Kowalevski's Analysis of the Swinging Atwood's Machine.

Abstract : We study the Kowalevski expansions near singularities of the swinging Atwood's machine. We show that there is a infinite number of mass ratios $M/m$ where such expansions exist with the maximal number of arbitrary constants. These expansions are of the so--called weak Painlevé type. However, in view of these expansions, it is not possible to distinguish between integrable and non integrable cases.
Type de document :
Article dans une revue
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2010, 43 (8), pp.085207. <10.1088/1751-8113/43/8/085207>


https://hal.archives-ouvertes.fr/hal-00420854
Contributeur : Michel Talon <>
Soumis le : mardi 29 septembre 2009 - 18:30:41
Dernière modification le : mardi 11 octobre 2016 - 13:25:29
Document(s) archivé(s) le : mercredi 16 juin 2010 - 00:13:05

Fichiers

atwood.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Olivier Babelon, Michel Talon, Michel Capdequi-Peyranere. Kowalevski's Analysis of the Swinging Atwood's Machine.. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2010, 43 (8), pp.085207. <10.1088/1751-8113/43/8/085207>. <hal-00420854>

Exporter

Partager

Métriques

Consultations de
la notice

174

Téléchargements du document

314