Discrete compactness for the p-version of discrete differential forms

Abstract : In this paper we prove the discrete compactness property for a wide class of p-version finite element approximations of non-elliptic variational eigenvalue problems in two and three space dimensions. In a very general framework, we find sufficient conditions for the p-version of a generalized discrete compactness property, which is formulated in the setting of discrete differential forms of any order on a d-dimensional polyhedral domain. One of the main tools for the analysis is a recently introduced smoothed Poincaré lifting operator [M. Costabel and A. McIntosh, On Bogovskii and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains, Math. Z., (2010)]. For forms of order 1 our analysis shows that several widely used families of edge finite elements satisfy the discrete compactness property in p-version and hence provide convergent solutions to the Maxwell eigenvalue problem. In particular, Nédélec elements on triangles and tetrahedra (first and second kind) and on parallelograms and parallelepipeds (first kind) are covered by our theory.
Type de document :
Article dans une revue
SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2011, 49 (1), pp.135-158. 〈10.1137/090772629〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00420150
Contributeur : Monique Dauge <>
Soumis le : mercredi 27 octobre 2010 - 10:54:07
Dernière modification le : vendredi 16 novembre 2018 - 01:22:48
Document(s) archivé(s) le : vendredi 28 janvier 2011 - 02:45:30

Fichiers

BoCoDaDeHi.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Daniele Boffi, Martin Costabel, Monique Dauge, Leszek Demkowicz, Ralf Hiptmair. Discrete compactness for the p-version of discrete differential forms. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2011, 49 (1), pp.135-158. 〈10.1137/090772629〉. 〈hal-00420150v4〉

Partager

Métriques

Consultations de la notice

514

Téléchargements de fichiers

123