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Abstract: The paper presents a new stiffness modelling method for multi-chain 
parallel robotic manipulators with flexible links and compliant actuating joints. In 
contrast to other works, the method involves a FEA-based link stiffness evaluation 
and employs a new solution strategy of the kinetostatic equations, which allows 
computing the stiffness matrix for singular postures and to take into account influence 
of the external forces. The advantages of the developed technique are confirmed by 
application examples, which deal with stiffness analysis of a parallel manipulator of 
the Orthoglide family. 
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1. INTRODUCTION 

In modern manufacturing systems, parallel manipulators 

have become more and more popular for a variety of 

technological processes, including high-accuracy 

positioning and high-speed machining [1, 2]. This growing attention is inspired by 

their essential advantages over serial manipulators, which have already reached the 

dynamic performance limits  In contrast, parallel manipulators are claimed to offer 

better accuracy, lower mass/inertia properties, and higher structural rigidity (i.e. 

stiffness-to-mass ratio) [3].  

These features are induced by their specific kinematic structure, which resists the 

error accumulation in kinematic chains and allows convenient actuators location 

close to the manipulator base. This makes them attractive for innovative robotic 

systems, but practical utilization of the potential benefits requires development of 

parallel robotic 
manipulators, stiffness 
analysis, kinetostatic 
modelling, loaded 
mode, Orthoglide robot 
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efficient stiffness analysis techniques, which satisfy the computational speed and 

accuracy requirements of relevant design procedures. 

Generally, the stiffness analysis evaluates the effect of the applied external torques 

and forces on the compliant displacements of the end-effector. Numerically, this 

property is defined through the “stiffness matrix” K , which gives the relation between 

the translational/rotational displacement and the static forces/torques causing this 

transition. As follows from mechanics, K  is 66 semi-definite non-negative matrix, 

where structure may be non-diagonal to represent the coupling between the 

translation and rotation [4, 5]. Similar to other manipulator properties (kinematical, for 

instance), the stiffness essentially depends on the force/torque direction and on the 

manipulator configuration [6]. 

Several approaches exist for the computation of the stiffness matrix, such as the 

Finite Element Analysis (FEA), the matrix structural analysis (MSA), and the virtual 

joint method (VJM). The FEA method is proved to be the most accurate and reliable, 

since the links/joints are modeled with its true dimension and shape. Its accuracy is 

limited by the discretisation step only. However, because of high computational 

expenses required for the repeated re-meshing, this method is usually applied at the 

final design stage. 

The MSA method incorporates the main ideas of the FEA but operates with rather 

large flexible elements (beams, arcs, cables, etc.). This obviously yields reduction of 

the computational expenses and, in some cases, allows even obtaining an analytical 

stiffness matrix. This method gives a reasonable trade-off between the accuracy and 

computational time, provided that link approximation by the beam elements is 

realistic. Because it involves rather high-dimensional matrix operations, it is not 

attractive for the parametric stiffness analysis. 
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Finally, the VJM method, which is also referred to as the “lumped modeling”, is based 

on the expansion of the traditional rigid model by adding virtual joints, which describe 

the elastic deformations of the manipulator components (links, joints and actuators). 

This approach originates from the work of [7], who evaluated parallel manipulator 

stiffness taking into account only the actuators compliance. At present, there are a 

number of variations and simplifications of the VJM method, which differ in modelling 

assumptions and numerical techniques. Generally, the lumped modelling provides 

acceptable accuracy in short computational time. However, it is very hypothetic and 

operates with simplified stiffness models that are composed of one-dimensional 

springs that do not take into account the coupling between the rotational and 

translational deflections. Recent modification of this method allows to extend it to the 

over-constrained manipulator and to apply it at any workspace point, including the 

singular ones [8].  

It should be stressed that the standard stiffness analysis focuses on the unloaded 

structures, for which there were proposed several efficient semi-analytical technignes 

[9-11]. However, for the loaded working modes, the stiffness analysis is still an open 

problem. Besides, with respect to this case, several authors introduced a concept of 

the asymmetric Cartesian stiffness matrix [12-14], but this concept was recently 

revised by Kövecses and Angeles [5]. 

This paper presents a new stiffness modelling method for the loaded parallel 

manipulators, which is based on a multidimensional lumped-parameter model that 

replaces the link flexibility by localized 6-dof virtual springs that describe both the 

linear/rotational deflections and the coupling between them. The spring stiffness 

parameters are evaluated using FEA modelling to ensure higher accuracy. In 

addition, it employs a new solution strategy of the kinetostatic equations, which 
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allows computing the stiffness matrix for the overconstrained architectures, including 

the singular manipulator postures. This gives almost the same accuracy as FEA but 

with essentially lower computational effort because it eliminates the model re-

meshing through the workspace. 

 

2. PROBLEM OF STIFFNESS MODELLING 

2.1 Manipulator Architecture 

Let us consider a general n-dof parallel manipulator, which consists of a mobile 

platform connected to a fixed base by n identical kinematics chains. Each chain 

includes an actuated joint “Ac” (prismatic or rotational) followed by a “Foot” and a 

“Leg” with a number of passive joints “Ps” inside (Fig. 1). Generally, certain 

geometrical conditions are assumed to be satisfied with respect to the passive joints 

to eliminate the undesired platform rotations and to achieve stability of desired 

motions. Typical examples of such architectures include 3-PUU translational parallel 

kinematic machine [15], Delta parallel robot [16], Orthoglide parallel manipulator that 

implements the 3-PRPaR architecture with parallelogram-type legs and translational 

active joints [17]. Here R, P, U and Pa denote the revolute, prismatic, universal and 

parallelogram joints, respectively. 

 

Fig. 1. Schematic diagram of a general n-dof parallel manipulator 

(Ac – actuated joint, Ps – passive joints). 

2.2 Basic Assumptions 
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To evaluate the manipulator stiffness, let us apply a modification of the virtual joint 

method (VJM), which is based on the lump modeling approach (Gosselin, 1990). 

According to this approach, the original rigid model should be extended by adding the 

virtual joints (localized springs), which describe elastic deformations of the links. 

Besides, virtual springs are included in the actuating joints to take into account 

stiffness of the control loop. . Under such assumptions, each kinematic chain of the 

manipulator can be described by a serial structure, which includes sequentially:  

(a) a rigid link between the manipulator base and the ith actuating joint (part of the 

base platform) described by the constant homogenous transformation matrix i
baseT ; 

(b) a 1-d.o.f. actuating joint with supplementary virtual spring, which is described by 

the homogenous matrix function  0 0
i i

a q V  where 0
iq  is the actuated coordinate and 

0
i  is the virtual spring coordinate; 

(c) a rigid “Foot” linking the actuating joint and the leg, which is described by the 

constant homogenous transformation matrix footT ; 

(d) a 6-d.o.f. virtual joint defining three translational and three rotational foot-springs, 

which are described by the homogenous matrix function  1 6, ...,i i
s  V , where 

 1 2 3, ,i i i    and  4 5 6, ,i i i    correspond to the elementary translations and rotations 

respectively; 

(e) a 2-d.o.f. passive U-joint at the beginning of the leg allowing two independent 

rotations with angles  1 2,i iq q , which is described by the homogenous matrix function 

 1 1 2,i i
u q qV ; 
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(f) a rigid “Leg” linking the foot to the movable platform, which is described by the 

constant homogenous matrix transformation LegT ; 

(g) a 6-d.o.f. virtual joint defining three translational and three rotational leg-springs, 

which are described by the homogenous matrix function  7 12, ...,i i
s  V , where 

 7 8 9, ,i i i    and  10 11 12, ,i i i    correspond to the elementary translations and rotations, 

respectively; 

(h) a 2-d.o.f. passive U-joint at the end of the leg allowing two independent rotations 

with angles  3 4,i iq q , which is described by the homogenous matrix function 

 2 3 4,i i
u q qV ; 

(i) a rigid link from the manipulator leg the end-effector (part of the movable platform) 

described by the homogenous matrix transformation i
toolT .  

The expression defining the end-effector location subject to variations of all 

coordinates of a single kinematic chain may be written as follows 

         0 0 1 6 1 1 2 7 12 2 3 4, ..., , , ..., ,i i i i i i i i i i i i
i base a foot s u Leg s u toolq q q q q     T T V T V V T V V T  (1) 

where matrix function  ...aV  is either an elementary rotation or translation, matrix 

functions  1 ...uV  and  2 ...uV  are compositions of two successive rotations, and the 

spring matrix  ...sV  is composed of six elementary transformations.  

2.3 Problem statement 

In general, the stiffness model describes the resistance of an elastic body or a 

mechanism to deformations caused by an external force or torque [18]. For relatively 
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small deformations, this property is defined through the ‘‘stiffness matrix” K , which 

defines the linear relation  

( , ) 0 0F K q θ Δt  (2) 

between the six-dimensional translational/rotational displacements 

(Δ , Δ , Δ , Δ , Δ , Δ )T
x y zx y z   Δt , and the static forces/torques 

 , , , , ,x y z x y zF F F M M MF  causing this transition. Here, the vector 

0 01 02 0( , , ..., )T
nq q qq  includes all passive joint coordinates, the vector 

0 01 02 0( , , ..., )T
m  θ  collects all virtual joint coordinates, n  is the number of passive 

joins, m  is the number of virtual joints. Usually, the manipulator is assembled without 

internal preloading and the vector 0 is equal to zero.  

However, for the loaded mode, similar relation is defined in the neighborhood of the 

static equilibrium, which corresponds to another configuration of the manipulator 

( , )q θ , that is caused by external forces\torques F . Respectively, in this case, the 

stiffness model describes the relation between the increments of the force δF and the 

position δt  

( , ) FδF K q θ δt  (3) 

where Δqqq 0   and Δθθθ 0   denote the loaded position of the manipulator, Δq  

and Δθ  are the deviations of the passive joint and virtual spring coordinates. 

Let us also define the geometry of the manipulator in the Cartesian space as 

( , )ft q θ , (4) 
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where the function ( , )f q θ  is defined by the transformation (1), and the vector  

( , )Tt p φ  describes the three-dimensional position ( , , )Tx y zp  and orientation 

( , , )T
x y z  φ  of the end-effector with respect to the Cartesian axes.  

Hence, the problem is to find the static equilibrium of the considered manipulator and 

to linearise relevant force/position relations. 

 

3. STIFFNESS MODEL FOR THE LOADED MODE 

To derive the desired stiffness model, let us divide the problem into three sequential 

subtasks that are solved for each kinematic chain separately: (i) computing the 

stiffness matrix for the unloaded mode, (ii) finding the static equilibrium for the loaded 

configuration, and (iii) obtaining the stiffness model for the loaded mode. At the final 

stage, these results for separate kinematic chains are aggregated, in order to obtain 

the stiffness of the entire manipulator. 

3.1 Stiffness model in the neighborhood of unloaded configuration 

Let us define the unloaded configuration as ( , )f0 0 0t q θ , where 0q  is computed via 

the inverse kinematic and 0θ  is equal to zero (since there are no preloads in the 

springs). Let us also assume that the external force F  relocates the manipulator to 

the position ),( ΔθθΔqqt 00  f , which for small displacements may be expressed 

as  

    0 θ qt t J Δθ J Δq  (5) 

where 
,

( , )f






 0

0

θ
q q
θ θ

q θ
J

θ
 and 

,

( , )f







 0

0

q
q q
θ θ

q θ
J

q
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are the kinematic Jacobians with respect to the coordinates , q, which may be 

computed from (1) analytically or semi-analytically, using the factorization technique 

proposed in [11]. 

For the kinetostatic model, which describes the force-and-motion relation, it is 

necessary to introduce additional equations that define the virtual joint reactions to 

the corresponding spring deformations. For analytical convenience, all relevant 

expressions may be collected in a single matrix equation 

 θ θτ K θ  (6) 

where  ,1 ,2 ,, , ...,
T

m    θτ  is the aggregated vector of the virtual joint reactions, 

 , , ...,diagθ θ,1 θ,2 θ,mK K K K  is the aggregated spring stiffness matrix of the size 

mm, and ,iθK  is the spring stiffness matrix of the corresponding link. Similarly, one 

can define the aggregated vector of the passive joint reactions  ,1 ,2 ,, , ...,
T

q q q n  qτ  

but, at the equilibrium, all its components must be equal to zero  

qτ 0  (7) 

Further, let us apply the principle of virtual work assuming that the joints are given 

small, arbitrary virtual displacements Δθ  in the equilibrium neighborhood. Then, the 

virtual work of the external force F  applied to the end-effector along the 

corresponding displacement    θ qΔt J Δθ J Δq  is equal to the sum 

   T T  θ qF J Δθ F J Δq . For the internal forces, the virtual work includes only one 

component  T θτ Δθ  , since  the passive joints do not produce the force/torque 

reactions (the minus sign takes into account the adopted directions for the virtual 

spring forces/torques). Therefore, since in the static equilibrium the total virtual work 



 10

is equal to zero for any virtual displacement, the equilibrium conditions may be 

written as  

;T T   θ θ qJ F τ J F 0  (8) 

This gives additional expressions describing the force/torque propagation from the 

joints to the end-effector. 

Hence, the complete kinetostatic model consists of four matrix equations (5)…(8) 

where either F  or Δt  are treated as known, and the remaining variables are 

considered as unknowns. Since the matrix θK  is non-singular (it describes the 

stiffness of the virtual sprigs), the variables Δθ  can be expressed via F  using 

equations (5)…(8). This yields substitution 1 T  θ θΔθ K J F  allowing reducing the 

kinetostatic model to system of two matrix equations with unknowns  F  and Δq , 

which can be written in the matrix form as 

     
      
    

θ q
T
q

S J F Δt

J 0 Δq 0
 (9) 

where the sub-matrix 1 T  θ θ θ θS J K J  describes the spring compliance relative to 

the end-effector, and the sub-matrix qJ  takes into account the passive joint influence 

on the end-effector motions. Therefore, for a separate kinematic chain, the desired 

stiffness matrix K  defining the motion-to-force mapping 

 F K Δt , (10) 

can be computed by the direct inversion of (6+n)(6+n) matrix in the left-hand side of 

(10) and extracting from it the 66 sub-matrix with indices corresponding to θS .  
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3.2 Static equilibrium for the loaded configuration 

Let us assume that, due to the external force F, the manipulators is relocated from 

the initial (unloaded) position ( , )f0 0 0t q θ  to a new position ( , )ft q θ , which 

satisfies the condition of the mechanical equilibrium. If the displacement   0Δt t t  is 

rather small, the new configuration ( , )q θ  can be computed easily, using results from 

the previous subsection. However, in general case, the stiffness model is highly non-

linear and computing ( , )q θ  requires some additional efforts. Besides, for 

computational reasons, let us consider the dual problem that deals with determining 

the external force F and the manipulator configuration ( , )q θ  that correspond to the 

output position t .  

For the considered problem, the basic equations can be written as 

( , ); ( , ) ; ( , )T Tf     θ θ qt q θ J q θ F K θ J q θ F 0 , (11) 

where the first equation defines the manipulator geometry and the remaining ones 

are derived from statics. It is evident that there is no general method for analytical 

solution of this system and it is required to apply numerical techniques. 

To derive the numerical algorithm, let us linearise the kinematic equation in the 

neighborhood of the ( , )i iq θ   

1 1( , ) ( , ) ( ) ( , ) ( )i i i i i i i i i if        q θt q θ J q θ q q J q θ θ θ  (12) 

and rewrite the static equations as 

1 1 1( , ) ; ( , )T T
i i i i i i i     θ θ qJ q θ F K θ J q θ F 0  (13) 

This leads to a linear algebraic system of equations with respect to 1 1 1( , , )i i i  q θ F  
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1

1

1

( , ) ( , ) ( , ) ( , ) ( , )

( , )

( , )

i i i i i i i i i i i i i
T

i i i
T

i i i







         
            
         

q θ q θ

θ θ

q

J q θ J q θ 0 q t f q θ J q θ q J q θ θ

0 K J q θ θ 0

0 0 J q θ F 0

 (14) 

which gives the following iterative scheme 

11
1

1

1
1 1

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) 0 0

( , )

T
i i i i i i i i i i i i i i i

T
i i i

T
i i i i







 

          
     
      

  

θ θ θ q q θ

q

θ θ

F J q θ K J q θ J q θ t f q θ J q θ q J q θ θ

q J q θ

θ K J q θ F

 

 (15) 

where the starting point can be chosen using the non-loaded configuration, i.e. 

( ,0 0q θ ).  

As follows from computational experiments, for typical values of deformations the 

proposed iterative algorithm possesses rather good convergence (3-5) iterations are 

usually enough). However, in the case of buckling or in the area of multiple 

equilibriums, the problem of convergence becomes rather critical and highly depends 

on the initial guess. Further enhancement of this algorithm may be based on the full-

scale Newton-Raphson technique (i.e. linearization of the static equations in addition 

to the kinematic one), this obviously increases computational expenses but 

potentially improves convergence. 

3.3 Stiffness model for the loaded configuration 

In the neighborhood of the loaded configurations, the stiffness model is defined with 

respect to the force and position increments δF , δt , which are assumed to be small 

(see equation (3)). To derive this model, let us consider two equilibriums 

corresponding to the manipulator variables ( , , , )F q θ t  and ( , , , )      F F q q θ θ t t  

respectively.  
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For this settings, the kinematic equation is reduced to  

( , ) ( , )   θ qδt J q θ δθ J q θ δq , (16) 

while the statics yields two set of equations  

( , ) ; ( , )T T    θ θ qJ q θ F K θ J q θ F 0  (17) 

and  

         ;
TT         θ θ θ q qF δF J δJ K θ δθ F δF J δJ 0  (18) 

where ( , ) qJ q θ  and ( , ) θJ q θ  are the differentials of the Jacobians due to changes in 

( , )q θ .  After relevant transformation and neglecting high-order small terms, 

equations (17), (18) may be rewritten as  

( ) ( ) ( )

( ) ( ) ( )

T

T

   

  

      

     

F F
θ θq θθ θ

F F
q qq qθ

J q,θ F H q,θ q H q,θ θ K θ

J q,θ F H q,θ q H q,θ θ 0
 (19) 

where , , ,F F F F
qq qθ θq θθH H H H ,are the Hessian matrices of the scalar function ( , )T fF q θ : 

   

   

2 2

2

2 2

2

( , ) ; ( , ) ;

( , ) ; ( , )

T T

T T

f f

f f

 
   
  

 
   
  

F F
qq qθ

F F
θq θθ

H F q θ H F q θ
q q θ

H F q θ H F q θ
θ q θ

 (20) 

This allows to apply substitution for θ   and to obtain system of two matrix equations 

with unknowns  F  and q  

T

T T

         
                 

F F F
θ θ θ q θ θ θq

F F F F F F
q qθ θ θ qq qθ θ θq

J k J J J k K δF δt

J K k J K K k K δq 0
, (21) 

which generalizes (9) for the case of the loaded equilibrium. Here   1
 F F

θ θ θθk K K . 
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Therefore, for a separate kinematic chain, the desired stiffness matrix FK  defining 

the displacement-to-force mapping (3) can be computed  by direct inversion of the 

matrix in the left-hand side of (21) and extracting from it the left-upper 66 sub-

matrix. Finally, when the stiffness matrices  for all kinematic chains are computed, 

the stiffness of the entire multi chain manipulator can be found by simple summation 

1

n

i
i

 F FK K . This follows from the superposition principle, since the total external 

force corresponding to the end-effector displacement t  (the same for all kinematic 

chains) can be expressed as 
3

1 ii
 F F  where i i FF K δt . It should be stressed that 

usually the matrices i
FK  are not invertible but for the entire manipulator, the stiffness 

matrix 
3

1 ii
 F FK K  is positive definite and invertible for all non-singular postures. 

 

4. EVALUATING THE MODEL PARAMETERS  

4.1 Actuator compliance 

The actuator compliance, describing by the scalar parameter ctrK  and by 66 matrix 

actK ,, depends on both the servomechanism mechanics and the control algorithm. 

Since most modern actuators implement the digital PID control, the main contribution 

to the compliance is produces by the mechanical transmissions. The latter are 

usually located outside the feedback-control loop and consist of screws, gears, 

shafts, belts, etc., whose flexibility is comparable with the flexibility of the manipulator 

links. Because of the complicated mechanical structure of the servomechanisms, 

these parameters are usually evaluated from static load experiments, by applying the 

linear regression to the experimental data. 
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4.2 Link compliance 

Following a general methodology, the compliance of a manipulator link (foots and 

legs) is described by 66 symmetrical positive definite matrices ,Foot LegK K  

corresponding to 6-d.o.f. springs with relevant coupling between translational and 

rotational deformations. This distinguishes our approach from other lumped-based 

techniques, where the coupling is neglected and only a subset of deformations is 

taken into account (presented by a set of 1-d.o.f. springs). 

The simplest way to obtain these matrices is to approximate the link by a beam 

element for which the non-zero elements of the compliance matrix may be expressed 

analytically. However, for certain link geometries, the accuracy of a single-beam 

approximation can be insufficient. In this case the link can be approximated by a 

serial chain of the beams, whose compliance is evaluated by applying the same 

method (i.e. considering the kinematic chain with 6-d.o.f. virtual springs, but without 

passive joints). This leads to the resulting compliance matrix 1 1 T
Link b b b
   K J K J , 

where bJ  and 1
b
K  incorporate the Jacobian and the compliance matrices for all 

virtual springs. 

4.3 FEA-based evaluation of model parameters 

For complex link geometries, the most reliable results can be obtained from the FEA 

modeling. To apply this approach, the CAD model of each link should be extended by 

introducing an auxiliary 3D object, a “pseudo-rigid” body, which is used as a 

reference for the compliance evaluation. Besides, the link origin must be fixed 

relative to the global coordinate system. Then, sequentially and separately applying 

forces , ,x y zF F F  and torques , ,x y zM M M  to the reference object, it is possible to 

evaluate corresponding linear and angular displacements, which allow computing the 
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stiffness matrix columns. The main difficulty here is to obtain accurate displacement 

values by using proper FEA-discretization (“mesh size”). As follows from our study, 

the single-beam approximation of the Orthoglide links gives accuracy of about 50%, 

and the four-beam approximation improves it up to 30% only (compared to the FEA-

based method that is proved producing very accurate results). 

It worth mentioning that here, in contrast to the straightforward FEA-modeling, which 

requires re-computing for each manipulator posture, it is needed only a single 

evaluation of the link stiffness. The latter essentially improves the computational 

speed. 

 

5. APPLICATION EXAMPLES 

To demonstrate efficiency of the proposed methodology, let us apply it to the 

comparative stiffness analysis of two 3-d.o.f. translational mechanism, which employ 

Orthoglide architecture. CAD models of these mechanisms are presented in Fig. 2.  
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Fig. 2. Kinematics of two 3-dof translational mechanisms employing the Orthoglide 

architecture 

First, let us derive the stiffness model for the simplified Orthoglide mechanics (3-

PUU), where the legs are comprised of equivalent limbs with U-joints at the ends. 

Accordingly, to retain major compliance properties, the limb geometry corresponds to 
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the parallelogram bars with doubled cross-section area. The geometrical models of 

separate kinematic chains can be described by the expression (1), where the product 

components are defined via the standard translational/rotational operators. Because 

for the rigid manipulator the end-effector moves with only translational motions, the 

nominal values of the passive joint coordinates are subject to the specific constrains 

3 2 4 1,q q q q    , which are implicitly incorporated in the direct/inverse kinematics. 

For the second architecture (3-PRPrP) it is necessary to derive first the stiffness 

matrix of the parallelogram. Using the adopted notations, the parallelogram 

equivalent model may be written as 

2 2 7 12( ) ( ) ( ) ( , )Plg y x y sq L q      T R T R V K  (22) 

where, compared to the above case, the third passive joint is eliminated (it is 

implicitly assumed that 3 2q q  ). On the other hand, the original parallelogram may 

be split into two serial kinematic chains (the “upper” and “lower” ones). Hence, the 

parallelogram compliance matrix may be also derived using the proposed technique 

that yields an analytical expression [11]. 

Using this model and applying the proposed technique, there were computed the 

compliance matrices for both architectures and for three typical manipulator postures 

Q0, Q1 or Q2 (see Tables 1, 2). As follows from the comparison, the parallelograms 

allow increasing the rotational stiffness roughly in 10 times.  

The second conclusion is related to the stiffness comparison for the unloaded and 

loaded modes. It was assumed that the loading (Table 3) leads to the translational 

deflection of 0.5 mm in all Cartesian directions but the platform orientation remains 

the same. The obtained results confirm influence of the loading on the manipulator 

stiffness. In particular, some elements of the stiffness matrix may increase up to 
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45%, depending on the working point (Q0, Q1 or Q2). Also, the  3-PUU manipulator is 

more sensitive to the external loading than its counterpart 3-PRPaR.  This justifies 

application of 3-PRPaR architecture for high-speed machining. 

 

Table 1: Translational and rotational stiffness of the 3-PUU manipulator 

(unloaded and loaded modes) 

Manipulator 
position 

Point Q0 

x,y,z = 0.00 mm 

 

Point Q1 

x,y,z = -73.65 mm 

 

Point Q2 

x,y,z = 126.35 mm 

 

Unloaded mode 

ktran ·104 

[mm/N] 

2.78 0 0

0 2.78 0

0 0 2.78

 
 
 
  

10.9 5.5 5.5

5.5 10.9 5.5

5.5 5.5 10.9

 
 
 
  

71.3 35.0 35.0

35.0 71.3 35.0

35.0 35.0 71.3

  
   
   

krot ·107 

[rad/N·mm] 

20.9 0 0

0 20.9 0

0 0 20.9

 
 
 
  

24.1 7.5 7.5

7.5 24.1 7.5

7.5 7.5 24.1

 
 
 
  

25.8 7.4 7.4

7.4 25.8 7.4

7.4 7.4 25.8

  
   
   

Loaded mode, t = ( 0.5, 0.5, 0.5, 0, 0, 0) 

ktran ·104 

[mm/N] 

2.74 0.02 0.02

0.02 2.74 0.02

0.02 0.02 2.74

  
   
   

10.5 5.3 5.3

5.3 10.5 5.3

5.3 5.3 10.5

 
 
 
  

39.1 18.9 18.9

18.9 39.1 18.9

18.9 18.9 39.1

  
   
   

krot ·107 

[rad/N·mm] 

16.7 0.02 0.02

0.02 16.7 0.02

0.02 0.02 16.7

  
   
   

22.0 6.0 6.0

6.0 22.0 6.0

6.0 6.0 22.0

 
 
 
  

15.4 0.7 0.7

0.7 15.4 0.7

0.7 0.7 15.4

  
   
   
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Table 2: Translational and rotational stiffness of the 3-PRPaR manipulator 

(unloaded and loaded modes) 

Manipulator 

position 

Point Q0 

x,y,z = 0.00 mm 

 

Point Q1 

x,y,z = -73.65 mm 

 

Point Q2 

x,y,z = 126.35 mm 

 

Unloaded mode 

ktran ·104 

[mm/N] 

2.78 0 0

0 2.78 0

0 0 2.78

 
 
 
  

9.86 5.80 5.80

5.80 9.86 5.80

5.80 5.80 9.86

 
 
 
  

21.2 10.2 10.2

10.2 21.2 10.2

10.2 10.2 21.2

  
   
   

krot ·107 

[rad/N·mm] 

1.94 0 0

0 1.94 0

0 0 1.94

 
 
 
  

 

2.06 0.32 0.32

0.32 2.06 0.32

0.32 0.32 2.06

  
   
   

2.65 1.14 1.14

1.14 2.65 1.14

1.14 1.14 2.65

 
 
 
  

Loaded mode, t = ( 0.5, 0.5, 0.5, 0, 0, 0) 

ktran ·104 

[mm/N] 

2.74 0.02 0.02

0.02 2.74 0.02

0.02 0.02 2.74

  
   
   

9.55 5.52 5.52

5.52 9.55 5.52

5.52 5.52 9.55

 
 
 
  

16.7 7.9 7.9

7.9 16.7 7.9

7.9 7.9 16.7

  
   
   

krot ·107 

[rad/N·mm] 

1.88 0.01 0.01

0.01 1.88 0.01

0.01 0.01 1.88

 
 
 
  

 

2.05 0.31 0.31

0.31 2.05 0.31

0.31 0.31 2.05

  
   
   

2.50 1.28 1.28

1.28 2.50 1.28

1.28 1.28 2.50

 
 
 
  
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Table 3: Wrenches for the loaded mode( t = ( 0.5, 0.5, 0.5, 0, 0, 0) ) 

Manipulator 

architecture 

Point Q0 

x,y,z = 0.00 mm 

Point Q1 

x,y,z = -73.65 mm 

Point Q2 

x,y,z = 126.35 mm 

3-PUU 
1823

101

F N

M N mm


 

 
234

524

F N

M N mm


 

 
4104

2525

F N

M N mm


 

 

3-PRPaR 
1823

63.54

F N

M N mm


 

 
248

6045

F N

M N mm


 

 
9418

68376

F N

M N mm


 

 

 

6. CONCLUSIONS 

The paper proposes a new systematic method for computing the stiffness matrix of 

multi-chain parallel robotic manipulators in the presence of the external loading 

applied to the end-platform. It is based on multidimensional lumped model of the 

flexible links, whose parameters are evaluated via the FEA modeling and describe 

both the translational/rotational compliances and the coupling between them. In 

contrast to previous works, the method employs a new solution strategy of the 

kinetostatic equations and allows computing the stiffness matrices for any given 

manipulator posture, including the singular ones. 

The efficiency of the proposed method was demonstrated through application 

examples, which deal with comparative stiffness analysis of two parallel manipulators 

of the Orthoglide family. Relevant simulation results have confirmed essential 

advantages of the parallelogram-based architecture and validated adopted design of 

the Orthoglide prototype. In future work, the method will be extended to other parallel 

architectures composed of several identical kinematic chains and for other types of 

external loading.  
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