Approaching criticality via the zero dissipation limit in the abelian avalanche model

Abstract : The discrete height abelian sandpile model was introduced by Bak, Tang \& Wiesenfeld and Dhar as an example for the concept of self-organized criticality. When the model is modified to allow grains to disappear on each toppling, it is called bulk-dissipative. We provide a detailed study of a continuous height version of the abelian sandpile model, called the abelian avalanche model, which allows an arbitrarily small amount of dissipation to take place on every toppling. We prove that for non-zero dissipation, the infinite volume limit of the stationary measure of the abelian avalanche model exists and can be obtained via a weighted spanning tree measure. We show that in the whole non-zero dissipation regime, the model is not critical, i.e., spatial covariances of local observables decay exponentially. We then study the zero dissipation limit and prove that the self-organized critical model is recovered, both for the stationary measure and for the dynamics. We obtain rigorous bounds on toppling probabilities and introduce an exponent describing their scaling at criticality. We rigorously establish the mean-field value of this exponent for $d > 4$.
Type de document :
Article dans une revue
Journal of Statistical Physics, Springer Verlag, 2015, 159 (6), pp.1369-1407. <10.1007/s10955-015-1231-z>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00421148
Contributeur : Ellen Saada <>
Soumis le : mercredi 30 septembre 2009 - 19:40:05
Dernière modification le : mardi 11 octobre 2016 - 11:58:18

Identifiants

Collections

Citation

Antal A. Jarai, Frank Redig, Ellen Saada. Approaching criticality via the zero dissipation limit in the abelian avalanche model. Journal of Statistical Physics, Springer Verlag, 2015, 159 (6), pp.1369-1407. <10.1007/s10955-015-1231-z>. <hal-00421148>

Partager

Métriques

Consultations de la notice

51