Extending the loop language with higher-order procedural variables

Abstract : We extend Meyer and Ritchie's Loop language with higher-order procedures and procedural variables and we show that the resulting programming language (called Loopω) is a natural imperative counterpart of Gödel System T. The argument is two-fold: 1. we define a translation of the Loopω language into System T and we prove that this translation actually provides a lock-step simulation, 2. using a converse translation, we show that Loopω is expressive enough to encode any term of System T. Moreover, we define the "iteration rank" of a Loopω program, which corresponds to the classical notion of "recursion rank" in System T, and we show that both translations preserve ranks. Two applications of these results in the area of implicit complexity are described.
Type de document :
Article dans une revue
ACM Transactions on Computational Logic, Association for Computing Machinery, 2009, 10 (4), pp.1--37. 〈10.1145/1555746.1555750〉
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00422158
Contributeur : Emmanuel Polonowski <>
Soumis le : mardi 6 octobre 2009 - 10:13:38
Dernière modification le : mardi 13 mars 2018 - 14:24:05
Document(s) archivé(s) le : mardi 16 octobre 2012 - 11:50:38

Fichier

LoopW.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Tristan Crolard, Emmanuel Polonowski, Pierre Valarcher. Extending the loop language with higher-order procedural variables. ACM Transactions on Computational Logic, Association for Computing Machinery, 2009, 10 (4), pp.1--37. 〈10.1145/1555746.1555750〉. 〈hal-00422158〉

Partager

Métriques

Consultations de la notice

113

Téléchargements de fichiers

54