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ABSTRACT

The spectacular recent development of modern high-energy density laboratory facilities which
concentrate more and more energy in millimetric volumes allows the astrophysical community
to reproduce and to explore, in millimeter-scale targets and during very short times, astrophys-
ical phenomena where radiation and matter are strongly coupled. The astrophysical relevance
of these experiments can be checked from the similarity properties and especially scaling laws
establishment, which constitutes the keystone of laboratory astrophysics. From the radiating
optically thin regime to the so-called optically thick radiative pressure regime, we present in this
paper, for the first time, a complete analysis of the main radiating regimes that we encountered
in laboratory astrophysics with the same formalism based on the Lie-group theory. The use of
the Lie group method appears as systematic which allows to construct easily and orderly the
scaling laws of a given problem. This powerful tool permits to unify the recent major advances
on scaling laws and to identify new similarity concepts that we discuss in this paper and which
opens important applications for the present and the future laboratory astrophysics experiments.
All these results enable to demonstrate theoretically that astrophysical phenomena in such ra-
diating regimes can be explored experimentally thanks to powerful facilities. Consequently the
results presented here are a fundamental tool for the high-energy density laboratory astrophysics
community in order to quantify the astrophysics relevance and justify laser experiments. More-
over, relying on the Lie-group theory, this paper constitutes the starting point of any analysis of
the self-similar dynamics of radiating fluids.

Subject headings: Scaling laws, Radiation Hydrodynamics, Laboratory Astrophysics, Lie groups

1. Introduction

Modern high-energy density facilities (including
powerful lasers and Z-pinch machines), which con-
centrate more and more energy in millimetric vol-
umes, allow to bring up the matter, reproducibly,
to new extreme states of density, temperature and
velocity in laboratory (Drake 2006; Remington,
Drake & Ryutov 2006; Moses et al. 2009). These
new experiment classes allow to characterize and
measure the fundamental properties of matter in
new physical regimes. Thanks to this new exper-
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imental capability, various hydrodynamical flows
with an astrophysical interest, such as high Mach
number flows (Loupias et al. 2007; Hartigan et al.
2009; Gregory et al. 2010a) or hydrodynamical in-
stabilities (Drake 2005) such as Rayleigh-Taylor
(Kuranz et al. 2009) or recently Kelvin-Helmholtz
instabilities (Hurricane et al. 2009; Harding et al.
2009), have been studied. With the flexibility of
these experiments we can examine and diagnose
the complex static or dynamic interaction of mat-
ter with an external magnetic field or/and radi-
ation. Using adapted target design, it is possi-
ble to create intense radiation which drives the
flows such as X-ray thermal waves (Back et al.
2000a,b) as well as intense hydrodynamics flows,
which leads to the radiation of plasmas as radia-
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tive shock waves (Bouquet et al. 2004; Koenig
et al. 2006; Michaut et al. 2007, 2009). Thus,
the powerful facilities provide a unique opportu-
nity to make progress in the understanding of
these extreme phenomena which had never been
created before at laboratory scales but they are
very common in high-energy astrophysics environ-
ments. The experimental challenge is to create
and to maintain a laboratory system which is sim-
ilar to its astrophysical counterpart. Thus, the
fundamental problem of laboratory astrophysics is
to determine the astrophysical relevance of these
experiments and to reconcile the spatial and tem-
poral scales which are so different as well as the
thermodynamical regimes. It is only by a rigor-
ous and detailed study of the scalability proper-
ties of such flows and the scaling laws establish-
ment that we can determine the possibility of re-
producing the astrophysical phenomena. The lab-
oratory experiments provide key insights into our
understanding of these phenomena at astrophys-
ical scales which is generally partial because of
the difficulty of observing them. Thus, the pos-
sibility to use an adapted scaling law in order to
reproduce, at diagnosis scales, high-energy astro-
physical phenomena appears as an essential com-
plement in order to test the astrophysical models
and simulations. Beyond their interest in labora-
tory astrophysics, the scaling laws play a crucial
role in all high-energy density physics since they
can be used in order to adapt a target design from
a powerful facilities to another. Moreover they
can consist in a powerful tool for numerical simu-
lations.
Several theoretical studies of similarity properties
and scaling laws have been published in purely hy-
drodynamic regimes (Basko & Johner 1998; Ryu-
tov et al. 1999; Ryutov & Remington 2002, 2003)
and in ideal MHD (Ryutov, Drake & Remington
2000; Ryutov et al. 2001). Concerning radiation
hydrodynamic regimes, few studies have been pub-
lished. In optically thin radiating plasma regimes,
only the similarity properties have been consid-
ered (Ryutov et al. 2001; Castor 2007). For the
optically thick regime, Murakami & Iida (2002)
have studied scaling laws in inertial fusion context
for specific flow classes. Recently the scalability
of two-temperature regime (electron and ion tem-
peratures) has been considered (Falize, Dizière &
Loupias 2010).

This paper consists in an exhaustive study of sim-
ilarity properties and scaling laws of radiation hy-
drodynamic flows in different regimes which are or
will be achieved in laboratory with current or fu-
ture facilities. For each regime, connections to as-
trophysical objects and phenomena are discussed.
We have based our analysis on an original ap-
proach with Lie group symmetries. This powerful
formalism appears as a systematic method which
provides easily and systematically the establish-
ment of the scaling laws of a given problem. Al-
though the scaling laws can be obtained by clas-
sical dimensional analysis formalism, it is only by
the Lie group symmetry that the different invari-
ance concepts can be introduced rigorously. A new
similarity concept, the global invariance (Falize
2008; Falize, Bouquet & Michaut 2009), which in-
troduces important perspectives in laboratory as-
trophysics, is presented in this paper. The latter
is organized as follows: firstly we present an ex-
tended classification of similarity concepts that we
use in laboratory astrophysics; secondly we exam-
ine the scalability properties of optically thin ra-
diation hydrodynamic flows. Finally, before con-
cluding, the scaling laws and the similarity prop-
erties of optically thick radiating fluids are con-
sidered in two specific diffusion regimes including
the regime where density energy and pressure of
radiation are not negligible compared to the same
matter quantities.

2. Scaling invariance concepts and similar-

ity experiments

Although a profound connexion exists between
the scalability properties of flows and their self-
similar behaviors, it is important to separate these
two distinct concepts. Indeed it is crucial to bear
in mind than two similar flows have not neces-
sary a self-similar dynamics. In order to illustrate
this point, let’s consider the example of the im-
portant high-energy density phenomenon of X-ray
radiative heating of opaque material. Its phys-
ical phenomenology is described and studied by
Pakula & Sigel (1985); Kaiser, Meyer-ter-Vehn &
Sigel (1989). During the first moments, a deceler-
ate supersonic Marshak wave propagates into the
opaque matter. When the radiative front becomes
subsonic, a shock is formed in the head of the
wave which leads to the classical structure of ab-
lative wave. In this physical situation, two similar
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flows can be defined, since in specific cases, scal-
ing laws can be established for this complex phe-
nomenon, whereas its global dynamics is clearly
non-self-similar.
Thus, generally, two flows are called to be similar
when there exists a transformation group which
allows to pass continuously from the laboratory
plasmas to astrophysical phenomena. A great va-
riety of non trivial transformations can agree with
this general definition. For instance in hydrody-
namics systems, Drury & Mendonca (2000) pro-
posed using the projective symmetry in order to
reproduce a supernova explosion by an implosion
of target. This approach has been extended to
optically thin radiating fluid dynamics by Falize
(2008).
In this paper the homothetic symmetry only is ex-
amined in detail. Although the dimensional anal-
ysis allows to obtain the similarity properties (Se-
dov 1959) of the physical system and to establish
the scaling laws, we favor the one-parameter ho-
mothetic Lie group (Birkhoff 1950; Bluman & Cole
1974). Thanks to this group, the connection be-
tween the astrophysical (Xi) and the laboratory
(X̃i) quantities are defined by the general trans-
formation:

Xi = λδiX̃i, (1)

where λ is the group parameter and δi’s are the
homothetic exponents of the rescaled quantities.
Although we do not discuss the problem of the
rescaling of the initial and boundary conditions,
it is trivial that the latter must be invariant in
all the scale transformations that we will discuss
and establish in this paper. This intuitive but con-
straining condition is discussed in detail in Ryutov
et al. (1999); Ryutov, Drake & Remington (2000).
The important work realized since a few decades
on scalability of laboratory flows have permit-
ted to introduce new similarity concepts in or-
der to define laboratory experiments. The first
important invariance concept is the perfect sim-
ilarity which has been introduced by Ryutov &
Remington (2003). The authors pointed out that
in hydrodynamic and non dissipative MHD sys-
tems a simple transformation exists and consists
in rescaling only the spatial and temporal coordi-
nates (r = A × r̃, t = A × t̃ where A is a free
parameter). In these physical regimes, this scal-
ing law requires no approximation of equations of
state (EOS), which makes a very attractive invari-

ance notion especially when the knowledge of these
informations are poor. Nevertheless it can not be
generally used in radiation hydrodynamic systems
and more general invariance concepts must be in-
troduced where all physical quantities are rescaled.
Two distinct similarity concepts must be intro-
duced (Falize 2008; Falize, Bouquet & Michaut
2009): the absolute similarity which consists in
the rescaling of all physical quantities and leaves
invariant the equations and the global similarity
which is a more general framework and is justified
by the Lie group theory. In the latter case, only
the form of equations is invariant and the different
ionization rates or external physical fields such as
magnetic fields (Falize et al. 2009) are absorbed
in the scaling laws form. Let’s note in general
the laboratory plasmas are composed by species
with more important atomic weight than in as-
trophysical situations due to some technological
limitations. Thanks to the global similarity, the
equivalence between the two systems is justified
by a rigorous theoretical concept. This similarity
concept is less constraining since additional free
parameters are introduced. Nevertheless it better
corresponds to the real problematic of laboratory
astrophysics rescaling. The use of this similarity
concepts claims a physical justification that the
unconserved sub-physical scales do not modify the
dynamics of plasmas. This last approach opens
fundamental perspectives since phenomena which
cannot be reproduced according to the absolute
similarity concepts become reproducible (Falize,
Dizière & Loupias 2010). These theoretical con-
siderations are applied to the dynamics of different
high-energy density radiating regimes.

3. Scalability properties of optically thin

radiating plasmas

A plasma can have density and high-temperature
conditions so that an important part of energy is
radiated in the form of low-interacting radiation
(τ << 1 where τ is the optical depth). The op-
tically thin regime concerns a great variety of as-
trophysical phenomena, especially the observables
ones, such as the first stage of molecular contrac-
tion, the dynamics of stellar jets and outflows,
radiative accretion shocks, the late supernovae
remnants and galaxy formation. The radiative
cooling can greatly modify the structure, the dy-
namics and the stability of the emitting plasmas.
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According to the properties of cooling processes,
the cooling instability can develop (Lynden-Bell
& Tout 2001). It attracts many astrophysicists at-
tention, since it explains the clumpy structure of
interstellar medium (ISM) and the co-existence of
the cold neutral medium and warm diffuse medium
phases in ISM.
Different experimental studies of radiative jet col-
lapse (Shigemori et al. 2000; Gregory et al. 2010b)
and the cooling instability (Moore et al. 2008) have
been realized with powerful lasers. The observa-
tion of dense localized structure of lower temper-
ature formed by this instability is very common
in Z-pinch and tokamak experiments (Meerson
1996). Given the various astrophysical environ-
ments concerned by this regime and the experi-
mental possibilities producing equivalent plasmas,
the study of their scalability is essential. A simple
modeling can be done by introducing a loss of en-
tropy and the dynamics of plasma is given by the
following equations:

∂ρ

∂t
+ ~∇.(ρ~v) = 0, dM = ρ.dV , (2)

ρ
d~v

dt
= −~∇P,

d

dt
=

[

∂

∂t
+ (~v.~∇)

]

, (3)

dP

dt
− γ

P

ρ

dρ

dt
= −(γ − 1)L(ρ, T ) , (4)

where t, ~v, M , V , ρ, P , γ and L(ρ, T ) are respec-
tively time, velocity, mass, volume, density, ther-
mal pressure, adiabatic index of plasma and cool-
ing function. In this paper, the function L(ρ, T ) is
chosen as L(ρ, T ) = Q1(ρ, T )+Q2(ρ, T ) where Q1

and Q2 are energy sources (or losses) in order to
take into account two different radiating physical
processes. The source terms are supposed to take
an analytical form given by:

Qi(ρ, P ) = Q0,iρ
ǫiP ζirθi , (5)

where r, Q0,i, ǫi, ζi and θi are respectively the spa-
tial coordinate and four characteristic constants of
source processes. This form generalizes the opti-
cally thin case where θi = 0. Thanks to the spa-
tial dependence of Eq. (5), we can approximatively
model optically thick processes (Chanmugam et
al. 1985). The analytical form of Qi in Eq. (5) is
motivated by the first fact that several continuous

processes can be modeled exactly or approxima-
tively by power laws and by the second fact that
Qi ∝ κPσT

4 which can be modeled by a power
law at high-temperature (where σ is the Stefan-
Boltzmann constant and κP is the Planck opac-
ity). Although the ISM cooling function takes a
very complex form (Dalgarno & McCray 1972), it
can be approximated by a power law model in sev-
eral temperature regimes.
In order to write the energy evolution in Eq. (4), a
polytropic evolution of plasma have been assumed:

ρe =
P

γ − 1
, (6)

where e is the specific internal energy. In order
to close the equation system, an EOS should be
added. The pressure relation (6) holds for a larger
class of EOS and not only for an ideal gas (Ryutov
et al. 2001). In this paper, we consider an EOS
given by Zeldovich & Raizer (1966):

P = ε0(Z)ρµT ν , (7)

where ε0(Z), µ, ν are respectively a function of
the ionization Z and two exponents to be chosen
later on. Zeldovich & Raizer (1966) have noticed
that to keep the consistency of the thermodynamic
description of gases, we should have:

γ =
ν − µ

ν − 1
. (8)

We easily verify that a photon gas, which is char-
acterized by a pressure Pr = arT

4/3, where ar is
the radiative constant, verify this constraint.
In order to establish the generic scaling laws, the
relation between the typical quantities in astro-
physical objects and laboratory experiments are
given by:

r = λδ1 r̃, t = λδ2 t̃, ~v = λδ3~̃v, M = λδ4M̃,
(9)

ρ = λδ5 ρ̃, P = λδ6 P̃ , T = λδ7 T̃ , γ = λδ8 γ̃ ,
(10)

ε0 = λδ9 ε̃0, Q0,1 = λδ10Q̃0,1, Q0,2 = λδ11Q̃0,2 .
(11)

Not only the adiabatic index must be invariant,
but also the classical hydrodynamic dimensionless
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numbers must be preserved:

St =
vt

r
, M =

v

cs
, (12)

where St and M are respectively the Strouhal and
Mach number. Moreover, a radiation dimension-
less number, the cooling (or heating) parameter
χL, must be invariant in order to conserve the
balance between the radiation and hydrodynamic
effects. It is defined by:

χL =
tL
t

=
P

(γ − 1)Lt , (13)

which leads, for the cooling function considered in
this section, to the following results:

χQ1 =
P

(γ − 1)Q1t
, χQ2 =

P

(γ − 1)Q2t
, (14)

Although the Strouhal number is meaningful only
when two flows are being compared, the others
give informations about the studied plasma itself.
Indeed, if M > 1 (or M < 1), the flow is super-
sonic (or subsonic) and if χL < 1 (or χL > 1) the
flow is radiating (or adiabatic). One important
result from the similarity study of these radiat-
ing plasmas is the conservation of the exponents
of the cooling function. Since the cooling insta-
bility criterion (Lynden-Bell & Tout 2001) or the
complex dynamics of these fluids greatly depends
on the exponents of the cooling function, their
conservation is very important in the context of
laboratory studies.
Introducing Eqs. (9-11) in Eqs. (2-4), we have ob-
tained analytically the scaling laws insuring the
invariance of Eqs. (2-4). In Table 1 different gen-
eral scaling laws are presented. In the second
column we present the scaling laws obtained with
global similarity concept for a composite general-
ized cooling function, although in the third column
the scaling laws of purely optically thin radiating
plasmas are presented. In Table 2 scaling laws
of different astrophysical systems are presented in
absolute similarity case. Although two free param-
eters (noted δ5, δ6) are obtained when the scaling
laws are constructed from the absolute similarity
concepts (Q0,i and ε0 are invariants), four free
parameters (δ1, δ5, δ6, δ9) are obtained when the
global similarity concept is used as in the hydro-
dynamic case (Falize, Bouquet & Michaut 2009).
Here, the results are given for two astrophysical

cases: supernova remnants and accretion shock in
magnetic cataclysmic variables.
The scalability properties of supernova remnants
in radiative phase are presented in the second
column. In the temperature regime of remnants,
the cooling function is approximatively given by
L ∝ ρ2T−1/2 which is the expression used in this
application.
The scalability properties of accretion column
in magnetic cataclysmic variables are presented
in the third column (with bremsstrahlung emis-
sion) and the fourth column (with cyclotron and
bremsstrahlung emissions). In these astrophysical
objects the X-ray emitting regions are located near
the magnetic poles, where the matter is heated by
a stand-off shock to a temperature of around 10-
50 keV, then is cooled by bremsstrahlung emis-
sion (Q ∝ ρ2T 1/2) and other cooling processes
(as cyclotronic emission (Saxton & Wu 1999)
Q ∝ ρ0.15T 2.5). These radiation losses lead to
the formation of a cooling layer (Chevalier & Ima-
mura 1982). In this complex zone, named the
accretion column, the presence of an intense mag-
netic field, radiation, and hydrodynamics leads to
a rich range of behaviors at different spatial and
temporal scales. The accretion column presents
a highly stratified structure in temperature and
density, which depends greatly on the physical
properties of the white dwarf (Wu, Chanmugam
& Shaviv 1995). Unfortunately, the size scales
associated with these zones are of the order of
the white dwarf radius or smaller, which compli-
cates their direct observation (Hoogerwerf et al.
2006). These high-energy environments present
interesting scalability properties since the main
radiating processes can be modeled by a power
law form. Noting that, in some AM Her stars
(mCVs with B > 10 MG), the accretion column
is dominated by bremsstrahlung cooling, imply-
ing that the magnetic field acts only to guide the
plasma and does not modify the local dynamics.
Thus, by the results of Table 2, we demonstrate
that an adapted scaling law allows to produce,
with powerful lasers, a diagnosable accreting col-
umn in the laboratory, and to study its structure.
This is also justified by the fact that the accretion
column height, Lh, is given by Lh ∼ vs×tcool with
vs and tcool as the velocity of accretion matter and
the cooling time. For typical laboratory regime,
vs ∼ 100 km.s−1 and tcool ∼ 1 ns, the height of the
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accretion shock is 100 µm which is a diagnosable
scale. This has recently been investigated experi-
mentally with the LULI2000 facility (Falize et al.
2010) which constitutes the first laser experiment
that aims at producing relevant accreted columns
in laboratory. If such a goal is reached, the knowl-
edge gained in the laboratory can be applied to
similar astrophysical processes.

4. Scalability properties of optically thick

radiating plasmas

Several high-energy astrophysics phenomena
present a highly coupled physical regime between
radiation and matter which leads to a complex
structure and dynamics of the flow. It is the
case for accretion discs, stellar interiors, super-
nova shocks and also the evaporation of clouds in
ISM. In spite of the access to multi-wavelengths
information, the understanding of these objects
is generally partial. With adapted target designs
and compositions, relevant conditions of some phe-
nomena are, nowadays, commonly created and
diagnosed with the modern powerful facilities. In-
deed the ability to produce intense X-ray radiation
and to diagnose its interaction with matter, or to
create strong shocks which lead to intense emitted
radiation, constitute a real opportunity to test
and validate the physical models of such struc-
ture ubiquitous in astrophysical environments. In
this section two specific radiation hydrodynamic
regimes are studied in detail. We examine the
scalability properties of optically thick radiating
plasmas in one-temperature diffusive regimes. We
firstly focus on the regime where the energy trans-
port is efficiently performed by the radiation and
secondly the regime where the radiation field is so
high that the radiative energy density and pres-
sure are not negligible to counterpart matter. The
diffusion approximation is correct when the radia-
tive Knudsen number, Knr, is small, which is
defined by:

Knr =
lR(ρ, T )

LH
, (15)

where lR, LH are respectively the mean free path
of radiation and the hydrodynamical scale. In or-
der to insure that the radiation and matter are at
the same temperature, the mean free path should
be smaller than the typical temperature gradient

length lT :

lR
lT

=
lR(ρ, T )

T
∇T << 1. (16)

Determining the radiating regime of fluids, two
dimensionless numbers are commonly introduced.
In order to evaluate the efficiency of radiation, the
enthalpy flux, ρhv, is compared to the black body
radiative flux, σT 4 in the conventional Boltzmann
number (Mihalas & Mihalas 1999; Castor 2004):

Bo =
ρhv

σT 4
. (17)

Thus the energy is transported efficiently by radi-
ation when the temperature of plasma is greater
than a critical temperature, TBo, corresponding to
the case Bo = 1:

T > TBo ≡
[

γ

γ − 1

]1/3 [
kB

σµmH

]1/3

[ρv]1/3 ,

(18)
where kB and mH are respectively the Boltzmann
constant and the mass of the hydrogen atom. The
expression (18) gives for a perfect gas with an in-
terstellar composition in conventional units:

TBo[keV] = 5.18×10−2

[

ρ

1g.cm−3

]1/3 [
v

1km.s−1

]1/3

.

(19)
For the common radiative regime obtained in lab-
oratory with kJ facilities (Koenig et al. 2006;
Michaut et al. 2007, 2009), the critical temper-
ature is around 40 eV. When the characteristic
velocity is the sound velocity, the relation (18) is
written only in function of the density of material
by:

TBo =

[

γσ−1√γ

γ − 1

]2/5 [
kB

µmH

]3/5

ρ2/5. (20)

For a polytropic ideal gas (γ = 5/3) with an in-
terstellar composition the critical temperature is
given by:

TBo[keV] = 5.86× 10−1

[

ρ

1g.cm−3

]2/5

. (21)

Another important dimensionless number is the
so-called Mihalas number, R, which is defined as
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the ratio of the material internal energy density
(ρe) to the radiation energy density (Er):

R =
ρe

Er
=

1

γ − 1

P

aRT 4
. (22)

It measures the relative importance of gas and ra-
diation pressure since Er is proportional to the ra-
diative pressure by the Eddington approximation.
As for the Boltzmann number, a critical temper-
ature can be determined from it. Thus the radi-
ation plays an important role in laboratory when
the temperature satisfies the following criterion:

T > TR ≡
[

kB
µmHaR(γ − 1)

]1/3

ρ1/3, (23)

TR[keV] = 3.88

[

ρ

1g.cm−3

]1/3

. (24)

Using typical values of foam target (ρ ∼ 0.1
g.cm−3), TR is around 1 keV. For a gas target
the critical temperature is lower and more easily
achieved. Such extreme radiating regimes will be
commonly created on NIF or LMJ facilities. Con-
sequently it is very important to study the simi-
larity properties of such radiating fluids.

4.1. The radiative flux regime

We begin by examining the scalability proper-
ties of radiating plasmas in radiative flux regime
(Bo < 1, R > 1). In this case Eq. (4) changes and
takes the following form:

dP

dt
− γ

P

ρ

dρ

dt
= −(γ − 1)~∇. ~Fr − (γ − 1)Q , (25)

where ~Fr is the radiative flux and Q = Q0ρ
ǫP ζrθ

is similar to the quantity arising in the previous
section. Taking a general form allows to include
another kind of radiative flux term provided the
condition θ = −2 holds. In the diffusion regime
the radiative flux is given by:

~Fr = − lR(ρ, T )c

3
~∇Er = −κr(ρ, T ) ~∇T , (26)

where c and κr are respectively the light celerity
and the radiative conductibility. We assume that
κr(ρ, T ) must be reduced, in the thermodynamical
regime of interest here, to a power law form:

κr(ρ, T ) = κ0ρ
mT n, (27)

where κ0, m and n are three constant coefficients
characterizing the radiative process. This form is
motivated by the scalability properties but also,
as in the cooling function case, because several ra-
diative processes can be modeled approximatively
or exactly by such a form. The scalability prop-
erties of such flows can be constructed using the
transformation (9-11) with the additional relation
κ0 = λδ12 κ̃0. From the similarity properties, a new
dimensionless number, Π, is added to the previous
numbers, which writes:

Π =
P

Fr

x

t
=

3

16

γ − 1

γ

lT
lR

Bo

St
. (28)

Actually, the quantity lTBo/lR must be invariant
but if Bo is conserved, the ratio lT /lR must be
an invariant too (lT /lR = l̃T /l̃R). As previously,
the scaling laws have been calculated from invari-
ance properties of Eqs. (2, 3, 25) and are presented
in Table 3. It is straightforward to show that
the equations are invariant under the following
scale transformation. In other words, the equation
forms describing the dynamics of the astrophysi-
cal system and the laboratory plasmas are indis-
tinguishable through the scale transformation.
In the second column of Table 3, the scaling laws in
the global similarity case are presented. As in pre-
vious radiating regimes, four free parameters (δ1,
δ5, δ6, δ9) are obtained in order to scale an experi-
ment. In the purely radiative flux regime (Q = 0)
and for the absolute similarity, the radiative flux
imposes a complementary constraint leading to a
reduced number of free parameters. Two free pa-
rameters (δ5, δ6) are obtained and corresponding
scaling laws are presented in the third column.
In Table 4, we provide the scaling laws when
the radiative transport is respectively modeled by
Spitzer conduction (κr ∝ T 5/2), Bridgman limit
of thermal conduction (κr ∝ ρ2/3T 1/2), Dyson ra-
diative limit (κr ∝ ρ−1T 4), Thomson scattering
(κr ∝ ρ−1T 3), Kramers opacity (κr ∝ ρ−2T 13/2)
and dust grains (κr ∝ ρ−1T ). Thus, this anal-
ysis shows the attractive perspectives of labora-
tory experiments in order to reproduce astrophys-
ical phenomena in this specific radiating regime.
Various scaling laws are derived by Murakami &
Iida (2002) in the context of inertial confinement
fusion for a internal energy relation in the form:
e ∝ T β where β is an arbitrary exponent. The
fundamental problem of such EOS is that it does
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not preserve the thermodynamic consistency of
the gas (Zeldovich & Raizer 1966) contrary to
EOS used in this paper. Finally, noting that the
Rankine-Hugoniot relations for hybrid radiative
shock (Michaut et al. 2009) are invariant by the
general scale transformations presented in Table
3, we theoretically prove that they can be repro-
duced in laboratory experiments.

4.2. The fully radiative regime

Now the scalability properties of radiating flu-
ids, when the radiative energy density and pres-
sure are important compared to their matter coun-
terpart, are examined. This regime concerns the
explosion phase of supernovae, several accretion
flows, fundamental phase in star formation, in stel-
lar mass losses or the ablation of molecular clouds
(Konigl 1984) in ISM. In massive stars the ra-
diation quantities become of the same order of
magnitude as the thermal ones when the mass
of star is around 30M⊙ (Chandrasekhar 2003).
In addition to mass conservation (see Eq. (2)),
the plasma evolution is governed by the following
equations (Pomraning 1973; Coggeshall & Axford
1986; Drake 2006):

ρ
d~v

dt
= −~∇PT , (29)

dET

dt
− ET + PT

ρ

dρ

dt
= −~∇. ~Fr −Q , (30)

where ET and PT are respectively the total energy
density and pressure, given by:

ET = ρe+ Er, PT = P + Pr. (31)

In the present application Er = aRT
4 and Pr =

Er/3.
By the similarity properties the main character-
istic dimensionless numbers are identified. The
Mihalas number given by Eq. (22) is added to
the four previous dimensionless numbers Eqs. (12),
(14) and (28). The corresponding scaling laws are
presented in Table 5. The second column corre-
sponds to the global similarity case where three
free parameters (δ5, δ9, δ12) are found. The loss
of one free parameter, compared to the previous
global similarity cases, comes from the fact that
Pr and Er introduce a new fundamental constant
which is not scalable. In the absolute similar-
ity case one homothetic group is found with one

free parameter (δ5) which can be chosen arbitrar-
ily. This latter defines the magnitude of the other
characteristic physical quantities which has to be
maintained in order to insure that the scale plasma
behaves similarly to the astrophysical phenomena.
In Table 5 we have chosen to write all the quan-
tities in terms of the ratio of density in order to
obtain a simple generic expression. It is the first
time that the possibility of reproducing an exact
scale model of astrophysical phenomena in such
regime is demonstrated. This is an important re-
sult since it opens new and important opportu-
nities for laboratory astrophysics experiments for
studying the dynamics of plasmas in such regimes.
In the fourth and fifth columns, scale transforma-
tions are proposed in two important cases with
dust and Kramers opacity. Since the Rankine-
Hugoniot relations (Mihalas & Mihalas 1999; Bou-
quet, Teyssier & Chièze 2000) are necessarily scale
invariant, the existence of scaling laws allows to
demonstrate that radiative shocks in fully radia-
tive regime (Michaut et al. 2009) can be theoreti-
cally reproduced in laboratory experiments.

5. Conclusion

This paper presents the scalability properties of
radiation hydrodynamic fluids and proposes new
scaling laws. In this work, an exhaustive descrip-
tion of similarity concepts is presented and new in-
variance concepts are introduced remaining more
or less the physics at sub-scales. It is important
to master the subtleties of the absolute similar-
ity and the global similarity. Currently, the con-
straints imposed by the absolute similarity, which
is more rigorous, are very restrictive for astrophys-
ical laboratory applications due to great number of
constraints. Consequently, the global similarity is
preferred and is an important theoretical support
to design an astrophysical experiment. In spite of
the absolute similarity is very interesting in sev-
eral high-energy density applications for adapting
the target design in more and more powerful facil-
ities.
This work constitutes a fundamental and power-
ful tool determining the astrophysical relevance
of modern high-energy density laboratory exper-
iments. We have examined three types of radia-
tive regimes: the optically thin regime, the opti-
cally thick one in which the radiative flux regime
is distinguished from the fully radiative one. The

8



possibility of reproducing a scaled model of ra-
diating plasmas with a low Mihalas number, i.e.
the fully radiative regime, is a real opportunity
to progress in the understanding of the induced
complex physics. For the first time, the scaling
laws are rigorously demonstrated for such flows
occurring in several extreme astrophysical envi-
ronments. More generally, we have showed that
a broad class of astrophysical radiating plasmas
for optically thin regime as well as the two spe-
cific optically thick regimes can be simulated in
high-energy density laboratory experiments.
The key results presented here prove that labora-
tory astrophysics is a very promising and fruitful
approach that can improve, complete and test our
understanding of physical mechanisms acting in
high-energy astrophysical environments.
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Table 1

Scaling laws of optically thin radiating fluids. The scaling laws of generalized cooling function case obtained
using the global similarity are presented in the second column. The scaling of purely optically thin plasmas

are showed in the third column.

physical ratio global similarity case global similarity with θi = 0

r/r̃ λδ1 λδ1

t/t̃ λδ1+(δ5−δ6)/2 λδ1+(δ5−δ6)/2

v/ṽ λ(δ6−δ5)/2 λ(δ6−δ5)/2

ρ/ρ̃ λδ5 λδ5

P/P̃ λδ6 λδ6

T/T̃ λ(δ6−δ9−µδ5)/ν λ(δ6−δ9−µδ5)/ν

Q0,1/Q̃0,1 λ(3/2−ζ1)δ6−(ǫ1+1/2)δ5−(θ1+1)δ1 λ(3/2−ζ1)δ6−(ǫ1+1/2)δ5−δ1

Q0,2/Q̃0,2 λ(3/2−ζ2)δ6−(ǫ2+1/2)δ5−(θ2+1)δ1 λ(3/2−ζ2)δ6−(ǫ2+1/2)δ5−δ1

ε0/ε̃0 λδ9 λδ9

Table 2

Scaling laws of optically thin plasmas for different astrophysical applications are presented. The scaling
laws of radiative supernova remnant, accretion shock with bremsstrahlung cooling and accretion with
bremsstrahlung and cyclotron cooling are respectively shown in the second, third and fourth columns.

physical ratio radiative SNR regime BC BC+CC

r/r̃ λ2δ6−3δ5 λδ6−2δ5 λ−

3
40

δ5

t/t̃ λ
3
2
δ6−

5
2
δ5 λ

1
2
δ6−

3
2
δ5 λ−

43
80

δ5

v/ṽ λ
1
2
δ6−

1
2
δ5 λ

1
2
δ6−

1
2
δ5 λ

37
80

δ5

ρ/ρ̃ λδ5 λδ5 λδ5

P/P̃ λδ6 λδ6 λ
77
40

δ5

T/T̃ λδ6−δ5 λδ6−δ5 λ
37
40

δ5

Q0,1/Q̃0,1 1 1 1

Q0,2/Q̃0,2 — — 1
ε0/ε̃0 1 1 1

Table 3

General scaling laws for radiative flux regime. The scaling laws obtained using the global similarity and the
absolute similarity are respectively presented in the third and fourth columns.

physical ratio global similarity case Purely radiative flux regime

r/r̃ λδ1 λ[m+1/2−(n+1)µ/ν]δ5+[(n+1)/ν−3/2]δ6

t/t̃ λδ1+(δ5−δ6)/2 λ[m+1−(n+1)µ/ν]δ5+[(n+1)/ν−2]δ6

ρ/ρ̃ λδ5 λδ5

v/ṽ λ(δ6−δ5)/2 λ(δ6−δ5)/2

P/P̃ λδ6 λδ6

T/T̃ λ(δ6−µδ5−δ9)/ν λ(δ6−µδ5)/ν

ε0/ε̃0 λδ9 1

Q0/Q̃0 λ(3/2−ζ)δ6−(ǫ+1/2)δ5−(θ+1)δ1 —

κ0/κ̃0 λδ1+[(n+1)/ν]δ9+[3/2−1/ν−n/ν]δ6+[µ/ν−1/2−m+nµ/ν]δ5 1
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Table 4

Scaling laws of various optically thick radiating fluids. The Spitzer, Bridgman, Kramers, Dyson, Thomson
and Dust grain cases are respectively presented in the second, third, fourth, fifth, sixth and seventh columns.

physical ratio Spitzer Bridgman Kramers Dyson Thomson Dust grain

r/r̃ λ2δ6−3δ5 λ−δ5/3 λ−9δ5+6δ6 λ7δ6/2−11δ5/2 λ5δ6/2−9δ5/2 λδ6/2−5δ5/2

t/t̃ λ3δ6/2−5δ5/2 λδ5/6−δ6/2 λ−17δ5/2+11δ6/2 λ3δ6−5δ5 λ2δ6−4δ5 λ−2δ5

v/ṽ λδ6/2−δ5/2 λδ6/2−δ5/2 λδ6/2−δ5/2 λδ6/2−δ5/2 λδ6/2−δ5/2 λδ6/2−δ5/2

ρ/ρ̃ λδ5 λδ5 λδ5 λδ5 λδ5 λδ5

P/P̃ λδ6 λδ6 λδ6 λδ6 λδ6 λδ6

T/T̃ λδ6−δ5 λδ6−δ5 λδ6−δ5 λδ6−δ5 λδ6−δ5 λδ6−δ5

Q0/Q̃0 — — — — — —
ε0/ε̃0 1 1 1 1 1 1

κ0/κ̃0 1 1 1 1 1 1

Table 5

Scaling laws for optically thick radiating fluids in the fully radiative regime. The scaling laws obtained using
the global similarity are presented in the second column. In the third column, the scaling laws of Zeldovich

-Raizer gas obtained using the absolute similarity are showed. In the fourth and fifth columns, two
applications for ideal gas (Ig) are presented.

physical ratio global similarity case Zeldovich-Raizer gas Ig + dust Ig + Kramers op.

r/r̃ λδ12+([n−5]/[4−ν])δ9+([m+1/2]+µ[n−5]/[4−ν])δ5 λ([m+1/2]+µ[n−5]/[4−ν])δ5 λ−11δ5/6 λ−δ5

t/t̃ λδ12+([n−7]/[4−ν])δ9+(m+1+µ[n−7]/[4−ν])δ5 λ(m+1+µ[n−7]/[4−ν])δ5 λ−2δ5 λ−7δ5/6

v/ṽ λ(2/[4−ν])δ9+([4µ+ν−4]/[8−2ν])δ5 λ([4µ+ν−4]/[8−2ν])δ5 λδ5/6 λδ5/6

ρ/ρ̃ λδ5 λδ5 λδ5 λδ5

P/P̃ λ(4/[4−ν])δ9+(4µ/[4−ν])δ5 λ(4µ/[4−ν])δ5 λ4δ5/3 λ4δ5/3

T/T̃ λ(1/[4−ν])δ9+(µ/[4−ν])δ5 λ(µ/[4−ν])δ5 λδ5/3 λδ5/3

Er/Ẽr λ(4/[4−ν])δ9+(4µ/[4−ν])δ5 λ(4µ/[4−ν])δ5 λ4δ5/3 λ4δ5/3

Fr/F̃r λ(6/[4−ν])δ9+([12µ−4+ν]/[8−2ν])δ5 λ([12µ−4+ν]/[8−2ν])δ5 λ3δ5/2 λ3δ5/2

Pr/P̃r λ(4/[4−ν])δ9+(4µ/[4−ν])δ5 λ(4µ/[4−ν])δ5 λ4δ5/3 λ4δ5/3

Q/Q̃ λ−δ12+([11−n]/[4−ν])δ9+(µ[11−n]/[4−ν]−[m+1])δ5 — — —

κ0/κ̃0 λδ12 1 1 1

ε0/ε̃0 λδ9 1 1 1
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