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A Practical Approach to the Formal Verification of
SoCÕs with Symbolic Model-Checking

Emil DUMITRESCU
TIMA Laboratory, Grenoble, FRANCE

Abstract: The successful application of model-checking to industrial designs calls for a
minimal set of efficiency criteria. This work addresses these issues, based on the
linear-time model-checking verification of an instruction cache controller
designed by ST Microelectronics.

1. INTRODUCTION

We present a formal verification approach concerning the main modules of
a SoC. This approach has been experimented on a system designed by ST
Microelectronics: the digital core of a cellular phone, which implements two
main features: one real-time component performs digital signal processing,
and implements the communication protocol; the second component is in
charge of all user-interface functionalities.

Given its high degree of complexity, the elaboration of this system
involves a large design team. The verification task is separated from the actual
design and performed by verification engineers who are not involved in the
design process. This paper presents, from the point of view of a verification
engineer, a set of model checking verification strategies applying to the
different parts of a SoC. The presentation is illustrated using, as a running-
example, one SoC module: an instruction cache controller.

Model Checking state of the art

Temporal logic and symbolic model checking present considerable
advantages for the specification, analysis and verification of real-life circuits.
It is now common practice to use this technique and traditional simulation
jointly, as two complementary tools. Unfortunately, the use of model checking
on an industrial design often requires non-negligible efforts, despite the Òpush-
buttonÓ advantage advertised for this technique. The fully automated approach
of symbolic model checking is limited by combinational explosion of the
BDD model representation [4], [1]. To solve the exponential space complexity
problem, two main directions are being explored.

Various alternative representations have been successfully tried. Word-level
operations have shown efficient symbolic representations [2]. As for the
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general representation of a controller state space, ZBDDs [6] seem to bring a
good spatial improvement compared to traditional BDDs.

The second important research direction is the enhancement of symbolic
model-checking algorithms. Several algorithms are very efficient for a
particular class of circuits, but can give bad results if applied to another class
[9]. In [7], a heuristic analysis of the circuit representation, based on variable
dependency matrices, is presented, and can be used to choose the appropriate
verification algorithm, if it exists.

Despite these improvements, the asymptotic exponential complexity has not
been eliminated. Besides, some of them are not implemented inside industrial
verification tools accepting a standard HDL entry. Hence, care must be taken
when using this technique for verifying an arbitrary circuit. Some essential
guidelines for model checking a design already exist. For instance, the proof
of arithmetic operations is very inefficient. As for control parts, they cannot
have an arbitrary size. Deciding whether a circuit is reasonably sized depends
on several aspects: number of lines, number of state variables, complexity of
the transition and output functions, the importance and the size of the data
part, as well as the possible depth of the corresponding finite state machine.
All these aspects require a good knowledge of the circuit.
On the other hand, classical efficiency guidelines concerning model checking
include design decomposition according to assume-guarantee techniques [3],
data-path abstraction, case splitting, and data type reduction [5]. These
techniques successfully apply to most common RT-level designs but they
require a good knowledge of the existing temporal logics, and also of the
symbolic model checking mechanism.
In this paper we show the practical application of several of the above techniques on a
SoC design. Section II presents the sub-module taken as running-illustration together
with the characteristics of the VHDL model. Section III is the core of this paper, in
which we formalize the design specification and explain the various simplifications
that we applied to the model to check the requested properties. Section IV gives our
results: the figures showing that a simplification strategy cannot be avoided. The last
section concludes on the task of the verification engineer.

2. THE ST-MICROELECTRONICS CACHE
CONTROLLER

2.1 Overview of the architecture

The cache controller is actually a memory interface connecting a DSP on the one
side, and internal (on-chip) and external memory banks on the other side, as shown in
Figure˚1. At each clock cycle, the DSP can issue a fetch request to the cache
controller. If the requested word is present in the on-chip memory, it is delivered with
a three clock cycles constant latency. Requests are pipelined towards the internal
memory. Each word delivery corresponds to a request received three clocks earlier.
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In case the requested word
is not in the on-chip memory,
the fetch request is transmitted
to the external RAM fetch
engine. A read request is
issued through the external
fetch port. This request may
be answered within an
arbitrary amount of time,
which is usually very long.

Unlike classical mechanisms,
cache misses are not followed by
an automatic download of a new
memory page. It is the
responsibility of the DSP to order
the refreshment of one particular
memory bank. To do so, it
transmits a download command
to the DMA engine, via the
command port, spec i fy ing
which memory bank is to be
loaded, and which memory page
is needed. In parallel, it updates
the internal status register file to
indicate that the bank being

loaded is no longer valid. Fetch requests to an invalid bank are answered with an
error. The DMA engine controls the external RAM fetch engine, which will perform
as many word transfers as needed to fill the bank. When the download completes, the
bank is validated.

During the DMA transfer of a bank, using the external fetch port, other valid banks
must remain accessible for DSP fetch requests. Moreover, if a fetch request
corresponds to an external address, it must be issued. Hence, a DMA transfer and an
external fetch must share the port in a fair manner.

However, if a transaction arrives on the command port, internal fetches are
interrupted. This happens because the transaction may invalidate a bank, and hence
allowing further fetches may be unsafe.

The internal status register file records the current status of the cache controller:
which banks are valid or invalid, the status of current and pending DMA transfers, and
the base addresses of each page recorded inside the internal banks.

2.2 The VHDL model

The whole implementation of the cache controller is described using RT-level
VHDL. A simple code inspection has revealed that this design does not present any
explicit hierarchy indications. The separation between the different engines

Figure 1 - Architecture of the cache controller
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represented above (internal fetch, external fetch, DMA, etc.) is not clearly done by the
designer, who has preferred to keep all these behaviors inside the same VHDL
architecture. Thus, these engines are implemented as collections of interconnected
clock synchronized and combinational processes. Hence, it is difficult to reason about
the different parts of the design in an independent manner, by applying hierarchical
design decomposition.

The control part of this design is predominant. However, transition functions often
use chained comparisons between bit vector objects, for instance each time an address
is analyzed. This complicates their symbolic representation.

A small arithmetic computation is implemented inside the DMA engine: a counter
indicates the index of the last word transferred from the external memory to an
internal bank. The upper limit of the counter reflects the size of a bank, which
currently equals 1024 words. The reachability analysis step may become extremely
inefficient, because the state space exploration of this counter requires 1024 iterations,
which are added to the exploration of the global system.

Besides, reasoning about aggregate objects can generally not benefit from
symmetry considerations, because the different parts of a bit vector most often follow
different paths.

The most representative quantitative figures concerning this design are the
following: it is about 1500 lines long. The VHDL elaboration gives a total number of
1000 flip-flops. Address busses are 30 bits wide, and data buses are 32 bits wide. The
width of the fetch port is 128 bits.

Given the features of this design, it is impossible to use the Òpush-buttonÓ approach
of model checking. A number of preliminary manipulations are necessary, which are
presented in the following section.

3. THE VERIFICATION TASK

3.1 The formal specification

The specification document of a circuit implicitly defines the properties that need
be verified. Ideally, a verification engineer should not even have to look inside the
HDL code, as it should be enough to formalize and verify all the assertions given by
the specification. If all these assertions are proved correct, then the circuit may be
considered ÒcorrectÓ. However, a specification is rarely clear and explicit. Many
aspects are often left unspecified; hence, the first important step to achieve is to set up
a verification plan addressing the key behaviors of the design. The correctness of the
design is assessed with respect to this plan. Obviously, it is important to define a large
number of unrelated assertions.

The set of assertions written define the formal specification of the design. They are
split into two classes: environment assumptions and design properties.
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3.1.1 Environment assumptions

Constraints on the environment are most often required, as designs usually work
under the assumption that it never exhibits an unexpected behavior. An environment
constraint is a collection of invariants declared either as Boolean formulae, or as
simple state machines. For example, a Boolean formula could say: Òit is never true
that the DSP sends a request while the cache controller has its DSP fetch stalledÓ. A
simple state machine environment would say: Òafter a request signal is risen, it must
remain high, until an acknowledge is receivedÓ.

The environment assumptions are composed with the finite state machine
description of the design. Unfortunately, the size of the result is usually much bigger
than the design alone, except for very simple assumptions that assign constants to
primary inputs, allowing obvious simplifications on the design.

3.1.2 Design properties

The design properties are temporal formulae that the design should satisfy. Safety
and liveness can usually be expressed. In our experience, response times are always
constant, or at least bounded. Hence, instead of expressing liveness requirements,
which are usually very hard to prove, similar safety properties can be written.

The concept of monitor is a very
interesting alternative to temporal logic
for writing properties [8]. Figure 2
displays the principle that we have
applied. Let A and B be two
components communicating with a
protocol on their interconnection
signals. The monitor takes as inputs the
signals of interest that must be
observed, and provides as outputs one
bit for each Boolean formula that must
evaluate to true. It is written as a
component, which is instantiated
together with A and B in the enclosing
architecture. The body of the monitor
itself can be written as one or more
finite state machines whose state
transitions are triggered by events on
the observed signals.

For instance, in Figure˚2, one output
displayed says that an error occurs if a

ÒvalidateÓ is asserted without a previous request. It is verified like an invariant. Thus,
reasoning about the past is done in a natural way using this specification method,
unlike most classical temporal logics available.

Figure 2  - A monitor specification for
the command and external fetch ports
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Writing a monitor as a
component has no side
effects on the description
of the design itself. It
allows easy plug-and-play
of the added VHDL text
for verification purposes,
which can easily be
removed for synthesis.

3.2 The model simplification

3.2.1 Isolating functional blocks

The most natural verification approach consists in writing a set of properties
relating the inputs and the outputs of the cache controller. However, given the size of
this design, only a small part of them can be expected to give a result when run by a
model checker, as their symbolic representation probably uses an important part of the
circuit description. In order to be able to go further, decomposition is vital.

After a detailed code inspection, the different functionalities of the cache
controller have been isolated as shown in Figure˚1. It is now possible to reason
about each part of the design independently, and write a set of local properties
for each one of them. Consider for instance the external RAM fetch engine
(Figure 3).

A DMA or a fetch request can trigger the transfer of an external word.
Thus, the req signal of the external fetch port is asserted together with the
address that is required. The following properties should be satisfied:

P1. the req signal cannot be asserted spontaneously. At least one incoming
request should be present, either on the DSP fetch side or on the DMA side;

P2. conversely, the req signal cannot be de-asserted unless a response has been
received on the external fetch port. However, it is also true that this request
holds as long as the incoming request that triggered it.

The first property states that a req rising event can only be triggered by one of the two
incoming DSP fetch or DMA requests. The Boolean function defining the req signal
depends on the values of these two incoming requests. But as the external RAM fetch
engine remains connected to the rest of the circuit, these two signals have their own
transition functions. They depend on other intermediate signals, and so on, until a set
of primary inputs is reached. Thus, the verification of this property is inefficient, due
to complicated transition functions that involve both the DSP fetch port and the
command port.

Figure 3 - Isolating one functional block
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3.2.2 Eliminating useless parts

At the local level of the external fetch engine, the behaviors associated to the
incoming requests can be abstracted away. Indeed, a request is issued on req when an
incoming request arrives. Hence, we may consider both incoming requests as primary
inputs. Thus, for verifying these two particular properties, both the DSP fetch and the
DMA functional blocks may be eliminated. The transition function of req becomes
much more simple and the verification of property P1 is done at the local level of the
external fetch engine. This simplification is done manually. The verification engineer
directs the model-checker to override the transition functions of the incoming
requests.

According to these simplifications, the proof of properties P1 and P2 runs on a new
model consisting of the external RAM fetch separated from its environment. The
interpretation of the verification results is the following. If the property is true at the
local level, this result has been obtained under the assumption that any behavior can
occur on the incoming request inputs. The original implementations of these inputs
define more restrictive behaviors, which are necessarily included in the set of all
possible behaviors. Hence, the property is also true in the original implementation.

However, in case the property is proven false, it is not safe anymore to draw a
conclusion at the global level of the circuit. Erroneous behaviors of the incoming
request signals may cause the property failure, while they are not allowed by the
initial description. This case is illustrated by property P2, which says that req may fall
if the incoming requests fall. The same simplified model remains interesting, but it is
obvious that the property will fail: the scenario displaying an incoming request rising
and then falling can occur, because any behavior is now allowed for the incoming
requests. The model must be complemented with the assumption that incoming
requests remain high once they are asserted, until a transfer is completed. Thus, the
erroneous behavior is eliminated and the property passes.

3.2.3 Using non-determinism

Eliminating a part of a design for simplification purposes means deleting all the
behaviors it implements. However, some of the behaviors deleted may still be needed
so that the model obtained after simplification remains realistic. In other terms, a
simplified model focusing on the desired behaviors must replace the eliminated part of
the initial description, while still allowing all other. When an appropriate scenario
occurs, the behaviors needed are exhibited. All other scenarios correspond to an
unspecified behavior. Thus, the simplified model obtained is both abstract and non-
deterministic.

In our example, a model must implement the assumption required for proving
property P2. It must ensure that when a request rises it must remain high until a
transfer is completed. However, the request may rise at an arbitrary moment.

The abstract non-deterministic model replacing the initial description is usually
written by the verification engineer. Hence, it must be proved correct before it can be
used. The correctness criterion states that, while focusing on desired behaviors, the
model allows all the behaviors defined by the original transition functions it replaces.
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This is synonymous with refinement checking[5]. Replacing a part of the design (in
this example, the definitions of the two incoming requests) by a simpler, non-
deterministic, abstract definition, together with performing the subsequent checks is
known as assume-guarantee reasoning [̊3].

3.2.4 Behavioral partitioning

The different functional blocks that are running in parallel may execute
independently, or they can influence the execution of each other. Hence, different
execution scenarios are possible. Any property a design should satisfy must be valid
for all scenarios that may occur.

The verification of a property can be split into a set of sub-goals, one for each
interesting scenario. Each sub-goal asserts that the initial property is true under the
assumption that only one scenario may occur. If all sub-goals are verified, then the
initial property may also be true.

For instance, a verification goal asserts that transactions on the command port of the
cache controller are correct. This goal can be split into two sub-goals, according to the
following scenarios: (1) only read transactions are allowed and (2) only write
transactions are allowed. If both read and write transactions are proved correct, we
may conclude that all transaction on this port are correct. The two sub-goals constrain
the signal indicating the direction (read or write) to constant values. Thus, the size of
their underlying model becomes considerably lower due to BDD simplifications.

Behavioral partitioning acts both as a powerful simplification method and as an
environment constraining method. However, its application needs care: if all sub-goals
are true, the initial goal is not necessarily true. For instance, assume that a bug occurs
only when a read transaction is followed by a write transaction. If behavioral
partitioning is employed, this bug shall not be uncovered.

3.3 Classical simplification methods that are inapplicable

When a design manipulates bit-vector objects, a natural simplification consists in
reducing their size to only a few bits wide. This is especially appropriate for data.
However, control bit-vectors are not always symmetric, as individual bits or bit fields
may correspond to different meanings. This is the case for bit-vector objects
implemented inside the cache controller. In that case, most properties have to be split
into as many sub-goals as there are bit fields in the vector (up to the number of bits in
the worst case).

Concerning the refinement-checking technique as a support for the assume-
guarantee reasoning, most industrial verification tools do not implement the
mechanical check. Thus, before using an abstract model, a manual assessment with
respect to the initial design must be performed. In practice, this limits the method to
abstract models that are very simple.
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4. RESULTS

For verification purposes, the initial model has been slightly modified. In order to
solve the reachability problem stated at ⁄2.2 the verification has run under the
assumption that memory banks contain only 4 words instead of 1024.

It is important to note that in order to set up a property a Òdesign cycleÓ must be
followed. As it is impossible to know in advance whether a verification task ends
within a reasonable amount of time and resources, it is important to establish a limit
on the memory size to be used, and kill the verification if this limit is exceeded. If this
happens, a model simplification should be attempted before re-trying a new
verification.

The cache controller has been verified using Cadence FormalCheck v2.3 on a Sparc
Station Ultra 2-60, running at 400 MHz with 2 Gbytes of memory.

A total number of 50 properties have been written. We highlight a few interesting
classes of properties that we have written, as well as the importance of the model
simplification used in achieving good verification times (Table 1).

Behavioral partitioning is the only model simplification needed for verifying the
internal fetch (IF) functional block: to make sure that fetches are not interrupted, the
incoming requests on the command port are deactivated. Two properties are
representative:

IF1. a fetch request is acknowledged within 3 clock cycles;
IF2. a rising acknowledge corresponds to a fetch received 3 cycles earlier.
The verification of the external RAM fetch (ERF) functional block has needed more

important model simplification efforts, as it had to be cut from the rest of the design.
We highlight two properties for this block:

ERF1. external fetch requests are never retracted;
ERF2. DMA and internal fetch incoming requests are treated fairly.
The DMA functional block must comply with a very important requirement (DMA):

it must not write into the internal RAM if it is in use. The model is simplified by
cutting the functional block from the remaining design, and by using behavioral

partitioning.
In Table 1, the

first two columns
list the properties
and the way they
are written; the
third column gives
the number of state
variables and the
n u m b e r  o f
iterations necessary
to check a property.
The fourth column
t e l l s  w h i c h

simplification technique, if any, has been applied. The last column gives the
performance in computation time and memory.

Functional
block

Temporal
logic (TL)
or monitor
(M)

State
variables/
model
depth

Model
simplification
technique

Time (sec)/
Memory (MB)

IF-1 TL 153/19 behav.part. 63/16,5
IF-2 M 163/19 behav.part. 52/16,5

M 210/ - - out of memoryERF-1
M 10/11 cut 49/16.5
TL 300/- - time limit exceededERF-2
TL 256/33 cut 65/31
TL 310/ - - out of memoryDMA
TL 147/57 cut +

behav.part.
62/16

Table 1 — Different properties and verification results
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For properties ERF1,˚2 and DMA, we see that simplification by cutting away a
functional block is essential. If this technique is not applied, either the proof runs out
of memory or it lasts several days, which is impractical. One third of the 50 properties
written have been verified using functional cut. For the remaining properties,
behavioral partitioning and environment constraining assumptions were sufficient to
obtain verification answers within useful time.

5. CONCLUSION

The set of model simplification guidelines presented here allowed a reasonable
functional coverage for the verification of the cache controller design. All the
functional blocks have been addressed, despite the lack of hierarchy in the RTL
description of the design.

A few minor incompatibilities have been faced, concerning the synthesizable HDL
code used by the designer team, which is not always recognized by the verification
tool.

This work also raises an interesting question: would the verification have been
quicker if the designers had partitioned the design? In theory, the answer should be
ÒyesÓ; in practice, it is probably ÒnoÓ. In order to avoid looking inside a component,
its documentation should be very detailed, clear, and maintained up to date as the
design evolves, which is very hard to achieve. Using the existing documentation as an
aid to understanding the behavior of a component seems more realistic.

Thus, we believe that in the current context, given the available tools, it is essential
that verification engineers are aware of the implementation details of the design they
verify. On the other hand, the ignorant application of automatic model-checking fails
in most cases. Knowledge about the underlying theory of this technique is vital.
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