, living_room, bedroom, kitchen }, z ∈ { fridge, dresser, cupboard }.

Table 5. Sensors and their associated attributes and information

7. Evaluation of the Impact of Audio Processing for Activity of Daily Living Classi-
fication

The assessment method has been applied to data acquired in the Health Smart Home of
Grenoble (see Section 2). The data acquisition and the results of the application of the method
on this data are described in the following sections.

7.1 Data Collection in ‘Daily Living Conditions’
An experiment has been run to acquire data in the Health smart home of the TIMC-IMAG lab
located in the Faculty of Medicine of Grenoble (Fleury, 2008). Thirteen healthy participants
(6 women, 7 men) were asked to perform 7 activities, at least once, without condition on the
time spent. The average age was 30.4 ± 5.9 years (24-43, min-max), height 1.76 ± 0.08 meters
(1.62-1.92, min-max) and weight 69 ± 7.42 kg (57-80, min-max). The mean execution time of
the experiment was 51min 40s (23min 11s – 1h 35min 44s, min–max). A visit, previous to the
experiment, was organized to ensure that the participants will find all the items necessary to
perform the seven ADLs. Participants were free to choose the order with which they wanted to
perform the ADLs to avoid repetitive pattern. The 7 activities were defined based on the ADL
scale: (1) Sleeping; (2) Resting: watching TV, listening to the radio, reading a magazine. . . ; (3)
Dressing and undressing; (4) Feeding: realising and having a meal; (5) Eliminating: going to
the toilets; (6) Hygiene activity: washing hands, teeth . . . ; and (7) Communicating: using the
phone.
The flat (cf. Fig. 1) contains 18 sensors from which 38 attributes have been derived and are
presented in Table 5. Data has been annotated by cutting down each ADL interval into 3-
minute windows (the adequate time to perform the shortest activity) labelled with the name
of the activity. This process resulted in 232 windows for which: 1) 49 were sleeping; 2) 73

Rank CorrFA ConsFA Global Filter

1 in_bathroom (100%) in_bathroom (100%) in_bathroom (100%)
2 in_living_room

(100%)
in_WC (100%) in_living_room (100%)

3 in_bedroom (100%) in_living_room (100%) in_bedroom (100%)
4 in_kitchen (100%) in_bedroom (100%) in_kitchen (100%)
5 Nb_in_kitchen (100%) in_kitchen (100%) Nb_in_kitchen (95%)
6 Nb_sounds_bedroom_-

window (90%)
Nb_in_living_room
(100%)

in_WC (90%)

7 in_WC (80%) Nb_in_bedroom (100%) Nb_sounds_bedroom_-
window (85%)

8 Nb_sounds_living_-
room_window (80%)

dresser_state (100%) NB_sound_speech (75%)

9 (≤ 50%) Nb_in_kitchen (100%) dresser_state (70%)
10 NB_sound_speech (100%) Nb_sounds_living_-

room_window (65%)
11 till the 16th selected Nb_in_living_room (60%)

Table 6. Attribute ranking for filter attributes selection methods

were resting; 3) 16 were dressing; 4) 45 were eating; 5) 16 were eliminating; 6) 14 were hygiene
activity; and 7) 19 were communicating (phone). The final dataset was thus composed of 232
examples of 3-minute activity described by 38 attributes (i.e., attributes) plus the class attribute
(i.e., the activity label).

7.2 Attribute Selection Results
Table 6 gives the results of the filter selection method applied on the whole set with a 10-fold
stratified cross-validation. For each method the rank of the attribute is given and the number
in brackets indicates the percentage of time it has been selected during the cross-validation.
The number of retained attributes varies with the method employed but a global trend ap-
pears. Four PIR attributes are always in the top of the list (in_bathroom, in_living_room,
in_bedroom and in_kitchen) followed by two others (Nb_in_kitchen and in_WC) and
by two microphone attributes (sound bedroom, and speech). A rapid analysis of the projection
of these attributes against the classes shows that in_bathroom is correlated with hygiene;
in_kitchen with eating, in_WC with elimination, in_bedroom with sleeping,
dressing and resting, and in_living_room with resting and communicating. This
is not surprising as each room is related to several ADLs and thus the presence of some-
one in a room has a high predictive value about what s/he is doing in it. Regarding the
sound attributes, Nb_sounds_bedroom_window and NB_sound_speech are correlated
with dressing and communicating. Thus, the audio attributes were found to be infor-
mative according to these two activities.
Attribute selection results using the wrapper methods are given in Table 7. The most no-
ticeable changes with the filter method is the dresser_state rank and the disappear-
ance of all bedroom attributes. The former is a Boolean attribute which has a low entropy
which is true (i.e., open) only in case of dressing, making it quite interesting for classi-
fication. in_bedroom attribute is not discriminative enough to distinguish sleeping from
dressing and the configuration of the flat (see Fig. 1) makes this sensor fire sometimes when
the participant is resting. Regarding the sound attributes, only Nb_sound_object_fall
has been selected as globally useful for ADL classification due to its high correlation with
communicating.
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Grenoble (see Section 2). The data acquisition and the results of the application of the method
on this data are described in the following sections.

7.1 Data Collection in ‘Daily Living Conditions’
An experiment has been run to acquire data in the Health smart home of the TIMC-IMAG lab
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were resting; 3) 16 were dressing; 4) 45 were eating; 5) 16 were eliminating; 6) 14 were hygiene
activity; and 7) 19 were communicating (phone). The final dataset was thus composed of 232
examples of 3-minute activity described by 38 attributes (i.e., attributes) plus the class attribute
(i.e., the activity label).

7.2 Attribute Selection Results
Table 6 gives the results of the filter selection method applied on the whole set with a 10-fold
stratified cross-validation. For each method the rank of the attribute is given and the number
in brackets indicates the percentage of time it has been selected during the cross-validation.
The number of retained attributes varies with the method employed but a global trend ap-
pears. Four PIR attributes are always in the top of the list (in_bathroom, in_living_room,
in_bedroom and in_kitchen) followed by two others (Nb_in_kitchen and in_WC) and
by two microphone attributes (sound bedroom, and speech). A rapid analysis of the projection
of these attributes against the classes shows that in_bathroom is correlated with hygiene;
in_kitchen with eating, in_WC with elimination, in_bedroom with sleeping,
dressing and resting, and in_living_room with resting and communicating. This
is not surprising as each room is related to several ADLs and thus the presence of some-
one in a room has a high predictive value about what s/he is doing in it. Regarding the
sound attributes, Nb_sounds_bedroom_window and NB_sound_speech are correlated
with dressing and communicating. Thus, the audio attributes were found to be infor-
mative according to these two activities.
Attribute selection results using the wrapper methods are given in Table 7. The most no-
ticeable changes with the filter method is the dresser_state rank and the disappear-
ance of all bedroom attributes. The former is a Boolean attribute which has a low entropy
which is true (i.e., open) only in case of dressing, making it quite interesting for classi-
fication. in_bedroom attribute is not discriminative enough to distinguish sleeping from
dressing and the configuration of the flat (see Fig. 1) makes this sensor fire sometimes when
the participant is resting. Regarding the sound attributes, only Nb_sound_object_fall
has been selected as globally useful for ADL classification due to its high correlation with
communicating.
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Rank C4.5 DTM NBayes
SVM (γ=0.8,
greedy hill-
climbing)

Global Wrapper

1 in_WC
(100%) in_WC (100%) in_bathroom

(100%)
in_bathroom
(100%) in_WC (100%)

2 in_living_-
room (100%)

in_living_room
(100%) in_WC (100%) in_WC (100%) in_living_room

(100%)

3 in_kitchen
(100%)

in_kitchen
(100%)

in_living_room
(100%)

in_living_room
(100%)

in_kitchen
(100%)

4 dresser_-
state (80%)

dresser_state
(80%)

in_kitchen
(100%)

in_kitchen
(100%)

dresser_state
(90%)

5 in_bathroom
(70%)

Nb_in_bathroom
(70%)

dresser_state
(100%)

dresser_state
(100%)

in_bathroom
(77.5%)

6 (≤ 40%)
Nb_sounds_liv-
ing_room_window
(60%)

Nb_sound_object_-
fall (80%)

Nb_sound_-
object_fall
(100%)

Nb_sound_-
object_fall
(60%)

7 (≤ 40%)
Nb_sounds_liv-
ing_room_window
(80%)

Nb_sound_-
door_closing
(80%)

8 Nb_in_bathroom
(60%) (≤ 50%)

9 (≤ 50%)

Table 7. Attribute ranking for wrapper attribute selection methods with best-first search

method Whole set No sound PIR only Sound only GF GW

C4.5 83.28 76.77∗∗ 71.65∗∗ 51.50∗∗ 82.46 83.41
DTM 79.95 75.73∗∗ 71.34∗∗ 51.20∗∗ 82.59 83.02∗

NBayes 85.27 77.37∗∗ 72.90∗∗ 50.78∗∗ 85.06 84.49
SVM (γ = 0.8) 82.91 78.88∗ 75.00∗∗ 51.94∗∗ 81.29 84.57

average 82.85 77.19 72.72 51.35 82.85 83.87
∗p < .05;∗∗ p < .01

Table 8. Correctly classified Instances (%) for different learning algorithms and data sets

7.3 Impact on the Supervised Learning
The impact of the attribute selection has been assessed by learning from the data sets com-
posed from subsets of attributes using a 10-fold stratified cross-validation repeated 10 times
in the same learning conditions as for the wrapping selection. Table 8 summarises the results.
Performance with the whole set is the reference for corrected paired student T-test.
Results with the whole set give the lowest performances for DTM (79.95%). NBayes and
C4.5 have significantly higher performance than DTM (p < .05) but no significant difference
is observed between them nor with SVM. When the sound attributes are removed (i.e., ‘No
sound’ data set), the performances are significantly lower. This shows that the sound process-
ing does present essential information to perform activity recognition. Data set composed of
PIR attributes (i.e., ‘PIR only’ data set) only gives significantly reduced performances but still
reasonable which emphasizes the location information impact for the classification. Whereas
sound sensor should provide information redundant with the PIR sensors at a higher level
(foot step, speech), the data set composed only of sound attributes (i.e. ‘sound only’ data

set) leads to very poor performances. However, the Signal-To-Noise ratio of the sound signal
must be improved to reach satisfying performance in this flat which has poor noise insula-
tion (Fleury, 2008). This shows that each modality seems to play a different role for activity
classification.
The data set composed of the attributes selected by Global Filtering (GF) attribute selection
method leads to performances that are not significantly different from the ones with the whole
set. This data set contains less than 29% of the original data (using only 7 sensors). No learn-
ing scheme is significantly better than the others. The data set composed of the attributes
selected by Global Wrapping (GW) attribute selection method leads to performances that are
significantly better for the DTM learning scheme (p < .05) but not for the other schemes when
compared with the whole set. No significant difference is observed when compared to the
GF performances. This data set contains less than 16% of the original data (using only 6 sen-
sors). No learning scheme is significantly better than the others. Overall the GW method
leads to higher average performance (83.87%) than with the Whole set (82.85%) and than the
GF method (82.85%) but this is not significant and is mainly led by the DTM learning scheme.
The main result of the study is that it is possible to keep high performance for automatic clas-
sification of ADL when selecting a relevant subset of attributes. About 33% of the sensors (and
less than 16% of the attributes) are enough to classify ADL with same (and sometime supe-
rior) performance as with the whole data set. But the retained sensors are of different nature
(location, sound, contact door) and thus complement each other. The selected attributes were
mainly related to PIR sensors and microphones. While these sensors seem to be the most in-
formative, contact door attached to the dresser was essential for classifying dressing activity.
Indeed, the chosen ADLs were all related to a location (e.g.: sleeping in the bedroom, eating
in the kitchen . . . ) and when two activities are usually done in the same room (e.g., sleeping
and dressing) a strict location sensor is not enough to distinguish them. Thus, realistic ADLs
should include activities in unusual location (e.g., eating while watching TV, sleeping on the
sofa . . . ) to challenge the learning process and acquire more accurate models. This is illus-
trated by the eliminating and hygiene activities which, due to their natural interrelation (e.g.,
WC and then washing hand) and the flat configuration, challenged the learning.
Globally, sound sensors attributes have a good predictive power and the study shows that
this information is essential for ADL classification. But the study also showed the limit of the
current audio processing. Indeed, the sound attribute should deliver the same information
as the PIR sensors while adding higher semantic level attributes (speech, footstep . . . ) but the
very hostile sound conditions of the experiment shows that the robustness of the current audio
processing needs to be improved. However, the presented results confirmed the information
power of this modality at least for support to classical smart home sensors.

8. Discussion

The main outcome of this work is the demonstration that acceptable multisource audio pro-
cessing performances are reachable, in real time, in a noisy environment. Moreover, although
the audio processing performances are still not perfect, the study showed that the audio sys-
tem (AUDITHIS) provides information essential for automatic identification of activity of
daily living. This preliminary work, the first, to the best of our knowledge, that includes
real-time sound and speech processing tested in a health smart home, is very encouraging. Of
course the approach can be improved in many ways and the experimentations helped us to
identify a number of limitations and challenges that need to be overcome.
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set) leads to very poor performances. However, the Signal-To-Noise ratio of the sound signal
must be improved to reach satisfying performance in this flat which has poor noise insula-
tion (Fleury, 2008). This shows that each modality seems to play a different role for activity
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and dressing) a strict location sensor is not enough to distinguish them. Thus, realistic ADLs
should include activities in unusual location (e.g., eating while watching TV, sleeping on the
sofa . . . ) to challenge the learning process and acquire more accurate models. This is illus-
trated by the eliminating and hygiene activities which, due to their natural interrelation (e.g.,
WC and then washing hand) and the flat configuration, challenged the learning.
Globally, sound sensors attributes have a good predictive power and the study shows that
this information is essential for ADL classification. But the study also showed the limit of the
current audio processing. Indeed, the sound attribute should deliver the same information
as the PIR sensors while adding higher semantic level attributes (speech, footstep . . . ) but the
very hostile sound conditions of the experiment shows that the robustness of the current audio
processing needs to be improved. However, the presented results confirmed the information
power of this modality at least for support to classical smart home sensors.

8. Discussion

The main outcome of this work is the demonstration that acceptable multisource audio pro-
cessing performances are reachable, in real time, in a noisy environment. Moreover, although
the audio processing performances are still not perfect, the study showed that the audio sys-
tem (AUDITHIS) provides information essential for automatic identification of activity of
daily living. This preliminary work, the first, to the best of our knowledge, that includes
real-time sound and speech processing tested in a health smart home, is very encouraging. Of
course the approach can be improved in many ways and the experimentations helped us to
identify a number of limitations and challenges that need to be overcome.
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Regarding the sound processing, the experiments generated very mixed results. Only two
classes have been correctly recognized (Clap and Phone). The Dishes is very often con-
fused with Speech because the training set doesn’t include examples of spoon hitting a cup.
This has a fundamental frequency in the spectral band of speech, hence the error of the seg-
mentation module of AUDITHIS. Scream is often confused with Falls of objects and
Speech. The former has been learned from a very small training set which explains the mis-
classification. The latter is more related to a design choice. Indeed, Scream is both a sound
and a speech and difference between these two is quite vague. For example ‘Aïe!’ is an intel-
ligible scream that has been learned by the ASR (RAPHAEL) but a scream could also consist
in ‘Aaaa!’ which, in this case, should be handled by the sound recognizer. We still not have
today a method to handle these situations and investigations about this problem is part of
our research agenda. However, most of the poor performances can be explained by the too
small training set. Our next goal is to extend this set to include more examples with more
variation as well as more classes (such as water sounds and a reject class for unknown or non-
frequent sounds). This is mandatory because GMM is a probabilistic approach which relies on
a high number of instances to learn correctly each class. With a ‘design-for-all’ aim — which
is reasonable considering that many homes in several countries generate the same kinds of
sound — a probabilistic approach seems to be the most suited. However, other approaches,
such as (Niessen et al., 2008) which relies on non-statistical techniques are worth being con-
sidered and we plan to compare our approach to some of the literature such as the ones base
on soundscape (Aucouturier et al., 2007; Guastavino, 2006).
The speech recognition for the detection of distress situation led to interesting results in-lab
but still needs to be improved. Indeed, the experiments during which persons were asked to
utter normal and distress speech sentences in two different rooms showed how degraded the
speech recognition is in hostile condition. The error rate for the recognition of distress sen-
tences in this situation reached 30%. This can be partly explained by the very bad acoustic of
the flat (with a mean SNR of about 12 dB instead of 27 dB for the learning corpora). Another
limitation of the RAPHAEL system is that its language model is constructed with our collo-
quial speech corpus. We plan to refine this model by adding expressions and words frequently
used in daily conditions. This should give better results and make the distress situation detec-
tion tool more adapted to real conditions. The experiments have been performed with young
healthy people but it is well known that the voice characteristics vary with the age. Thus, a
second challenge is to adapt the acoustic model of RAPHAEL to the target population: the
elderly people. We plan to collect speech uttered by a large corpus of elderly people to ob-
tain a system usable for elderly. Other way of improving the speech recognition would be to
use acoustic models learned directly from the person which would be more adapted to her
voice. However, we believe that a speaker independent approach makes more sense for this
kind of application which necessitates to be easily integrable to the flat with a minimal setting
period. But, an approach that would automatically adapt the speaker independent models to
the person’s voice would offer an interesting compromise. The speech processing also offers
an interesting approach to deal with the presence of several persons in the flat. This problem
is often neglegted, because many works consider that the person lives alone. But an aged per-
son is visited many times and one of the aims of the new technology is to fight loneliness by
augmenting the number of daily communications. Thus we need to distinguish what the data
that belongs to the monitored person is. Speaker diarization (Fredouille et al., 2006) could be
adapted to deal with this problem.

Both sound and speech processings are highly perturbed by audio source of daily living (e.g.,
TV, radio). The tests of the noise cancellation technique gave a better understanding of the
kinds of noise source that may be the most difficult to deal with. The test has been performed
only in laboratory and future work includes the test of this method in the health smart home
conditions. This will give more conclusive insight about the method performances in this
condition.
Sound and speech recognition system is used, in fine, for the automatic learning and recogni-
tion of activities of daily living together with other modalities. We have shown that the audio
modality in health smart home for the recognition of ADL has a significant impact on recog-
nition performance. The evaluation showed that the most informative sensors were the PIR
ones. However, the audio channel should provide information not only redundant with the
PIR one (e.g., presence in one room) but also higher level (e.g., washing machine spinning).
Thus we expect that the improvement of the audio processing will lead to higher performance
in activity of daily living recognition. The presented results come from a short number of
young and healthy participants in only one flat. Future work should include data from el-
derly people in more that one flat to test the influence of the disposition of a flat on the results.
Such supplementary experimentations would be useful to confirm the relative importance of
each sensor. One of the limits of the study is to not have taken the time into account. Indeed,
activities such as eating may be repeated at regular time. However, this information is useful
only when the resident is following his usual routine and may not challenge the learning to
acquire more accurate models. Moreover, as in many data acquired from volunteers outside
their home, the time information does not respect the participants’ routine. Finally, many ap-
plications assess the inhabitant’s autonomy by computing the deviance from a routine pattern
of activities. But, a deviance may not be a sign of autonomy loss. Microphones can thus play
a central role to remove the ambiguity by adding some context detection from the sentences
uttered during the day (e.g., multiple voices, plumber intervention . . . ).
Audio is not a modality much employed in the domain due to its intrusive nature, but so-
ciological studies (Rialle et al., 2008) have shown that the degree of acceptance of sensors in
one’s home is idiosyncratic and depend on the level of distress of the person and his relatives.
Moreover, the current approach does not record what the speakers are saying but only uses
speech processing to detect distress situations. Microphone for sound and speech processing
is thus a very interesting sensor to acquire information about human activities which has also
the capacity of being used as voice command for domotic purposes.
Finally, it should be emphasized that data acquisition in such environment is a very hard task.
Although the number of projects related to ambient assisted living is high, only few datasets
are from real data (i.e., aged people with loss of autonomy) and dataset acquisition in this
non-standardised domain is a challenge by itself.

9. Conclusion

This chapter presents the AUDITHIS system which performs real-time sound analysis from
eight microphone channels in Health Smart Home associated to the autonomous speech ana-
lyzer RAPHAEL. The evaluation of AUDITHIS and RAPHAEL in different settings showed
that audio modality is very promising to acquire information that are not available through
other classical sensors. Audio processing is also the most natural way for a human to interact
with his environment. Thus, this approach particularly fits Health Smart Homes that include
home automation (e.g., voice command) or other high level interactions (e.g., dialogue). The
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frequent sounds). This is mandatory because GMM is a probabilistic approach which relies on
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is reasonable considering that many homes in several countries generate the same kinds of
sound — a probabilistic approach seems to be the most suited. However, other approaches,
such as (Niessen et al., 2008) which relies on non-statistical techniques are worth being con-
sidered and we plan to compare our approach to some of the literature such as the ones base
on soundscape (Aucouturier et al., 2007; Guastavino, 2006).
The speech recognition for the detection of distress situation led to interesting results in-lab
but still needs to be improved. Indeed, the experiments during which persons were asked to
utter normal and distress speech sentences in two different rooms showed how degraded the
speech recognition is in hostile condition. The error rate for the recognition of distress sen-
tences in this situation reached 30%. This can be partly explained by the very bad acoustic of
the flat (with a mean SNR of about 12 dB instead of 27 dB for the learning corpora). Another
limitation of the RAPHAEL system is that its language model is constructed with our collo-
quial speech corpus. We plan to refine this model by adding expressions and words frequently
used in daily conditions. This should give better results and make the distress situation detec-
tion tool more adapted to real conditions. The experiments have been performed with young
healthy people but it is well known that the voice characteristics vary with the age. Thus, a
second challenge is to adapt the acoustic model of RAPHAEL to the target population: the
elderly people. We plan to collect speech uttered by a large corpus of elderly people to ob-
tain a system usable for elderly. Other way of improving the speech recognition would be to
use acoustic models learned directly from the person which would be more adapted to her
voice. However, we believe that a speaker independent approach makes more sense for this
kind of application which necessitates to be easily integrable to the flat with a minimal setting
period. But, an approach that would automatically adapt the speaker independent models to
the person’s voice would offer an interesting compromise. The speech processing also offers
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is often neglegted, because many works consider that the person lives alone. But an aged per-
son is visited many times and one of the aims of the new technology is to fight loneliness by
augmenting the number of daily communications. Thus we need to distinguish what the data
that belongs to the monitored person is. Speaker diarization (Fredouille et al., 2006) could be
adapted to deal with this problem.

Both sound and speech processings are highly perturbed by audio source of daily living (e.g.,
TV, radio). The tests of the noise cancellation technique gave a better understanding of the
kinds of noise source that may be the most difficult to deal with. The test has been performed
only in laboratory and future work includes the test of this method in the health smart home
conditions. This will give more conclusive insight about the method performances in this
condition.
Sound and speech recognition system is used, in fine, for the automatic learning and recogni-
tion of activities of daily living together with other modalities. We have shown that the audio
modality in health smart home for the recognition of ADL has a significant impact on recog-
nition performance. The evaluation showed that the most informative sensors were the PIR
ones. However, the audio channel should provide information not only redundant with the
PIR one (e.g., presence in one room) but also higher level (e.g., washing machine spinning).
Thus we expect that the improvement of the audio processing will lead to higher performance
in activity of daily living recognition. The presented results come from a short number of
young and healthy participants in only one flat. Future work should include data from el-
derly people in more that one flat to test the influence of the disposition of a flat on the results.
Such supplementary experimentations would be useful to confirm the relative importance of
each sensor. One of the limits of the study is to not have taken the time into account. Indeed,
activities such as eating may be repeated at regular time. However, this information is useful
only when the resident is following his usual routine and may not challenge the learning to
acquire more accurate models. Moreover, as in many data acquired from volunteers outside
their home, the time information does not respect the participants’ routine. Finally, many ap-
plications assess the inhabitant’s autonomy by computing the deviance from a routine pattern
of activities. But, a deviance may not be a sign of autonomy loss. Microphones can thus play
a central role to remove the ambiguity by adding some context detection from the sentences
uttered during the day (e.g., multiple voices, plumber intervention . . . ).
Audio is not a modality much employed in the domain due to its intrusive nature, but so-
ciological studies (Rialle et al., 2008) have shown that the degree of acceptance of sensors in
one’s home is idiosyncratic and depend on the level of distress of the person and his relatives.
Moreover, the current approach does not record what the speakers are saying but only uses
speech processing to detect distress situations. Microphone for sound and speech processing
is thus a very interesting sensor to acquire information about human activities which has also
the capacity of being used as voice command for domotic purposes.
Finally, it should be emphasized that data acquisition in such environment is a very hard task.
Although the number of projects related to ambient assisted living is high, only few datasets
are from real data (i.e., aged people with loss of autonomy) and dataset acquisition in this
non-standardised domain is a challenge by itself.

9. Conclusion

This chapter presents the AUDITHIS system which performs real-time sound analysis from
eight microphone channels in Health Smart Home associated to the autonomous speech ana-
lyzer RAPHAEL. The evaluation of AUDITHIS and RAPHAEL in different settings showed
that audio modality is very promising to acquire information that are not available through
other classical sensors. Audio processing is also the most natural way for a human to interact
with his environment. Thus, this approach particularly fits Health Smart Homes that include
home automation (e.g., voice command) or other high level interactions (e.g., dialogue). The
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originality of the work is also to include sounds of daily living as indicators to distinguish dis-
tress from normal situations. First development gave acceptable results for the sound recog-
nition (72% correct classification) and we are working on the reduction of missed-alarm rate
to improve performance in the near future.
Although the current system suffers a number of limitations and that we raised numerous
challenges that need to be addressed, the pair AUDITHIS and RAPHAEL is, to the best of
our knowledge, one of the first serious attempts to build a real-time system that consider
sound and speech analysis for ambient assisted living. This work also includes several evalu-
ations on data acquired from volunteers in a real health smart home condition. Further work
will include refinement of the acoustic models to adapt the speech recognition to the aged
population as well as connexion to home automation systems.
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