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On maximal instances for the original syntenic
distance

Cedric Chauve and Guillaume Fertin

chauve@lacim.uqam.ca, fertin@irin.univ-nantes.fr

Abstract

The syntenic distance between two multichromosomal genomes has been introduced by Ferretti, Nadeau
and Sankoff as an approximation of the evolutionary distance between genomes for which the gene order
is not known. This distance is the minimum number of fusions, fissions and translocations required to
transform a genome into the other. Kleinberg and Liben-Nowell proved that for � -chromosomes genomes
the diameter for this distance is

� ����� and asked for a characterization of maximal instances for the
syntenic distance (pairs of � -chromosomes genomes at a distance of

� ����� ). Pisanti and Sagot generalized
the result of Liben-Nowell and Kleinberg and showed that the maximal distance between a genome with �
chromosomes and a genome with � chromosomes is �
	����
� . In this paper, we give a characterization
of pairs of genomes with respectively � and � chromosomes that are at maximal distance.





1 Introduction

In the past few years, the interest in determining evolutionary distance between species, in the framework
of genome rearrangement, has been continuously growing. In this context, the evolution models are at a
genomic level, where mutations take place between large pieces of DNA, thus affecting the order of one or
several genes within chromosomes. If one considers two genomes ��� and ��� , the distance between ��� and
��� is usually defined as the minimum number of mutations needed to transform one genome into the other.
Depending on the mutations that are considered (and thus allowed in the model), this gives rise to several
distinct problems. One can cite for instance the reversal distance [1, 3, 6], where mutations are described
in terms of reversals of chromosomes segments, or the transposition distance [2], where a transposition is a
mutation that takes a segment out of a chromosome and inserts it at another location in the genome. Several
other models or variants also exist, that either take or do not take into account the order of the genes within
chromosomes.

In this paper, we are interested in the syntenic distance, where the order of genes within chromosomes
is not considered ; hence, every chromosome is seen as an unordered set of genes. This notion has been
introduced by Ferretti, Nadeau and Sankoff [5]. In this model, the mutations that are allowed are threefold:
(i) fusion: two chromosomes are joined to form one, (ii) fission: a chromosome is splitted into two, and
(iii) translocation: two chromosomes exchange arbitrary subsets of their genes. Among others, it has been
shown that computing the syntenic distance between two arbitrary genomes is ��� -hard [4] ; moreover,
an approximation algorithm with approximation ratio 2 is known [4], and some other variants of such
an approximation algorithm have been given [5, 10]. We also mention that some specific subclasses of
instances have been considered, such as linear synteny, exact synteny or nested synteny [4, 9, 12]. In some
of these cases, the computation of the distance becomes polynomial.

However, the algorithmic issue of approximating precisely the original syntenic distance between two
genomes still asks for a better solution, and thus for a better understanding of the combinatorial nature
of this problem. Among the natural combinatorial notions related to distances over a set of objects is the
diameter, that is the maximum distance between two of these objects (here two genomes over the same set
of genes). For the syntenic distance, the diameter for pairs of � -chromosomes genomes has been shown
to be equal to

� � � � [8, 12], and one particular instance reaching this value has been given. As a natural
extension of these results, Kleinberg and Liben-Nowell asked for a characterization of those instances
that are maximal (that is, pairs of � -chromosomes genomes at a syntenic distance of

� � � � ) [8]. The
computation of the syntenic diameter was later generalized by Pisanti and Sagot [12] who proved that
the maximal distance between an � -chromosomes genome and an � -chromosomes genome, called the
bidimensional syntenic diameter, is � 	�� � � . The main result of the present article is an answer to the
question of Kleinberg and Liben-Nowell about maximal instances, that we generalize to the bidimensional
case. Our characterization will moreover allow us to decide in polynomial time whether a pair of genomes
is at maximal distance.

In Section 2, we formally state the problem and its model, we recall some known properties and we
introduce some notations and definitions. In Section 3, we give necessary conditions for square instances
(pairs of � -chromosomes genomes) to be maximal, while in Section 4 we prove that these conditions are
sufficient. Finally, in Section 5, we fully characterize those instances that are maximal, and we extend this
characterization to bidimensional instances.

2 Preliminaries

Syntenic distance. Following [5], we define a genome � over a given set of genes as a partition of this
set of genes into an unordered collection of chromosomes (sometimes called synteny sets). Hence the order
among chromosomes and the order of genes on a chromosome are not taken into account, but a given gene
can not appear into several chromosomes. In the syntenic distance model, the mutations considered are
the fusions of two chromosomes (they are joined to form one chromosome), the fissions of a chromosome
(it is splitted into two chromosomes) and the translocations between two chromosomes (they exchange
arbitrary subsets of their genes). These mutations never involve, either as an input or as a result, empty
chromosomes and do not cause the duplication of a gene.
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For example let �����������	��
���
���������� be a set of genes, and � ��� ������������������������
���
���������������� be a genome
with � chromosomes. The genomes � � � ���!�����!������������������
���
��������	������� , ��" � �������������#���������������	��
���
����
and ��$ � �������%�&��������������
���
���������������� result respectively from a fission of the first chromosome of � � , a
fusion of the first and third chromosomes of � � , and a translocation between the first and second chromo-
somes of � � .

Given two genomes � � and � � over the same set of genes (there is no gene that appears in only one
of the two genomes), the syntenic distance is the minimum number of mutations (fusions, fissions and
translocations) needed to transform � � into � � . This distance will be denoted ')( � � � � ��* .
Compact representation of an instance. Let + �-, � ��.�� �0/�/�/ �1� and let an instance of the syntenic
distance be specified by two genomes � �2� ��3 � � /�/�/ ��354 � (where 376 is the set of genes of the 8:9�; chro-
mosome) and � �<� ��= � � /�/�/ �>=@?�� on the same set of genes. The compact representation of this instance
is an unordered collection of � subsets ��A � � /�/�/ ��A�4B� of + �-, obtained by replacing in the sets 3 � � /�/�/ ��354
every gene C by the indices of the chromosomes of � � containing C . We should immediately notice that
in the compact representation, every element of the underlying set + �-, can appear in several of the sets
A ��� /�/�/ �DA 4 .

For example, let ���������������	��
���
���������� be a set of genes, and � �E� ��������
����������������!�����!�#��
������������ and
� �F� ���!�����������������	��
���
��������	������� be two genomes. The compact representation of this instance is ��� � ���5���
��.����#��.�� � �����!�7��� .
Remark 1 Given a compact representation, one can clearly perform on it operations like fusions, fissions
and translocations, provided that one gives a rule to deal with the presence of multiple copies of an element
of + �-, in a set. The rule used here, and in all the papers about the syntenic distance, follows naturally from
the construction of a compact instance: when a fusion or a translocation could induce two copies of an
element into a set, these two copies are gathered into a single copy. For example the fusion of ��.�� � � and
� � ���5� gives ��.�� � ���5� .

For two compact representations A and 3 , we denote by 'EG#(HAF��3 * the minimum number of fusions,
fissions and translocations (as defined in Remark 1) to transform A into 3 . Now let ��� and ��� be an instance
of the syntenic distance, A � ��A � � /�/�/ �DA�4 � be its compact representation and �1? � ����.#��� /�/�/ ��� �1��� . It has
been proved that ')( � � � � ��*F� '<G�(:��A � � /�/�/ ��A�4B��� �I? * [4, 5]. This reduction to a compact representation
allows to define an instance for genomes on a set of � chromosomes as a collection ��A � � /�/�/ �DA�4J� of �
subsets of + �-, (where � is the number of chromosomes of the genome � � and � the number of chromosomes
of the genome � � ).

Remark 2 It should be noticed that in several papers about the syntenic distance between genomes, au-
thors consider a genome as a collection of subsets of the set of genes, and not a partition of the set of genes.
Following this definition, they allow the repetition of genes on a same genome, and in this framework the
equivalence with compact instances does not hold anymore. Indeed if we allow a gene to appear in several
chromosomes of a � -chromosomes genome � , the compact representation of this genome is not equal to
����.#����� � ��� /�/�/ ��� �1��� and the distance from � to itself, computed through this compact instance, is strictly
greater than 0, which is clearly false. An extreme example would be to consider a genome � where ev-
ery chromosome contains a copy of every gene and the compact representation �LK of the instance ( �M� � * .
Hence ')( �M� � *J�ON , when 'PG�( �IKQ� � ? *R� � � ��� . The only published proof of the equivalence between
general instances and compact instances in [4] does not make this point clear. However, it is not difficult
to see that minor modifications make this proof hold in the case where no gene is repeated.

From now on, we consider only the compact representation of instances of synteny, that is collections1

��A � � /�/�/ �DA�4J� of subsets of + �-, and the fusion, fissions and translocations for compact instances as defined
in Remark 1. For such an instance, we call an optimal mutation sequence any minimal (in terms of number
of mutations) sequence of mutations (fusions, fissions and translocations) that transform ��A � � /�/�/ ��A�4B�
into �I? . One says that such a sequence solves the instance A � ��A � � /�/�/ �DA�4 � and one denotes by ')(HA *

1It should always be kept in mind that a genome is an unordered collection of chromosomes, which implies that two collections
of subsets of S T�U that differ only by a permutation of the subsets they contain represent the same instance.
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the length of such an optimal sequence. An instance is said to be an � -square instance if � � � . If
A � ��A � � /�/�/ ��A�4B� is the compact representation of an instance ( � � � � ��* , we denote by �������>( A * the
compact representation of the instance ( � � � � ��* .
Structural properties of the syntenic distance. We now recall some properties that will be used in the
proofs of the characterization of maximal instances for the syntenic distance. We refer the reader to [4, 10]
for the proofs of these properties.

Proposition 1 (Duality). For every instance of synteny A , ')(HA *L� ')(��������>(HA *�* .
Proposition 2 (Canonicity). For every instance of synteny, if there is an optimal mutation sequence solving
it with 	 � fusions, 	 � translocations and 	 " fissions, then there is also an optimal mutation sequence solving
it and starting by 	 � fusions, followed by 	 � translocations and finishing by 	 " fissions.

Let A � ��A � � /�/�/ �DA�4J� and AMK � ��A K� � /�/�/ ��AMK4 � be two instances of synteny. One says that A dominates
AMK if for all 8�
 + �E, we have A K6
� A�6 .
Proposition 3 (Monotonicity). Let A � ��A ��� /�/�/ ��A 4 � and AMK � ��AMK� � /�/�/ ��AMK4 � be two instances of
synteny. If A dominates A K , then ')( A *�� ' ( A K * .
The syntenic diameter. The diameter of the syntenic distance was studied by Kleinberg and Liben-
Nowell [8] and Pisanti and Sagot [12]. Let us denote by A@' ( � � � * the maximal syntenic distance over
all the instances composed of � subsets of + �-, . In [8], the diameter for � -square instances ( � � � ) was
computed and shown to be equal to

� � �
� . The following result, proved in [12], generalizes the result of
Kleinberg and Liben-Nowell to the bidimensional case.

Theorem 1 (Bidimensional syntenic diameter). For all � � � � � , A@' ( � � � *@� ��	�� � � .
From now on, an instance A � ��A ��� /�/�/ �DA 4 � of the syntenic distance on + �-, will be called a ( � � � * -

maximal instance if it can not be solved in less than � 	 � � � mutations. If � � � maximal instances
will be called maximal � -square instances.

Gossiping and synteny. The main tool that we will use to characterize maximal instances is a relation-
ship between the transformation of a genome into another by translocations and a problem of gossiping,
introduced by Kleinberg and Liben-Nowell in [8] and developed by Liben-Nowell in [11].

More precisely, the gossiping problem is used to model information dissemination in communication
networks. It has been introduced in the 50s, and has received considerable attention since, leading to a
wide literature. For more information on the subject, we refer to the survey [7]. The gossiping problem
is defined as follows: we start with a set of � people, denoted by integers .�� /�/�/ � � , each knowing a single
piece of information, denoted by ��8�� for the person labeled by 8 . Those people communicate between
them, using the telephone model, that is a communication takes place between two people only, and both
exchange all the information they have. One of the first questions that arose from this model is to determine
the minimum number of calls to be made in order that everyone knows everything, that is + �-, .

Kleinberg and Liben-Nowell pointed out an equivalence between translocations and a variant of gos-
siping, that they called incomplete gossiping. In this problem, people do not necessarily want to know all
the pieces of information, but each person wants to know a specific subset of the total information (that
is a subset of + �-, ). Hence, in particular, during a call a person is allowed to give to the other caller only
an arbitrary subset of his/her information. Let us denote by A 6 the information that the person 8 wants to
know. In this model, for a given information configuration A � ��A ��� /�/�/ �DA ? � (a totally ordered set of �
subsets of + �-, ), one says that it can be disseminated in 	 calls if there is a sequence of 	 calls that leads
to the situation where, for 8 � .�� /�/�/ � � , the person 8 knows at least the information A 6 (if every person 8
knows exactly A	6 , one says that A is exactly disseminated).

The equivalence with translocations in the syntenic distance problem is immediate: if ��� and ��� are the
sets of information that two people � and 	 know before calling each other, after this call they respectively
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know ��K� and ��K� where � � � ��� � ��K� � ��K� , which leads to the remark that one could evolve from sets �5K� and
��K� to the sets � � and ��� by a translocation. Hence, a call between two people corresponds to the reverse of
a translocation, which implies immediately the following property (see [11, Section 4]).

Proposition 4 Let A � ��A ��� /�/�/ ��A ? � be a collection of subsets of + �-, . If this configuration can be dissem-
inated in 	 calls, then A can be solved by 	 translocations and ' ( A *�� 	 .

When during a call two people, say 8 and � , exchange totally their available information, we say that
this call is complete and we denote it by (H8�� � * .

Reduction of an instance. Finally, before starting the description of our characterization of maximal in-
stances, let us introduce the the notion of reduction of an instance, that will be used intensively in our proofs.
Let � be a subset of + �-, ( � � ��� � � /�/�/ ��� ��� , with � ��� /�/�/ � � � ) and A � ��A � � /�/�/ ��A�4J� be an instance
of synteny. We call the � -reduction of A the instance A�� � ��A	�� � /�/�/ ��A	�4 � obtained from A as follows: in
each A � , with . � � � � , every element � 6 

� is replaced by a single occurrence of ��� and the resulting
collection A K � ��AMK� � /�/�/ �DA K4 � of � subsets of + �-, are normalized on + � � 	 	E.�, to give A�� . Hence A�� is an
instance on + � � 	 	 .�, . For example, let A � ����.�� � ��� � � �
��������.�� � ���5� �7������.�� � ���5������.#� � ������.���� and � �
��.�� � � �7� . Then A K � ����.����7�
��������.����5������.#���5������.�������.#�#� and A	� � ����.�� � ���7������.�� � ������.����5������.#������.#�#� is
an instance with � � � .

3 Necessary conditions for maximal square instances

We recall that an � -square (compact) instance is an instance composed of � subsets of + �-, . In this section,
we describe some conditions that an � -square instance should satisfy in order to be a maximal � -square
instance. These conditions formalize the quite intuitive idea that a maximal instance does not involve a
small subset of + �-, .
Lemma 1 Let � � � and A � ��A � � /�/�/ ��A�?�� be an � -square instance. If there exists 8 
 + �-, such that� A�6 � � �
� � then A is not a maximal � -square instance.

Proof: We consider the gossiping problem for A and we show that A can be disseminated in
� �����

complete calls, thus proving by Proposition 4 that ')( A *�� � � �
� . We first note that A is dominated by the
instance AMK � ��AMK� � /�/�/ �DAMK? � , defined by A K6 � + �-, for all 8

 + �-,�����.#� , and A K� � + �-,���� � � � � � � .�� �1� . It is
possible to disseminate A K in a sequence of

� � ��� complete calls: first, for 8 from 1 to �
� � , (H8�� � � � * ( 8
calls � � � ) ; then ( � � � � � � � * , ( � � .�� � * , ( � � � � � � . * ( � � � � � * (after this � calls have been made) ;
and finally, for � from 2 to � � � , ( ��� � * . At the end of the process, every person 8 , for 8 
 + �-,�����.�� , knows
+ �-, , while the person . knows + � � �#, . Since this process uses

� � ��� calls, we conclude by Propositions 3
and 4 that ')(HA *�� ')( A K *�� � �
��� , and thus A is not maximal. �

Hence, we can now restrict our study to instances where every set A16 is of size at least �
� � . The
next three lemmas give necessary conditions on these instances that will be proved to be sufficient in the
following section.

Lemma 2 Let � � � and A � ��A ��� /�/�/ ��A ? � be an � -square instance. If there exists 8�� � 
 + �-, and
����� 
 + �-, ( 8��� � and ���� � ) such that ���
 A 6 , ���
 A 6 and ���
 A � , then A is not a maximal � -square
instance.

Proof: Here again we consider the gossiping problem associated to this instance, and show that A can be
disseminated in

� � ��� calls. A is dominated by the square instance A�K such that A K6 � + �-, for all 8 
 + �-,��
� � � �7� � � � � , AMK?���" � + � � � , and A K?�� � � + � � .�, . AMK can be disseminated by the following sequence
of
� � ��� complete calls: for 8 from 1 to � � . , (H8���8 	 . * (after this, � and � � . know + �-, , � � � knows

+ � � .�, and �
� � knows + � � � , ) ; then for � from 1 to � �
� , ( ��� � * . Thus, ')( A *�� ')(HA0K *�� � � ��� by
Propositions 3 and 4, and A is not a maximal � -square instance. �
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Lemma 3 Let � � � and A � ��A � � /�/�/ ��A�?�� be an � -square instance. If there exists three distinct integers
8�� ��� 	 
 + �-, and � 
 + �-, such that

� A	6 � � � � � , ���
 A � and ���
 A � , then A is not a maximal � -square
instance.

Proof: Due to Lemmas 1 and 2 above, we just have to focus on instances dominated by the instance A�KQ( � *
containing � � � copies of + �-, , one copy of + �
� � , and one copy of + �-,���� �
� � � . We now distinguish two
cases: � � � and � ��� .

When � � � , it is possible to disseminate A0KQ( � * with the following five complete calls: ( � �
� * ��(D.�� � * �
( � ��� * � (D.���� * � (%�7� � * . Thus, in � translocations, it is possible to solve A�K>( � * that is not a maximal � -square
instance.

Now suppose � ��� . In that case, we first perform on A�K%( � * � � � fusions over � � � copies of + �-, . Let
us denote by A K K the resulting instance, that is A K K�� ��+ �-,>��+ �-,Q�!+ � � � ,Q�!+ �-,���� � � � ���!+ �-,���� � � � �#� . As A K ( � * is
nothing else that the � -reduction of A0K K for � � + � � ��, , we can deduce from the sequence of translocations
described above to solve A0KQ( � * a sequence of � translocations that can be applied to A�K K . Hence, after these �
mutations ( � � � fusions and � translocations) one has an instance ��+ � � ��,Q��� � �J�5����� � � � ����� � �E.#����� �1��� ,
that can be transformed into �1? by � � � fissions on the subset ��.�� �0/�/�/ � � �7� producing the � �
� subsets
��.������ � � /�/�/ � � ��� � . Altogether, we used

� � � � mutations, and thus A�K is not maximal, which implies,
by monotonicity (Proposition 3) that A is not a maximal � -square instance. �

Lemma 4 Let � ��� and A � ��A � � /�/�/ �DA�?-� be an � -square instance. If there exists 8�� � 
 + �-, ( 8 �� � ) such
that

� A�6 � � � � � and
� A � � � � � � , then A is not a maximal � -square instance.

Proof: Thanks to Lemma 2, we know that if there exists an � such that � �
 A 6 and � �
 A � , then A
is not maximal. Now let us focus on the remaining cases, that corresponds to instances dominated by
AMK>( � * , where A K>( � * is composed of � � � copies of + �-, , one copy of + � � � , and two copies of + �-,�����.�� � � .
Following the same method as in proof of Lemma 3, we can notice that: the sequence of � complete
calls ( �7� ��* ��(%�7� � * �!(D.�� � * ��( � ��� * �!( � ��� * ��( � � ��* ��(�.�� � * disseminates A K>( ��* ; if we first perform on A K>( � * ��� �
fusions over � ��� copies of + �-, , followed by the � translocations induced by the calls described above to
disseminate A K>( ��* (they lead to the instance ��+ � � ��,Q��� � � �7����� � � �5����� � � � ����� � � .������ �1�#� ) and � � �
fissions to transform + � � ��, into ��.#����� � � /�/�/ � � � ��� , we can solve A0K>( � * with ( � � ��* 	�� 	E( � � ��*�� � � � �
mutations. Hence, by monotonicity, A is not a maximal � -square instance. �

Altogether, the four previous lemmas (Lemmas 1 to 4) lead to the following proposition.

Proposition 5 Let � ��� , �2( � * � ��� ��� /�/�/ ��� ? � be the � -square instance defined by � 6 � + �-,�����8��
for 8 � .�� /�/�/ � � , and 	 ( � *B� �
	 � � /�/�/ ��	@?�� be the � -square instance defined by 	M6 � + �-,����!8�� for 8 �
.�� /�/�/ � � � � , 	@?�� �<� + �-,���� � � .�� �1� and 	@? � + �-, . Then every maximal � -square instance dominates
�2( � * or 	 ( � * .

4 Sufficient conditions for maximal square instances

In the previous section we proved that every maximal instance has an equivalent instance that dominates
either �2( � * or 	 ( � * (or both). Here we prove that these two instances are maximal � -square instances
(Proposition 6). We first restrict our study to the case of translocations (Lemmas 5 and 6 below). In
Lemma 7 we show that this restriction is sufficient.

Lemma 5 If � � � , every sequence of translocations solving �E( � * has length at least
� �
� � .

Proof: First we consider the gossiping problem. Let � � � ��� /�/�/ ����
 be a sequence of complete calls
disseminating exactly an instance A � ��A ��� /�/�/ ��A ? � that dominates �E( � * and is such that there is at least
one subset A 6 of size exactly � � . (say A 6 � + �-,���� � � where � can be equal to 8 ). We can consider that the
calls of � are complete because replacing an incomplete call by the complete call involving the same two
people does not prevent the dissemination of A . For every 8

 + �-, , we define the final call for 8 as the least
call � 
 involving the person 8 and such that this person knows A16 after the call � 
 .
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The facts that A	6 � + �-,���� �7� and that � disseminates exactly A imply that there is a subsequence
��6���� /�/�/ ����6������ of � such that ��6��	��� is the final call for 8 , for every 	 
 + �
� ��, there is a person involved in
both the calls ��6�
 and ��6�

� � , and for 	 
 + � � ��, none of the two people involved in the call �!6�
 knows the
information � before the call. But by definition of �2( � * , exactly � � . people should know the information
� at the end of the calls � and such a dissemination of the information � needs at least � � � calls such that
one person involved in this call knows this information before the call. As none of these calls can belong
to � 6 ��� /�/�/ ��� 6 ����� , we have

� � � � � � .
Altogether with Proposition 4, this implies that every instance A dominating �2( � * and not composed

of � copies of + �-, , can not be solved by translocations only with less than
� � ��� steps. Otherwise, if A

contains � copies of + �-, , by monotonicity (Proposition 3) and the value of the syntenic diameter (Theorem
1), one needs at least

� �
� � mutations to solve A , which concludes the proof. �

Lemma 6 If � � � , every sequence of translocations solving 	 ( � * has length at least
� �
� � .

Proof: Here again we consider a sequence of complete calls � � � ��� /�/�/ ����
 that disseminates an instance
A dominating 	 ( � * . It follows from the proof of Lemma 5 that if there exists 8 such that

� A 6 � � � � .
(the person 8 knows exactly � � . pieces of information after the calls of � ), then

� � � � � � . Hence
the only instance A dominating 	 ( � * that could be solved in less than

� � ��� translocations is such that
A�? � + �-,����!�����!� for some ������
 + �-, , and A�6 � + �-, for 8 � .�� /�/�/ � � � . .

We now consider such an instance A and we say that a call is an �!������� -call if the information pieces
� and � are known, after the call, by the two people involved in this call, while it was not the case before
the call. Similarly to the proof of Lemma 5, we can notice that in order that � knows exactly + �-,����!�������
after all the calls, � should contain a subsequence �BK of at least � � � calls involving people who do not
know either � or � at the time of the call (these calls are all non �!������� -calls). Moreover, as the � � . people
other than � should know the information pieces � and � after the calls of � (which can be done for people
� and � in one complete call (%����� * ), � should contain a subsequence � K K of at least � � � �!�����!� -calls (so
� K�� � K K ��� ). Hence, if the first call involving � or � is not (������ * (that is do not belong either to � K or �RK K ),� � � � �
� . Otherwise the first call involving people � and � is (������ * , which leads to

� � � � � � and the
fact that all the �!������� -calls are such that exactly one of the people involved knows the information pieces
� and � before the call. Now let us consider such a sequence of

� � ��� calls disseminating A . The � � �

�!������� -calls of this sequence can be partitioned into three different kinds of calls:

� � / calls that are final for none of the two involved people ;

� � / calls such that one person knows + �-, before the call, but not the second person ;

� " / calls such that none of the two people knows + �-, before the call, but both do after the call.

We now define a mapping from � � to �M" as follows: every call of �0" , say (�8�� � * , where 8 knows the
information � and � before the call (but not � by definition of �!������� -calls) is mapped to a call of � �
involving the person 8 and such that 8 does not know the information pieces � and � before this call but does
after the call. This mapping is well defined because if 8 knows � and � before a call, it learned it during
another call that was not final for him, that is a call from � � . It is an injective mapping due to the fact that
if the call (�8�� � * belongs to � " , it is the only one of � " involving one of these two people. Hence we have�
� � � � � � " � , which implies that

�
� � � 	 � � � � 	 � � " � � � � � � 	 � � � " � . But, as exactly �
� . persons want to

know the complete information + �-, at the end of the calls, we have that � � . � � � � � 	 � � � " � . This leads
to a contradiction with the fact that the total number of �!�����!� -calls is � � � , which, altogether with the
equivalence between calls and translocations, concludes the proof. �

Lemma 7 If � � � , no optimal sequence that contains at least a fission or a fusion can solve �E( � * or
	 ( � * in less than

� �
� � mutations.

Proof: We reason by induction on � . First, we can verify that the property holds when � � � : one can not
solve �2(�� * or 	 (�� * with only one fusion or one fission.

Now suppose that ��� � . It follows from the monotonicity property (Proposition 3) and from the
fact that �2( � * or 	 ( � * are square instances, that, if there is an optimal sequence of mutations solving one
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of these two instances and containing at least one fusion, then there is an optimal sequence of mutations� � � � � /�/�/ � � 
 solving the same instance and where � � is a fusion and � 
 is a fission.
Let us denote by A the starting instance (that is �2( � * or 	 ( � * ), by 3 � �!3 � � /�/�/ ��35?�� � � the instance

resulting from the the fusion � � applied to A , and by = � ��= � � /�/�/ �Q=@? � � � the instance resulting from the
action of the sequence of mutations � � � /�/�/ � � 
 � � applied to 3 . The fact that the mutation � 
 is a fission
implies that the instance = is a set partition of + �-, into � � � sets of size . and one set of size

�
. Let

= 6 � �!������� be the set of size
�

(with � � � ).
Suppose that the instance 3 ����� ���

(an � -reduction of 3 , where � � �������!� ) is an ( � � . * -square instance
that dominates �2( � � . * or 	 ( � � . * . By definition of 3 and = , the sequence of mutations � ��� /�/�/ � � 
 � �
induces a sequence of

�
� � mutations solving 3 ����� ���

, and also �2( � � . * or 	 ( � � . * (by monotonicity,
Proposition 3). Now, if � � is a fusion, by induction we have

�
� � � � � � � . Otherwise, the mutations� � � /�/�/ � � 
 � � are translocations and Lemmas 5 and 6 imply that

�
� � � � � � � . Both cases lead to� � � � � � .

To conclude the proof, we then have to show that 3 ����� ���
is an ( � � . * -square instance that dominates

�2( � � . * or 	 ( � � . * . It can be easily deduced from the fact that 3 is (up to a permutation of its subsets)
one of the four instances 	 , 
 , � and � on + �-, defined respectively by:

• 	E6 � + �-,�����8�� for 8 � .�� /�/�/ � � � � , and 	E? � � � + �-, ,
• 
 6 � + �-,�����8�� for 8 � .�� /�/�/ � � � � , and 
 ?�� � � 
 ?�� � � + �-, ,
• � 6 � + �-,�����8�� for 8 � .�� /�/�/ � �
� � , � ?�� � � + �-,���� � � � � �
� .#� and � ?�� � � + �-, ,
• � 6 � + �-,����!8�� for 8 � .�� /�/�/ � � � � , � ?���" � + �-,���� � � �7� �
� � � , and � ? � � � � ?�� � � + �-, ,

and from a (tedious but easy) study of the different values that � and � can have, that 3 ����� ���
is an ( � � . * -

square instance that dominates at least one of the instances �E( � � . * or 	 ( � � . * (as before we consider
such instances up to a permutation of their subsets). �

Proposition 6 If � ��� , then �2( � * and 	 ( � * are maximal � -square instances.

Proof: This is an immediate consequence of Lemmas 5, 6 and 7. �

5 Characterization of maximal instances

We can now state our main characterization results and their algorithmic consequences. Our first result is
a characterization of maximal � -square instances for � ��� .

Theorem 2 Let � � � , �2( � *0� � � � � /�/�/ ���B?�� be the � -square instance defined by �J6 � + �-,�����8�� for 8 �
.�� /�/�/ � � , and 	 ( � * � � 	 �!� /�/�/ ��	 ? � be the � -square instance defined by 	 6 � + �-,����!8�� for 8 � .�� /�/�/ � � � � ,
	 ?�� � � + �-,���� � � .�� �1� and 	 ? � + �-, . An � -square instance is a maximal � -square instance if and only if
it dominates at least one of the � -square instances �2( � * , 	 ( � * or �������>( 	 ( � *�* .
Proof: This result follows immediately from Propositions 1, 5 and 6 and the fact that � �����Q( �2( � *�*L� �2( � * .
�

We can now extend Theorem 2 to the case of general instances, that is we consider instances composed
of � subsets of + �-, , with � �� � .

Remark 3 We can limit our study to the case � � � , and the case � � � follows by duality (Proposition
1).

The next results gives a characterization of ( � � � * -maximal instances in terms of reduced instances.

Lemma 8 An instance of the syntenic distance A � ��A � � /�/�/ �DA�4 � on + �-, , where � � � � � , is an
( � � � * -maximal instance if and only if for every subset �!������� of + �-, , A ����� ���

is an ( � � � � . * -maximal
instance.
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Proof: Suppose that A is not an ( � � � * -maximal instance: there is a sequence of less than � 	 � � �
mutations solving it such that the last mutation is a fission that splits a subset �!�����!� of + �-, (by canonicity
and the fact that � � � ). Hence there is a subset �!�����!� of + �-, such that A ����� ���

is not an ( � � � �2. * -maximal
instance. Now, suppose that there exists �������!��� + �-, such that A ����� ���

is not an ( � � � �B. * -maximal instance.
This instance can be solved by a sequence of less than � 	 � � � mutations. If we complete this sequence
by a fission of �!�����!� we solve A in less than � 	
� ��� mutations and A is not an ( � � � * -maximal instance.
�

We now generalize the notion of reduction of an instance for the syntenic distance. Let A be an instance
composed of � subsets of + �-, ( � � � ), � � ����� /�/�/ �%� 4 be a set partition of + �-, into � non-empty subsets
(the ��K6�� ) and ����� /�/�/ ��� 4 be the only sequence of instances defined by ��� � A and � 6
	 � � (�� 6 *���
 (the
� 6 -reduction of � 6 ) for 8 � N � /�/�/ � � � . . The � -reduction of A , denoted by A�� , is defined as the � -square
instance A � � � 4 .

Lemma 9 An instance of the syntenic distance A � ��A ��� /�/�/ �DA 4 � on + �-, , where � ��� � � , is an ( � � � * -
maximal instance if and only if for every set partition � � � ��� /�/�/ ��� 4 of + �-, into � non-empty subsets,
A � is an � -square maximal instance.

Proof: First it is clear that if, for a set partition � � ����� /�/�/ �%� 4 of + �-, , A � can be solved with less than� � ��� mutations, then by adding to these mutations a sequence of � ��� fissions one can define a sequence
of less than � 	 � � � mutations solving A .

So we just have to concentrate on the case where for every set partition � , A � is an � -square maximal
instance, and prove that in this case A is maximal. If � � � � . , it follows immediately from Lemma 8.
Otherwise, suppose that � � � � . and that A is not an ( � � � * -maximal instance. From Lemma 8 one can
say that there is �!��������� + �-, (with � � � ) such that A ����� ���

(denoted by 3 ) is not an ( � � � � . * -maximal
instance. Hence by induction, we know that there is a set partition � of + � � .�, into � non-empty sets such
that 3�� is not an � -square maximal instance. We now define a set partition � of + �-, as follows: every
element � of � greater than or equal to � is replaced by � 	 . and � is added to the set containing � . It
is immediate to verify that every sequence of 	 mutations solving 3 � induces a sequence of 	 mutations
solving A � , which is not an � -square maximal instance. �

Thus, if we want a characterization of ( � � � * -maximal instances that will be easier to translate in a
decision algorithm, one just has to find which instances can not be reduced to a non � -square maximal
instance. Such instances are described in the following result.

Theorem 3 Let � � � � � , �@( � � � *@� ��� � � /�/�/ ���74 � and ')( � � � *@� ��' � � /�/�/ �D'B4 � be the instances on
+ �-, defined by: �76 � + �-,����!8�� for 8 � .�� /�/�/ � � � � and �74�� ��� �74 � + �-,���� � � .�� , and 'B6 � + �-,����!8�� for
8 � .�� /�/�/ � � � . and ' 4 � + �-,���� � � ��	 .#� . An instance A � ��A ��� /�/�/ �DA 4 � on + �-, is an ( � � � * -maximal
instance if and only if it dominates at least one of the two instances �@( � � � * and ' ( � � � * .
Proof: Let us consider an instance A that does not dominate one of the two instances �@( � � � * and ')( � � � * .
It follows easily from the definition of these two instances that one subset �!����������� included in + �-, such that
for every set partition � � � � � /�/�/ ����4 of + �-, , where � �B� �����@� �J� ���!� and ��" � ����� , the instance A �
would violate of least one of the necessary conditions (for a square instance to be maximal) described in
Lemmas 1, 2, 3 or 4 For instance, if A contains a subset A 6 of size less or equal than � � � , one just needs
to take for ��������� three elements that do not belong to A 6 .

Hence, by Lemma 9, we just need to verify that every instance A taken that dominates �@( � � � * and
')( � � � * is an ( � � � * -maximal instance. This point can be shown by induction on � �
� . If � �
� � . ,
for every subset �������!� of + �-, , it is immediate to verify that A ����� ���

dominates one of the instances �2( � * or
	 ( � * defined in Theorem 2, which, altogether with Lemma 8 implies that A is an ( � � � * -maximal instance.
If ��� � � . , suppose that A is not an ( � � � * -maximal instance. By Lemma 8, there exists a subset �!�������
of + �-, such that A ����� ���

is not an ( � � � � . * -maximal instance. By induction, it implies that A � � � � �
does not

dominate one of the instances �@( � � � � . * and ')( � � � � . * . This leads to a contradiction with the fact
that A ����� ���

is a reduction of an instance that dominates one the two instances � ( � � � * and ')( � � � * . �

Remark 4 Theorems 2 and 3 give a characterization of maximal instances ( � � � � �!* for the syntenic dis-
tance with � ��� (where � is the size of � � ). However, the syntenic diameter is know to be equal to

� � � �
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for any � � � , thus the cases � � � and � � � also need to be considered. This work has been done using
a computer program based on Liben-Nowell’s algorithm [11], and is described in the Appendix A.

Remark 5 Our results (Theorems 2 and 3, and Appendix A) relate the maximality of an instance of the
syntenic distance in terms of domination of this instance over a small number of simple instances. It
implies immediately that for � � � � � and A � ��A ��� /�/�/ �DA 4 � an instance of synteny, one can decide in
time polynomial in ��	�� whether A is a ( � � � * -maximal instance.

6 Conclusion

In this paper, we answered two open questions from Kleinberg and Liben-Nowell [8] about the syntenic
distance - we described a characterization of square maximal instances that induces a polynomial time
algorithm deciding whether a square instance is maximal - and we extended our results to the bidimensional
case.

An interesting point is the usefulness of the relationship between translocations and calls in the gossip-
ing problem. This fact is central in the proofs of our results.

Thanks to our study, it is also possible to confirm the fact that maximal square instances can be solved
by translocations only (that is, fusions and fissions do not necessarily help for instances that are at distance
equal to the diameter). This extends a similar result in the case of the � -square instance containing �
copies of + �-, due to [8]. However, it has been pointed out in [11] that for some instances, fusions and
fissions are necessary in order to get the minimum distance between two genomes. Hence, among several
open problems, we would like to point out the following one: is it possible to characterize those instances
that can be solved by translocations only ?
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Appendix A: solving the small square and bidimensional cases.

Square Instances. Theorem 2 gives a characterization of � -square instances with � � � . However, the
syntenic diameter is known to be equal to

� � � � for any � � � , thus the cases � � � and � � � also need
to be considered. This is the purpose of Propositions 7 and 8 below. Before proving those propositions, we
need to introduce the following three notations for small instances of the syntenic distance:

� ( � * � ����.�� � ���5������.�� � ���7������.�� � ���5������.�� �5��� ( � � � ), ')( � * � ����.�� � ���5������.�� � ���5������.#� � � �7�����!�5� �7�#�
( � � � ), �M( � *@� ��+ ��,>��+ ��,>����.�� � ��� � � ������.�� � ���5�������5� ��� ���#� ( � � � ).
Proposition 7 A � -square instance on + �-, is a maximal � -square instance if and only if it dominates at
least one of the five � -square instances �2( � * , �@( � * , � �����Q( �@( � *�* or ')( � * .
Proof: Let � ( � *2� ��+ ��,Q�!+ ��,Q����.�� � �������7� � ��� and �M( � *E� ����.�� � ���7������.�� � ���7������.#� � ���7����� �5��� . Lemma 2
applies when � � � , thus, due to the equivalence and monotonicity properties, any � -square instance not
dominated by one of the seven following instances is not maximal: �2( � * , �@( � * , � � ���>( �@( � *�* , ')( � * , � ( � * ,
� � ���>(�� ( � *�* and � ( � * . We are now going to prove that 3 operations are sufficient to solve � ( � * (and conse-
quently, �������Q(�� ( � *�* by Proposition 1) and �M( � * . Indeed, 3 translocations are enough to solve � ( � * : con-
sider the gossiping problem corresponding to � ( � * , and make the three following calls: (�.�� � *�� (D.���� *�� ( � ��� * .
The same occurs to � ( � * by making the three following calls: (�.�� � *�� (�� � � *�� ( � � � * . Hence the four remain-
ing candidates are �E( � * , � ( � * , �������>( �@( � *�* and ')( � * . By an exhaustive computer search done by a program
based on Liben-Nowell’s algorithm (see Appendix B and [11]) we get that � mutations are not sufficient to
solve �2( � * , �@( � * or ')( � * . Hence the result. �

Proposition 8 A � -square instance is a maximal � -square instance if and only if it dominates at least one
of the five � -square instances �2( � * , 	 ( � * , �������:( 	 ( � *D* , �L( � * or �������:(��M( � *�* .
Proof: Lemmas 1, 2, 3 and 4 apply when � � � , thus any � -square instance not dominated by one of
the five above mentioned instances is not maximal. Since Lemmas 5, 6 and 7 apply for � � � , we only
need to prove that �L( � * and � �����Q(��L( � *�* are maximal. By Proposition 1, we know that proving that �L( � * is
maximal is sufficient. By an exhaustive computer search (see Appendix B), we get that � mutations are not
sufficient to solve �L( � * . �

Bidimensional Instances. Theorem 3 gives a characterization of ( � � � * -instances with � � � . However,
the syntenic diameter is known to be equal to � 	 � � � for any � � � � � , thus the remaining cases
also need to be considered. When the constraint � � � � � of Theorem 3 is not satisfied, we have two
subcases: (1) � � � and � � � and (2) � � � and � � � . Those cases will be considered in this order in
Propositions 9 and 10.

In the case where � � � , we need some notations. Indeed, we introduce the instances �<KQ( ��� � * ,
� ( � � � * , 
 ( � � � * and � ( � � � * ( � � � ), which are described in Figure 1. The figure represents different
binary matrices with 4 rows, from which every instance � K>( ��� � * , � ( � � � * , 
F( � � � * and � ( ��� � * will be
built. Take for example � K ( ��� � * : if an element �	��
D+ 8%,:+ �#, in row 8 and column � of matrix ����
 is equal to
1, then the element � is present in �JK 6 . If �
� 
 + 8Q,>+ ��, is equal to 0, then � is not present in �JK 6 . The label “(1)”
(resp. “(0)”) means that all the elements in this part of the matrix are equal to 1 (resp. 0). We consider that
there are a certain number 	�6 ( . � 8 � � ) copies of columns with a zero in he 8 -th row, where each 	56 can
be as big as �
�
� . Now, any ( � � � * -instance �JK>( � � � * is built from the matrix �	� 
 of Figure 1 as follows:
take the four leftmost columns of ��� 
 , and pick any � � � columns from the rest of the matrix. Instances
� ( � � � * , 
F( � � � * and � ( � � � * are built from the matrices given in the figure using a similar construction.

Proposition 9 For any � � � , a ( ��� � * -instance is a maximal ( ��� � * -instance if and only if it dominates at
least one of the four ( ��� � * -instances �JK>( ��� � * , �M( � � � * , 
 ( � � � * or � ( � � � * .
Proof: It is only a time-consuming exercise to see that the above mentioned instances are the only instances
for which any � -reduction leading to a 4-square instance gives one of the 4-square instances listed in
Proposition 7. �
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Figure 1: Matrices from which the ( ��� � * -instances �JKQ( ��� � * , � ( � � � * , 
 ( � � � * and � ( � � � * are built

In the case where � � � , we introduce a few more notations. They are the following: let � � � ,
�@( �5� � *L� ��� ��� /�/�/ ������� and � ( �5� � *M� � � ��� /�/�/ � ����� be the instances on + �-, defined by: � 6 � + �-,�����8�� for
8 � .�� /�/�/ ��� and � 4�� � � � 4 � + �-,���� �7� , and � � � � � � + �-,���� �5� , � " � � $ � + �-,���� � � and ��� � + �-,��
�!�7� .

Moreover, we also introduce the instances � K K ( �5� � * , 	 K K ( �7� � * and �M( �5� � * , which can be constructed
from the binary matrices displayed in Figure 2. The representation is similar to the one of Figure 1, but the
way to build the corresponding instance is slightly different. For example, take �L( �7� � * : any ( �5� � * -instance
�L( �7� � * is built from the matrix ��� of Figure 2 as follows:

• if � � . N , take the five leftmost columns of ��� , and pick any � ��� columns among columns 6 to
10.

• if � � . N , take the ten leftmost columns of ��� , and pick any � � . N columns among the remaining
columns.
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Figure 2: Matrices from which the ( �7� � * -instances �JK K>( �7� � * , 	 K K%( �5� � * and �L( �5� � * are built

Proposition 10 For any � � � , a ( �7� � * -instance is a maximal ( �7� � * -instance if and only if it dominates
at least one of the five ( �5� � * -instances � K K>( �7� � * , 	 K KQ( �7� � * , � ( �5� � * , �L( �5� � * or � ( �5� � * .
Proof: It is only a time-consuming exercise to see that the above mentioned instances are the only in-
stances for which any � -reduction leading to a 5-square instance gives one the 5-square instances listed in
Proposition 8. �

bidim4n.eps
bidim5n.eps
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Appendix B: a C program for solving square instances.

// Computing the syntenic distance for square instances
// From David Liben-Nowell, Journal of Algorithms 43(2), p 264-283, 2002

#include<stdlib.h>

// Maximal number of genes of an instance
#define P_MAX 100

// An instance S is an array of booleans: S[i][j] = 1 if j is the ith
// chromosome of S.
static int **S1; // Instance processed by the program
static int M[4*P_MAX]; // A sequence of calls in the gossiping model
static int Distance; // Final result: the syntenic distance
static int N; // Size of the input

// -------------------------------------------------------------------------
// Simulation of a sequence of d/2 calls in the incomplete gossiping
// problem: S2 is the working instance.

static int S2[P_MAX][P_MAX];
static void simulate_calls(int d) {
int i, j, res;

// Building the final information to be known after the calls
for ( i = 0; i < N; i++ ) {

for ( j = 0; j < N; j++ )
S2[i][j] = 0;

S2[i][N-i-1] = 1;
}

// Simulation of the sequence of calls
for ( i = 0; i < d/2; i++ )

// One exchanges informaion of M[2i-1] and M[2i]
for ( j = 0; j < N; j++ )

if ( S2[M[2*(i+1)-1]-1][j] + S2[M[2*(i+1)]-1][j] == 1 )
S2[M[2*(i+1)]-1][j] = S2[M[2*(i+1)-1]-1][j] = 1;

// One checks the validity of the sequence of calls with respect to S1
res = 1;
for ( i = 0; i < N; i++ )

for ( j = 0; j < N; j++ )
if ( S1[i][j] > S2[i][j] )
res = 0;

// Updating the minimal distance
if ( (res == 1) && (d/2 <= Distance) )

Distance = d/2;
}

// -------------------------------------------------------------------------
// Exhaustive generation and simulation of all the possible calls sequences.
// Every sequence is a word M of length d at most 2(2DistanceMax-4)
// over the alphabet {0..N-1} such that for every d >= i >= 1,
// M[2i-1]!= M[2i].
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static void gossiping() {
int i, j, res;

simulate_calls(0);
M[0] = 0;
i = 1;
j = 1;
while ( i > 0 ) {

if ( i == (2*Distance)+1 )
j = M[--i]+1;

else if ( j >= N+1 )
j = M[--i]+1;

else if ( (i % 2 == 0) && (M[i-1] == j) )
j++;

else {
M[i++] = j;
if ( i % 2 == 1 )
simulate_calls(i-1);

j = 1;
}

}
}

// -------------------------------------------------------------------------
// Exhaustive generation of all the permutations of the starting instance.
// We use the CAT implementation of the Eades-McKay’s algorithm for the
// generation of permutations of a multiset.
// Programmer: Frank Ruskey, 1995.
// Programmer: Joe Sawada, 1997 (translation in C).
// http://www.theory.csc.uvic.ca/˜cos/inf/mult/Multiset.html
// For every permutation, we try to solve it with the gossiping procedure.

int A[100], Num[20], Sum[20], Off[20];
int Dir[20];

static void neg(int t, int n, int k);
static void gen(int t, int n, int k);

static void BigGen(int t) {
if ( Dir[t] )

gen(t, Sum[t-1], Sum[t]);
else

neg(t, Sum[t-1], Sum[t]);

if ( t > 1 )
BigGen(t-1);

Dir[t] = (Dir[t] + 1) % 2;
if ( Dir[t] )

Off[t] = Off[t-1] + Num[t-1];
else

Off[t] = Off[t-1];
}
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static void swap(int t, int x, int y) {
int b, temp1, *temp2, i, j;

if ( t > 1 )
BigGen(t-1);

b = Off[t-1];
temp1 = A[x+b]; temp2 = S1[x+b-1];
A[x+b] = A[y+b]; S1[x+b-1] = S1[y+b-1];
A[y+b] = temp1; S1[y+b-1] = temp2;

gossiping();
}

static void gen(int t, int n, int k) {
int i;

if ( ( 1 < k ) && ( k < n ) ) {
gen( t, n-2, k-2 ); swap( t, n-1, k-1 );
neg( t, n-2, k-1 ); swap( t, n, n-1 );
gen( t, n-1, k );

}
else if ( k == 1 )

for ( i = n-1; i >= 1; i-- )
swap(t,i,i+1);

}

static void neg(int t, int n, int k) {
int i;

if ( ( 1 < k ) && ( k < n ) ) {
neg( t, n-1, k ); swap( t, n, n-1 );
gen( t, n-2, k-1 ); swap( t, n-1, k-1 );
neg( t, n-2, k-2 );

}
else if ( k == 1 )

for ( i = 1; i <= n-1; i++)
swap(t,i,i+1);

}

// -------------------------------------------------------------------------
// Main procedure
int main(int argc, char *argv[]) {
int i, j, k, l, t;

N = atoi(argv[1]); // Size of the square instance
t = atoi(argv[2]); // Number of different subsets of [N]
j = 3; // first argument describing the instance S1
l = 0;
Distance = (2*N)-4;

// Definition the instance S1
S1 = (int **) malloc(N * sizeof(int *));
for ( i = 0; i < N; i++ )

S1[i] = (int *) calloc(N, sizeof(int));
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// Reading the instance S1
for ( i = 0; i <= t; i++ ) {

Num[i] = atoi(argv[j++]);
Dir[i] = 1;
while ( atoi(argv[j]) != 0 )

S1[l][atoi(argv[j++])-1] = 1;
j++;
l++;
for ( k = 0; k < Num[i]-1; k++ )

S1[l] = S1[(l++)-1];
}

Off[0] = 0;
for( i = 1; i <= t; i++ )

Off[i] = Off[i-1] + Num[i-1];
Dir[t+1] = 1;
Sum[t] = Num[t];
for( i = t-1; i >= 0; i-- )

Sum[i] = Sum[i+1] + Num[i];

// Solving the instance S1
gossiping();
BigGen(t);
printf("Distance : %d\n", Distance);

}
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