Kowalevski's Analysis of the Swinging Atwood's Machine.

Abstract : We study the Kowalevski expansions near singularities of the swinging Atwood's machine. We show that there is a infinite number of mass ratios $M/m$ where such expansions exist with the maximal number of arbitrary constants. These expansions are of the so--called weak Painlevé type. However, in view of these expansions, it is not possible to distinguish between integrable and non integrable cases.
Document type :
Journal articles
Journal of Physics A Mathematical and Theoretical, 2010, 43 (8), pp.085207. <10.1088/1751-8113/43/8/085207>


https://hal.archives-ouvertes.fr/hal-00420854
Contributor : Michel Talon <>
Submitted on : Tuesday, September 29, 2009 - 6:30:41 PM
Last modification on : Tuesday, March 2, 2010 - 12:54:17 PM

Files

atwood.pdf
fileSource_public_author

Identifiers

Collections

Citation

Olivier Babelon, Michel Talon, Michel Capdequi-Peyranere. Kowalevski's Analysis of the Swinging Atwood's Machine.. Journal of Physics A Mathematical and Theoretical, 2010, 43 (8), pp.085207. <10.1088/1751-8113/43/8/085207>. <hal-00420854>

Export

Share

Metrics

Consultation de
la notice

117

Téléchargement du document

105