On the equivalence between hierarchical segmentations and ultrametric watersheds

Abstract : We study hierarchical segmentation in the framework of edge-weighted graphs. We define ultrametric watersheds as topological watersheds null on the minima. We prove that there exists a bijection between the set of ultrametric watersheds and the set of hierarchical segmentations. We end this paper by showing how to use the proposed framework in practice in the example of constrained connectivity; in particular it allows to compute such a hierarchy following a classical watershed-based morphological scheme, which provides an efficient algorithm to compute the whole hierarchy.
Type de document :
Article dans une revue
Journal of Mathematical Imaging and Vision, Springer Verlag, 2011, 40 (3), pp.231-247. <10.1007/s10851-011-0259-1>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00419373
Contributeur : Laurent Najman <>
Soumis le : vendredi 17 décembre 2010 - 16:50:12
Dernière modification le : mercredi 16 mars 2011 - 09:46:05
Document(s) archivé(s) le : vendredi 2 décembre 2016 - 16:32:30

Fichiers

ultrametrics_long.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Laurent Najman. On the equivalence between hierarchical segmentations and ultrametric watersheds. Journal of Mathematical Imaging and Vision, Springer Verlag, 2011, 40 (3), pp.231-247. <10.1007/s10851-011-0259-1>. <hal-00419373v2>

Partager

Métriques

Consultations de
la notice

330

Téléchargements du document

216