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HISTORY EFFECT IN FATIGUE CRACK GROWTH UNDER MIXED MODE LOADING 

CONDITIONS 

P.Y. Decreuse, S. Pommier, L. Gentot, S. Pattofatto 

LMT-Cachan (ENS Cachan/CNRS/UPMC/UniverSud Paris), 61, avenue du Président Wilson, 

94235 Cachan, France 

Abstract: Plastic deformation within the crack tip region introduces internal stresses that modify 

subsequent behaviour of the crack and are at the origin of history effects in fatigue crack growth. 

Consequently, fatigue crack growth models should include plasticity induced history effects. A 

model was developed and validated for mode I fatigue crack growth under variable amplitude 

loading conditions. The purpose of this study was to extend this model to mixed mode loading 

conditions. Finite element analyses are commonly employed to model crack tip plasticity and were 

shown to give very satisfactory results. However, if millions of cycles need to be modelled to 

predict the fatigue behaviour of an industrial component, the finite element method becomes 

computationally too expensive. By employing a multiscale approach, the local results of FE 

computations can be brought to the global scale. This approach consists of partitioning the velocity 

field at the crack tip into plastic and elastic parts. Each part is partitioned into mode I and mode II 

components, and finally each component is the product of a reference spatial field and an intensity 

factor. The intensity factor of the mode I and mode II plastic parts of the velocity fields, denoted by 

dρI/dt and dρII/dt, allow measuring mixed-mode plasticity in the crack tip region at the global scale. 

Evolutions of dρI/dt and dρII/dt, generated using the FE method for various loading histories, enable 

the identification of an empirical cyclic elastic-plastic constitutive model for the crack tip region at 

the global scale. Once identified, this empirical model can be employed, with no need of additional 

FE computations, resulting in faster computations. With the additional hypothesis that the fatigue 

crack growth rate and direction can be determined from mixed mode crack tip plasticity (dρI/dt and 

dρII/dt), it becomes possible to predict fatigue crack growth under I/II mixed mode and variable 

amplitude loading conditions. To compare the predictions of this model with experiments, an 

asymmetric four point bend test system was set-up. It allows applying any mixed mode loading case 

from a pure mode I condition to a pure mode II. Initial experimental results showed an increase of 

the mode I fatigue crack growth rate after the application of a set of mode II overload cycles.  



Page n° 2 / 24 

Keywords: fatigue crack growth, mixed mode, plasticity, model, finite element analyses 

Nomenclature 

FE   Finite element method 

LEFM  Linear Elastic Fracture Mechanics 

∞
IK , ∞

IIK   Mode I and mode II nominal stress intensity factors 

e
I
u , e

II
u   Mode I and mode II elastic reference displacement fields 

c
I
u , c

II
u   Mode I and mode II complementary reference displacement fields 

IK
~ , IIK

~   Mode I and mode II pseudo-elastic intensity factors 

Iρ , IIρ   Mode I and mode II plastic intensity factors 

X
IK , X

IIK   Centre of the elastic domain, global measure of internal stresses at crack tip. 

1. Introduction 

Crack tip plasticity is known to be at the origin of memory effects in fatigue of metallic materials 

[1-8], which has posed difficulties in modelling fatigue crack growth under variable amplitude 

loadings. Moreover, history effects are closely related to the cyclic elastic-plastic behaviour of the 

material [9-10], which makes the use of a universal model questionable. The application of a mode 

I overload delays the fatigue crack growth. The overload yields the material ahead of the crack tip 

creating compressive residual stresses in the overload’s plastic zone. As a consequence, the 

efficiency of subsequent fatigue cycles is reduced and the rate of fatigue crack growth is decreased. 

This is commonly known as plasticity-induced crack closure [3]. These history effects are also 

present under variable amplitude mixed mode loading conditions [12-22].  

For instance, Dahlin & Olsson [14] performed experiments to determine the influence periodic 

mode II loading had on mode I cycles. They concluded that mode II cycles decrease the fatigue 

crack growth rate during mode I cycles. Similar observations were made by Gau & Upul [13] for 

low alloyed steel. For the same type of experiments, Nayeb-Hashemi & Taslim [18] found a 

transient acceleration just after the loading application. 

Concerning crack growth direction, no one has yet developed a universal global criterion to 
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predict the direction of the crack under mixed mode loading. There is general agreement in the 

literature that plasticity in the crack tip region and induced history effects modify both the growth 

direction and the fatigue crack growth rate. This paper aims at proposing a global model for 

describing the evolution of crack tip plasticity and internal stresses when non-proportional mixed 

mode loading conditions are encountered. In the future this model could be employed in a fatigue 

crack growth criterion.  

Finite element methods are useful for analyzing crack tip plasticity under various loading 

conditions [4,9-11, 19-22]. In particular, FE analyses allow accounting for rather complex material 

constitutive behaviour [9,10]. However, the simulation of mode I or mixed-mode fatigue crack 

growth by elastic-plastic finite element computations leads to huge computation cost. In order to 

model service conditions in engineering applications, the computations become even more 

expensive, because real components often have fatigue lives of millions cycles, and cracks do not 

generally remain planar. The objective of the proposed methodology is to combine the precision of 

local finite element computations with the rapidity of a global approach [25-27].  

2. Material and experiments. 

The studied material is a S355NL steel used for marine applications. Its chemical composition is 

reported in Table 1. The grains are equi-axed and their size is typically around 20 micrometers. 

Table 1: Chemical composition of the S355NL steel in weight %. 

C (%) Mn (%) P (%) S (%) Si (%) Al (%) Cr (%) Cu (%) Ni (%) 

0.12 1.46 0.016 0.01 0.44 0.041 0.02 0.01 0.01 

 

Cylindrical specimens were cut from a 16 mm thick metal sheet in order to characterize the 

elastic-plastic constitutive behaviour of the S255NL steel. Strain controlled push-pull tests were 

performed with increasing strain amplitude. The material displayed kinematic hardening and the 

isotropic hardening was negligible. The cyclic elastic-plastic behaviour of this material [29] was 

modelled using the Von Mises criterion and the non-linear kinematic hardening law of Armstrong 

and Frederick, standard in Abaqus 6.5. The material parameters used for the simulations are 

reported in Table 2. A reasonable agreement is found between experiments and simulations (Fig. 1), 

but it might be useful to improve the description of the kinematic hardening rule in the future. 
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This material constitutive behaviour is used in the following for the finite element simulations of 

crack tip plasticity under mixed mode conditions. 

Table 2: Parameters of the elastic-plastic constitutive behaviour employed for the simulations.  

Young’s modulus (GPa) 180000 

Poisson’s ratio 0.3 

Initial yield stress Ro (MPa) 178 

Kinematic hardening parameter C (GPa) 100 

Kinematic hardening rate γ 500 

 

(a) (b) 

Figure 1: Strain controlled push pull test. Comparison between experimental and simulated stress-

strain curves at Rε=-1 and εmax= 0.5% (a) or εmax= 0.9% (b). Symbols: Experiments, lines: 

simulations. 

Four point bending specimens were also cut from the same material source, with a thickness of 5 

mm, a length of 180 mm and a width of 30 mm. A notch with length 8 mm and thickness 1.5 mm 

was created and the specimens were pre-cracked under mode I conditions with a stress ratio of 0.1.  

The specimens were mounted on a non-symmetric four point bend test system. Load was applied 

to the sample through roller bearings (Fig. 2). When the bearings were placed symmetrically with 
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respect to the crack plane, a mode I stress intensity factor is achieved. On the contrary an anti-

symmetric position creates a mode II stress intensity factor. The relations between the bending 

moment and ∞
IK , and between the shear force and ∞

IIK , were determined using solutions from a 

fracture mechanics handbook [30]. Any intermediate position of the bearings corresponds to a given 

proportional mixed mode loading condition (Fig. 2). Crack extension was determined using 

potential drop measurements. The relation between the crack length and the potential drop was 

calibrated using both the initial and final crack dimensions and intermediate crack tip positions 

determined using digital image correlations (DIC). As a matter of fact, during the experiments 

images of the surface were taken periodically to determine the crack tip position and deviation of 

the crack growth plane. 

 

Figure 2: Non-symmetric four point bending system in an intermediate position. (a) seating for the 

roller bearings, (b) axles of the roller bearings adjusted to the seatings, (c) sample, (d) lateral 

positioning, (e) initial notch. 

First, a specimen was tested to failure under pure mode I loading to generate a reference da/dN-

ΔK curve. Second, a crack was grown under mode I conditions to a length of 12 mm. At this point, 

mMPaK I 10=Δ ∞ . The bearings were displaced so as to apply a mode II load and the load was 

adjusted such that mMPaK II 20=Δ ∞  and R=0.1. No further fatigue crack growth was observed, 

even after 500000 mode II cycles. The conclusion of this first experiment was that a mode II 

loading of mMPaK II 20=Δ ∞  was not sufficient to promote fatigue crack growth after mode I 

loading of mMPaK I 10=Δ ∞ . 
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Third, a crack was grown to a length of 12 mm under the same mode I conditions as in the 

second experiment. Then the bearings were displaced to apply either one, ten or fifty mode II cycles 

and the load adjusted such that mMPaK II 20=Δ ∞ . Then the bearings were displaced again so as to 

apply mode I nominal fatigue cycles, and the crack was grown again until fracture. It was observed 

in this case that the application of ten mode II cycles accelerated the crack (circles in Fig. 3) 

compared to the pure mode I fatigue crack growth experiment (thick line in Fig. 3). The increase of 

the fatigue crack growth rate was moderate (by about 20%) but the recovery length was large 

(around 3 mm). This effect is moderate but significant. The increase of the crack growth rate after 

50 mode II cycles is similar to that obtained after 10 mode II cycles. That obtained after only one 

mode II cycle was negligible. During these experiments, a slight deviation of the crack growth 

plane was observed just after the application of mode II cycles. However, this deviation was 

neglected for the calculation of ∞
IK . 

 

Figure 3: Crack growth rate in a Paris diagram as measured in the S355NL steel at room 

temperature. The thick line correspond to a reference mode I fatigue crack growth experiment with 

R=0.1. The dots corresponds to a mode I fatigue crack growth before and after the application of 

10 mode II cycles with a stress ratio of 0.1 and mMPaK II 20=  
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Complementary experiments are planned in order to better characterize the mixed mode fatigue 

crack behaviour in the S355NL steel and related history effects. However, it can be concluded from 

this very first set of experiments that, for the experimental conditions tested, mode II cycles do not 

promote fatigue crack growth, but are at the origin of a history effect on mode I fatigue crack 

growth.  

However, this history effect is detrimental, while various authors [14, 15, 21, 22] have found a 

retardation effect of a mode II cycle on mode I fatigue crack growth. In particular, Dahlin & Olsson 

[14] made different experiments to study the influence of periodic mode II loading on mode I 

fatigue crack growth in a low alloyed steel, according to the stress ratio R of mode I cycles. First, 

among five different experimental conditions, only one shows an acceleration of 12% of the crack 

growth rate. In this case, the stress ratio and ΔKII were high (R=0.58, ΔKII=30 MPa.m1/2) compared 

with our experimental conditions (R=0.1, ΔKI=10 MPa.m1/2). The other experiments were 

performed with a stress ratio comparable to that used in our experiments (R=0.1). Contrary to the 

experimental results in Fig.3, Dahlin & Olsson [14] observed a decrease of the crack growth rate, 

regardless of the number of periodic mode II loadings.  

Quite the opposite, Nayeb-Hashemi and Taslim [18] obtained only a transient acceleration of the 

crack after the application of a single mode II cycle, without any retardation. Their results are 

similar to those plotted in Fig. 3. 

As a conclusion, predicting history effects in mixed mode conditions is not straightforward. 

History effects are suspected to be a function of the material, the stress ratio, the overload ratio, 

etc… Therefore, having a method to predict history effects under mixed mode conditions will be 

useful to design interesting loading schemes and to setup the experiment to elucidate suspected 

effects. In the following, such a method is developed and employed to simulate the evolution of 

crack tip plasticity for loading conditions equivalent to that used in the experiments (Fig. 3). 

3. Modelling 

Previously, a model was developed and validated for mode I fatigue crack growth under variable 

amplitude loadings conditions [25,26]. It was able to model fatigue crack growth including 

plasticity induced history effects. A natural evolution for this model should be to extend it to mixed 

mode loading conditions. Many authors [11-18] have researched this open problem, and all agree 

that plasticity induced history effects in mixed mode conditions modify both the growth direction 
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and the growth rate of a fatigue crack.  

Moreover, it was shown by Sander and Richards [21,22] and Doquet et al. [19], respectively, 

that suitable FE computations allow successful prediction of the crack growth rate [21,22] and 

direction [19] under non-proportional mixed mode conditions. 

As a matter of fact, in mixed mode conditions, as in mode I conditions, cyclic plasticity within 

the crack tip region lies at the origin of internal stresses that superimpose on the applied stresses 

and modify the behaviour of the crack. The FE method allows determining local loading conditions 

within the crack tip region that can then be used in a local crack growth criterion. For instance, 

Doquet et al [19] used elastic-plastic FE computations to determine stresses and strains around the 

crack tip for sequential mode I / mode II cycles. The average stress and strain fields over a critical 

distance from the crack tip were then computed and used to determine the plane for which the 

fatigue damage rate per cycle is the highest. The damage criterion was, for instance, a function of 

the normal stress amplitude. Other criteria are also used according to the material and the damage 

mechanism. It allows determination of the crack propagation plane. This approach was shown to 

predict successfully the conditions for which the fatigue crack bifurcates for sequential mode I / 

mode II loading conditions. 

Unfortunately, these approaches remain limited in practice because of the huge costs of the 

implementation of FE models an of elastic-plastic cracked body and of their analysis in fatigue. 

Moreover, in an industrial context, a fatigue crack growth model may have to handle millions of 

cycles, which imposes the use of simplified methods. Therefore, a global model, which would be 

easier to handle than a local one, is desired for this problem. 

3.1 The multiscale approach 

The main advantage of using the FE method is that it makes possible the use of complex material 

constitutive behaviours required to compute the details of the evolution of plastic deformation, 

residual stresses, stress range, etc… within and around the crack tip region for a stationary or 

moving crack tip [9,10].  

The local FE results are then brought to the global scale using a multiscale approach tailored for 

crack problems [25-27]. The global data generated by the post-treatment of FE computations are 

used to identify a global cyclic elastic-plastic empirical model (denoted by f ) for the crack tip 
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region. This model is incremental to facilitate its use in variable amplitude fatigue. For instance, in 

mode I, the global plasticity rate, dtd Iρ , within the crack tip region is a function of the nominal 

loading rate dtdK I
∞  and the state of a set of internal variables [25-27]. In addition, a proportional 

growth law between the rate dtda of production of cracked area per unit length of the crack front 

and dtd Iρ , allows prediction of the crack growth rate. Finally, the model is a set of ten scalar 

partial differential equations. 

The procedure to identify the parameters in the model f  requires knowledge of the material 

cyclic elastic-plastic behaviour. It is performed using the FE method and is fully automatic. The 

identification of the parameter in the growth law requires the results of a constant amplitude fatigue 

crack growth experiment. More details about the global model development can be found in [25]. 

Once identified, the global model can be used to predict the fatigue crack growth rate for 

variable amplitude loadings schemes. It accounts for plasticity induced history effects and is cheap 

in computation cost. The objective is now to extend this approach for non-proportional I/II mixed 

mode problems.  

3.1.1 Basis 

For plane problems, the velocity field within the crack tip region in I/II mixed mode conditions 

is partitioned into mode I and mode II components that correspond to the symmetric and anti-

symmetric parts of the displacement field with respect to the crack plane, respectively. In LEFM, 

the velocity field is then approximated by the product of spatial reference fields ( e
I
u  and e

II
u ) and 

their nominal stress intensity factors rates ( ∞
IK&  and ∞

IIK& ) (Eq. 1).  

( ) ( ) ( ) ( )PuKPuKtipvPv e
IIII

e
II

∞∞ −≈− &&         (1) 

In order to extend this approach to an elastic-plastic behaviour, two additional spatial reference 

fields ( c
I
u  and c

II
u ) and their intensity factor rates ( Iρ&  and IIρ& ) are used to describe the velocity 

field in the crack tip region (Eq. 2).  

( ) ( ) ( ) ( ) ( ) ( )PuPuKPuPuKtipvPv c
IIII

e
IIII

c
II

e
II ρρ &&&& +++≈− ~~      (2) 
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The additional spatial reference fields ( c
I
u  and c

II
u ) are constructed to be non-dimensional such 

that the intensity factor rates ( Iρ&  and IIρ& ) are equivalent to the rate of the crack tip opening 

displacement and the crack tip sliding displacement ( )dtdCTSDdtdCTOD , , respectively.  

At this point, the velocity field in the crack tip region is fully defined by a set of global variables, 

( )tipv , the crack tip velocity, and the intensity factor rates of the elastic and plastic parts of each 

mode ( )IIIIII KK ρρ &&&& ,,~,~ .  

Velocity fields ( )Pv  for stationary or moving cracks in elastic-plastic conditions are calculated 

using the finite element method for various load histories. A POD based routine is then used to 

approach ( )Pv  either by Eq. 2 (elastic approximation) or by Eq. 3 (elastic-plastic approximation) 

and to determine the related errors (Eq. 3 and 4)  

( ) ( ) ( ) ( )( ) ( ) ( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−= ∑∑

∈∈

∞∞

DP
i

DP
i

e
IIIIi

e
IIie

ii

tipvPvPuKPuKtipvPvC 22&&    (3) 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )∑∑
∈∈

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−−−=

DP
i

DP
i

c
IIIIi

e
IIIIi

c
IIi

e
IIiep

ii

tipvPvPuPuKPuPuKtipvPvC 22~~ ρρ &&&& (4) 

During a time increment, the crack tip region (D) is assumed to behave essentially elastically if 

the elastic approximation of ( )Pv  is just as precise as the elastic-plastic one ( )thepe CCC ≤− . On the 

contrary, if the approximation of ( )Pv  is improved by the use of two additional spatial reference 

fields ( c
I
u  and c

II
u ) and their intensity factor rates ( Iρ&  and IIρ& ), the crack tip region plastically 

deforms.  

3.1.2 Implementation 

2D finite element simulations were performed using Abaqus 6.5. Linear plane strain elements 

were used to mesh a quasi infinite sheet (20m x 20m) containing a central crack with a length of 

2a=60mm. The mesh was highly refined around the crack tip with a mesh size of 3 μm at 10μm 

from the crack tip (Figure 4). The “crack tip region” was defined as the set of elements at a distance 

below 1mm from the crack tip. 
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(a) (b) 

Figure 4: Finite elements mesh, (a) increasing mesh refinement around the crack tip, (b) detail of 

the mesh around the crack tip. 

The first step of the procedure consists in determining the two reference elastic fields, e
I
u  and 

e
II
u , from elastic finite element computations for which the nominal stress intensity factors were 

mMPaK I 1=∞  and mMPaK II 1=∞ , respectively.  

The complementary fields, c
I
u  and c

II
u , were then determined using elastic-plastic FE 

computations and the material constitutive law (Table 2),. To construct c
I
u  for instance, the 

following procedure was used. A monotonic mode I tensile phase is simulated using the FE method. 

The displacement increment ( ) ( ) ( )12 ,, tPutPuPu −=Δ  is computed at each point of the model 

during the last time increment of that loading phase. Then the displacement field ( )PuΔ  during that 

increment is projected onto the mode I elastic reference field, which allows computation of the 

variation of its intensity factor during the increment : 

( ) ( )
( ) ( )

( ) ( )∫

∫
⋅

⋅Δ
=−

D

e
I

e
I

D

e
I

II PuPu

PuPu
tKtK 12

~~          (5) 

The remainder of the displacement field (see Eq. 1) is then computed:  

( ) ( ) ( ) ( )( ) ( )PutKtKPuPu e
III

R
12

~~ −−Δ=Δ         (6) 

And then made non-dimensional so Iρ&  could be read as the average relative mode I displacement 

between the crack faces, in micrometers: 
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( ) ( )
( ) ( )( )∫

∫
=

=

=

=

−=−=
Δ= mmr

mr

R
y

R
y

mmr

mrRc
I

ruru

m
PuPu 1

10

1

10

,,

1
.

μ

μ

πθπθ

μ
      (7) 

The same procedure was employed in mode II. Once these preliminary computations have been 

performed for a given material constitutive equation, e
Iu , e

IIu , c
Iu  and c

IIu  are defined and can be 

employed for any cyclic mixed mode loading. 

In the following, various mixed mode conditions are simulated using the FE method. For each 

time increment ( )nn tt −+1 , the computed displacement field during the time increment 

( ) ( )[ ]nn tPutPu ,, 1 −+  is stored and partitioned into mode I ( ) ( )[ ]nInI tPutPu ,, 1 −+  and mode II 

components ( ) ( )[ ]nIInII tPutPu ,, 1 −+  (e.g. symmetric and anti-symmetric parts). Then the four 

intensity factor variations during the increment are determined, as shown in equations 8 to 11 : 

( ) ( )
( ) ( )[ ] ( )

( ) ( )∫

∫
⋅

⋅−
=−

+

+

D

e
I

e
I

D

e
InInI

InI PuPu

PutPutPu
tKtK

,,
~~

1

1        (8) 

( ) ( )
( ) ( )[ ] ( )

( ) ( )∫

∫
⋅

⋅−
=−

+

+

D

c
I

c
I

D

c
InInI

InI PuPu

PutPutPu
tt

,, 1

1 ρρ        (9) 

( ) ( )
( ) ( )[ ] ( )

( ) ( )∫

∫
⋅

⋅−
=−

+

+

D

e
II

e
II

D

e
IInIInII

IInII PuPu

PutPutPu
tKtK

,,
~~

1

1                 

(10) 

( ) ( )
( ) ( )[ ] ( )

( ) ( )∫

∫
⋅

⋅−
=−

+

+

D

c
II

c
II

D

c
IInIInII

IInII PuPu

PutPutPu
tt

,, 1

1 ρρ                 (11) 

The mean least square errors, eC  and epC , between the computed displacement field and the 

approximation in Eq. 1 and 2 are also calculated at each increment. The error epC  associated with 
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the elastic-plastic approximation was always below 10% whatever the mode mixity and the history 

provided that the equivalent stress intensity factor used in the simulations is reasonable (e.g. below 

50 MPa.m1/2 for this steel). This procedure was fully automated using a python script in Abaqus and 

requires a few minutes to post-treat FE simulations. 

3.1.3 Results 

Various loading histories were simulated. A few examples are given in Fig. 5 to illustrate how 

Iρ  and IIρ  (Fig. 5b), that measure crack tip plasticity at the global scale, evolve according to the 

mixed mode loading conditions (Fig. 5a). Three steps are applied in each case. The same loading 

conditions are applied during the two first steps (Fig. 5a). For the first case, though ∞
IK  is kept 

constant during the last step, both IIρ  and Iρ  increase when ∞
IIK  increases. For the second case, 

both IIρ  and Iρ  vary when ∞
IIK  is kept constant and ∞

IK  increases. On the contrary, in the fourth 

case, Iρ  is nearly constant, while both ∞
IIK  and ∞

IK  vary. And finally in the third case, during the 

last step of the computation, ∞
IIK  and ∞

IK  are both decreasing but ∞
IK  remains positive. In this 

case, though ∞
IK  is decreasing, Iρ  increases. In other words, the crack plastically blunts during the 

unloading phase.  

 (a) (b) 

Figure 5: (a) Loading histories applied to the FE model. (b) Plastic intensity factors Iρ  and IIρ . 
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These results are qualitatively consistent with experimental and numerical results from Dahlin 

and Olsson [14] who have shown that focus should not be placed only on “ranges”. The behaviour 

of a crack in mixed-mode conditions differs significantly whether or not a static mode I load is 

superimposed with a cyclic mode II load [14].  

3.2 Model 

The aim is now to find a set of simple variational evolution equations that would reproduce FE 

results such as those in Fig. 5, and, once identified for a given material, could then be employed to 

predict mixed mode plasticity at the crack tip in preference to expensive FE computations. 

For this purpose a global cyclic elastic-plastic model for the crack tip region is built. It contains 

a yield criterion, a flow rule and a hardening rule. It is analogous to a plasticity model except that it 

applies to cracks. Details about this model can be found in [31].  

3.2.1 Yield criterion 

Using the multiscale approach detailed in §3.1 it is possible to apply a given load history to the 

crack, and then explore radiating loading directions (Fig. 6a). In each direction, the “yield” 

threshold is determined as the point above which the approximation of the velocity field by Eq. 2 is 

better than an elastic approximation (Eq. 1). When the yield point is reached, Iρ&  and IIρ&  are non 

negligible. It is therefore possible to construct numerically the elastic domain for the crack tip 

region (Fig. 6b) and its evolution during loading (Fig. 6c). 

Using the FE method, it is found that the size and the shape of this domain remains the same 

during loading (Fig. 6c). The elastic domain is roughly an ellipsis in a ∞
IIK  and ∞

IK  diagram. 

However, its center evolves during loading (Fig. 6c). The displacement of the center of the elastic 

domain is due to the growth of internal stresses within the crack tip region because of the 

development of a plastic strain gradient at crack tip. The center of this domain, denoted by X
IIK  and 

X
IK , is therefore introduced as an internal variable in the model. X

IIK  and X
IK stand, at the global 

scale, for the internal stress field within the crack tip region.  
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 (a)  (b) 

 (c)  
Figure 6: Construction of the global yield locus of the crack tip region. (a) typical loading histories 

applied during FE computations. (b) dots: yield points as determined using the FE method for each 

radial loading direction. Solid lines: yield locus as defined from the generalized Von Mises 

criterion (Eq. 12). (c) Yield locus evolution during loading (dots : from FE, solid lines : Eq. 12). 

About 2 hours of FE computations are required to construct each yield surface. 

Inside the elastic domain, the crack tip region behaves essentially elastically. Therefore the 

Westergaard equations apply (provided that X
II KK −∞  and X

IIII KK −∞  are used) and can be used to 

determine an analytical expression of the elastic shear energy inside any circular domain around the 

crack tip. At the local scale the material obeys the Von Mises yield criterion, which stems from a 

critical shear elastic energy density. Therefore, a critical shear elastic energy criterion in the crack 

tip region was expected to be a suitable yield criterion at the global scale. The generalized Von 

Mises yield criterion Yf  obtained by this method matches almost perfectly the FE results (lines in 
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Fig. 6c) and it sums up into a very simple equation (Eq. 12). The elastic domain, defined by Yf , has 

a size controlled by the adjustable parameter Y
IK  and a fixed aspect ratio Y

I
Y
II KK  function of the 

Poisson’s ratio of the material (Eq. 13). 

( ) ( ) ( ) ( )22
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IIIIIY KKK
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I
Y
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3.2.2 Flow rule, hardening rule and equations of the model. 

A flow rule and a hardening rule were then introduced. The normality flow rule was adopted (in 

a GI, GII diagram rather than in a KI, KII). This flow rule determines the direction of Idρ  and IIdρ  

(Eq. 17) once the yield surface is reached.  

Finally, we also assume as a hardening rule, that the displacement of the center of the yield 

surface coincides with the plastic flow direction, which yields : II
X
II dpdK ρ=  and I

X
I dpdK ρ= . 

To summarize briefly, the first elements of a global variational formulation of the mixed-mode 

cyclic elastic-plastic behaviour of the crack tip region were gathered. First, at the global scale, 

plasticity in the crack tip region was represented by the rates IIdρ  and Idρ . A yield function Yf  

was introduced (Eq. 14), which is a function of the nominal applied stress intensity factors, ∞
IK  and 

∞
IIK  , and of two internal variables, X

IK  and X
IIK , that define the current position of the center of 

the yield surface and, at the global scale, describe the internal stress fields. 

( ) Y
IIIY

II

Y
I

IIIIY GG
G
GGGGf −+=,                    (14) 

where ( )( )
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IIIIII
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−=
∞

∞  and ( )( )
*

2

E
KK

KKsignG
X
IIX

III
−

−=
∞

∞             (15) 

The global plastic strain rate is assumed to obey the normality flow rule, which is expressed as 

follows: 
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If 0<f  or if ( )0&0 <= dff   then : 0==== X
I

X
IIIII dKdKdd ρρ                (16) 

Else : 
I

I
II

II G
f

ddand
G
f

dd
∂
∂

=
∂
∂

= λρλρ                   (17) 

And the evolution equations for the center of the yield surface are as follows, R being a 

“material” parameter : 

I
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During plastic deformation, the yield criterion 0=f is always fulfilled, which imposes that 

0=df . This last equation allows determining λd , since IdG  and IIdG  are function of X
IdK and 

X
IIdK , which are themselves function of λd . In practice, λd  is determined numerically using the 

radial return algorithm.  

3.2.3 Validation  

At this point, loading histories were simulated both using the finite element method and the 

global model (Fig. 7) to check the validity of the flow rule and the hardening rule. Since plasticity 

is constrained within the crack tip region, either stress controlled or displacement controlled 

boundary conditions can be used to impose nominal stress intensity factors for FE computations. In 

the present case, displacement controlled boundary conditions are used. 

First, finite element computations were performed to validate the hardening rule. The evolutions 

of the center of the elastic domain were determined for four loading cases (Fig. 7). It is worth 

underlining that getting each single position of the center of the elastic domain requires 12 finite 

element computations (see Fig. 6a). Those positions are plotted as full symbols in Fig. 7a. It was 

found that the evolutions of X
IK  and X

IIK , calculated using the global model, matched almost 

perfectly that obtained using the FE method (Fig. 7 a). The model did not reproduce as well the 

evolutions of Iρ  and IIρ  (Fig. 7 b), but the main trends are captured (directions and amplitudes).  
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(a)  

(b) 

Figure 7: (a) Positions of the centres of the yield surfaces and (b) plastic intensity factors Iρ  and 

IIρ  for the same loading histories, as determined either using FE computations (full symbols) or 

using the global variational model (Eq. 11-25) (lines and empty symbols).  

A second validation case is plotted in Fig. 8. Five out of phase mixed mode loading cycles (Eq. 

19) were applied, with a stress intensity factor range of 20 MPa.m1/2.  
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( ) ( )tKtK oII ωsin=∞   and ( ) ( )( )tKtK oI ωcos1+=∞  with mMPaKo 10=         (19) 

The evolutions of IIρ  and Iρ  were calculated either using the FE method or using the global 

model. The hysteresis loop stabilizes after the first cycle. In Fig. 8, the fifth cycle only is reported. 

The nominal applied stress intensity factor is plotted in Fig 8(a). The evolution of IIρ  and Iρ  

calculated using the finite element method and the global model are plotted in Fig. 8 (b) as full 

symbol and lines, respectively. The global plastic intensity factor ranges IIρΔ  and IρΔ  are 

reasonably predicted by the model. It is worth mentioning that though the nominal stress intensity 

factor loading path is circular, the plastic intensity factor path is not circular. The shape of the cycle 

is successfully predicted, including the inclination of the ellipsis. However, as in Fig. 7 (b), the 

global model does not coincide precisely with the results of FE computations.  

(a) (b)  

Figure 8: (a) Applied nominal stress intensity factors (b) plastic intensity factors IIII dCst ρρ ∫+=  

and II dCst ρρ ∫+=  from FE computations (black circles) or from the global model (line).  

3.3 Application and discussion 

The global model was then used to simulate the loading histories employed in the experiments. 

For mode I cycles mMPaK I 10=Δ  and R=0, and for mode II cycles, mMPaK II 20=Δ  and R=0. 

First, 170 mode I cycles were simulated using the global model. Second, 150 mode I cycles were 
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simulated, followed by 10 mode II cycles and 10 mode I cycles. The evolutions of IIρ  and Iρ  

during the last 10 mode I cycles are plotted in Fig. 9 for the two cases. 

(a) (b) 

Figure 9: Simulations of crack tip plastic deformation for the loading cases used in the experiments 

(Fig. 3). The black circles correspond to 10 mode I cycles after 160 mode I cycles. The empty 

circles correspond to 10 mode I cycles after 10 mode II overloads and 150 mode I cycles. 

Calculated evolutions using the global mode (a) Iρ , (b) IIρ . 

It is observed that, after the application of mode II overloads, the mode I plastic intensity factor 

range ( IρΔ ) is increased by about a factor 2. If the crack growth rate is proportional to the plastic 

intensity factor range, an increase of the fatigue crack growth rate after the application of the mode 

II overloads should be predicted using this model. This result is consistent with experimental 

observations. Furthermore, the mode I plastic intensity factor Iρ  increases progressively. Since this 

model is incremental ( II dCst ρρ ∫+= ), the value of Iρ  alone is not significant. However, the 

progressive increase of Iρ  should tend to blunt the crack and remove any crack closure effect.  

 

4. Conclusions and prospects 

The aim of this study was to establish a mixed-mode crack propagation model including history 

effects and to validate it using suitably chosen experiments. For this purpose, mixed mode fatigue 
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crack growth experiments were setup and showed that the studied material (a S355 NL steel used in 

marine applications) shows history effects in mixed mode fatigue crack growth. In the future it is 

planned to study in a systematic manner the fatigue crack growth resistance in this material under 

complex mixed-mode conditions. 

Also, the first elements of a global mixed-mode plasticity model for the crack tip region were 

gathered. Since it is recognized that plasticity is at the origin of large history effects, a global cyclic 

elastic-plastic model for the crack tip region is useful for predicting mixed mode fatigue crack 

growth when variable amplitude conditions are encountered. This model is dedicated to be used in 

elastic analyses of cracked structures and should account for memory effects inherited from the 

non-linear behaviour of the material within the crack tip region. It can be used for instance in crack 

tip XFEM elements or in cohesive zones. 

First, a multiscale approach was used to bring the results of detailed elastic plastic FE analyses 

from the local scale to the global scale. For this purpose, the velocity field in the crack tip region 

was approximated by the product of spatial reference fields, known a priori, and of their intensity 

factors. This approach is classical in LEFM. It was merely extended to the case of elastic-plastic 

material behaviours by introducing two additional spatial reference fields ( c
I
u and c

II
u ) and their 

intensity factors ( Iρ  and IIρ ) to account for plastic deformation within the crack tip region. Such an 

approximation was shown to be reasonably precise (less than 10% error), whatever the mode-

mixity and the load history. Then during any loading history, the four intensity factor rates 

( IIK
&~ , IK

&~ , IIρ& , Iρ& ) are determined by projecting the computed velocity field onto the basis of 

reference spatial fields that were constructed for all ( e
I
u , e

II
u , c

I
u and c

II
u ).  

In certain cases, approximating the velocity field by using only the “elastic” reference spatial 

fields ( e
II
u , e

I
u ) is just as precise as using the “enriched” approximation. In such cases, the crack tip 

region is considered as behaving elastically.  

These FE results were used to define a global elastic plastic constitutive behaviour for the crack 

tip region. It includes: a yield criterion, a flow rule and a kinematic hardening evolution equation 

and sums up into a set of five scalar differential equations. 
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From the results of FE computations it was shown that an elastic domain can be defined for the 

crack tip region, which evolves during loading. This domain can be modelled by a yield criterion 

(generalization of the Von Mises criterion). During loading, the center of the yield locus moves 

because of the growth of internal stresses. Therefore, two internal variables ( X
IIK , X

IK ) were 

introduced to define the current position of this yield locus, and describe at the global scale these 

internal stresses. The normality flow rule was adopted for this problem and allows predicting IIρ&  

and Iρ&  from the current state of the variables of the model and from the loading rate. And finally, 

the center of the yield locus moves along the plastic flow direction.  

This model computes the evolutions of the current origin of the elastic domain for the crack tip 

region with good precision, compared with the FE method. The advantage is that the computations 

using this model, unlike FE computations, are very fast and efficient. The prediction of IIρ&  and Iρ&  

remains to be improved, but the flow directions and the order of magnitude of the flow rate are 

correctly reproduced. 

In the future, this model should be enriched. First, the evolution law of the crack closure as a 

function of IIρ&  and Iρ&  needs to be defined. Second, how the internal variables in this model evolve 

when the crack grows or deviates needs to be determined. This part can be done using the same 

approach, based on FE computations. Finally, a crack growth criterion, to predict the fatigue crack 

growth rate under general mixed mode non-proportional and variable amplitude loading conditions 

from the knowledge of IIρ&  and Iρ& , needs to be developed. For this purpose fatigue crack growth 

experiments should be performed under complex loading conditions. 
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