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Abstract 

The independent component analysis (ICA) of a random vector consists of searching for a linear transformation that 
minimizes the statistical dependence between its components. In order to define suitable search criteria, the expansion of 
mutual information is utilized as a function of cumulants of increasing orders. An efficient algorithm is proposed, which 
allows the computation of the ICA of a data matrix within a polynomial time. The concept of lCA may actually be seen as 
an extension of the principal component analysis (PCA), which can only impose independence up to the second order 
and, consequently, defines directions that are orthogonal. Potential applications of ICA include data analysis and 
compression, Bayesian detection, localization of sources, and blind identification and deconvolution. 

Zusammenfassung 

Die Analyse unabhfingiger Komponenten (ICA) eines Vektors beruht auf der Suche nach einer linearen Transforma- 
tion, die die statistische Abh~ingigkeit zwischen den Komponenten minimiert. Zur Definition geeigneter Such-Kriterien 
wird die Entwicklung gemeinsamer Information als Funktion von Kumulanten steigender Ordnung genutzt. Es wird ein 
effizienter Algorithmus vorgeschlagen, der die Berechnung der ICA ffir Datenmatrizen innerhalb einer polynomischen 
Zeit erlaubt. Das Konzept der ICA kann eigentlich als Erweiterung der 'Principal Component Analysis' (PCA) betrachtet 
werden, die nur die Unabh~ingigkeit bis zur zweiten Ordnung erzwingen kann und deshalb Richtungen definiert, die 
orthogonal sind. Potentielle Anwendungen der ICA beinhalten Daten-Analyse und Kompression, Bayes-Detektion, 
Quellenlokalisierung und blinde Identifikation und Entfaltung. 

R~sum~ 

L'Analyse en Composantes Ind6pendantes (ICA) d'un vecteur al6atoire consiste en la recherche d'une transformation 
lin6aire qui minimise la d6pendance statistique entre ses composantes. Afin de d6finir des crit6res d'optimisation 
appropribs, on utilise un d6veloppement en s6rie de l'information mutuelle en fonction de cumulants d'ordre croissant. 
On propose ensuite un algorithme pratique permettant le calcul de I'ICA d'une matrice de donn6es en un temps 
polynomial. Le concept d'ICA peut 6tre vu en r~alitb comme une extension de l'Analyse en Composantes Principales 
(PCA) qui, elle, ne peut imposer l'ind6pendance qu'au second ordre et d6finit par cons6quent des directions orthogonales. 
Les applications potentielles de I'ICA incluent l'analyse et la compression de donn6es, la d&ection bayesienne, la 
localisation de sources, et l'identification et la d6convolution aveugles. 
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1. Introduction 

1.1. Problem description 

This paper attempts to provide a precise defini- 
tion of ICA within an applicable mathematical  
framework. It is envisaged that this definition will 
provide a baseline for further development and 
application of the ICA concept. Assume the follow- 
ing linear statistical model: 

y = M x  + v, (1.1a) 

where x , y  and v are random vectors with values in 
or C and with zero mean and finite covariance, 

M is a rectangular matrix with at most as many 
columns as rows, and vector x has statistically 
independent components. The problem set by ICA 
may be summarized as follows. Given T realiz- 
ations of y, it is desired to estimate both matrix 
M and the corresponding realizations of x. How- 
ever, because of the presence of the noise v, it is in 
general impossible to recover exactly x. Since the 
noise v is assumed here to have an unknown distri- 
bution, it can only be treated as a nuisance, and the 
ICA cannot be devised for the noisy model above, 
Instead, it will be assumed that 

y = Fz, (1.1b) 

where z is a random vector whose components are 
maximizing a 'contrast '  function. This terminology 
is consistent with [31], where Gassiat introduced 
contrast functions in the scalar case for purposes of 
blind deconvolution. As defined subsequently, the 
contrast of a vector z is maximum when its compo- 
nents are statistically independent. The qualifiers 
'blind' or 'myopic '  are often used when only the 
outputs of the system considered are observed; in 
this framework, we are thus dealing with the prob- 
lem of blind identification of a linear static system. 

1.2. Organization o f  the paper 

In this section, related works, possible applica- 
tions and preliminary observations regarding the 
problem statement are surveyed. In Section 2, gen- 
eral results on statistical independence are stated, 
and are then utilized in Section 3 to derive optim- 
ization criteria. The properties of these criteria are 
also investigated in Section 3. Section 4 is dedicated 
to the design of a practical algorithm, delivering 
a solution within a number of steps that is a poly- 
nomial function of the dimension of vector y. Simu- 
lation results are then presented in Section 5. For 
the sake of clarity, most proofs as well as a dis- 
cussion about  complex data have been deferred to 
the appendix at the end of the paper. 

1.3. Related works 

The calculation of ICA was discussed in several 
recent papers [8, 16, 30, 36, 37, 61], where the 
problem was given various names. For instance, the 
terminology 'sources separation problem' has often 
been coined. Investigations reveal that the problem 
of 'independent component  analysis' was actually 
first proposed and so named by Herault and Jutten 
around 1986 because of its similarities with princi- 
pal component  analysis (PCA). This terminology is 
retained in the paper. 

Herault  and Jutten seem to be the first (around 
1983) to have addressed the problem of ICA. Sev- 
eral papers by these authors propose an iterative 
real-time algorithm based on a neuro-mimetic 
architecture. The authors deserve merit in their 
achievement of an algorithmic solution when no 
theoretical explanation was available at that time. 
Nevertheless, their solution can show lack of con- 
vergence in a number of cases. Refer to [37] and 
other papers in the same issue, and to [27]. In their 
framework, high-order statistics were not introduc- 
ed explicitly. It is less well known that Bar-Ness [2] 
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independently proposed another approach at the 
same time that presented rather similar qualities 
and drawbacks. 

Giannakis et al. [35] addressed the issue of 
identifiability of ICA in 1987 in a somewhat differ- 
ent framework, using third-order cumulants. How- 
ever, the resulting algorithm required an exhaustive 
search. Lacoume and Ruiz [42] also sketched 
a mathematical approach to the problem using 
high-order statistics; in [29, 30], Gaeta and 
Lacoume proposed to estimate the mixing matrix 
M by maximum likelihood approach, where an 
exhaustive search was also necessary to determine 
the absolute maximum of an objective function of 
many variables. Thus, from a practical point of 
view, this was realistic only in the two-dimensional 
case. 

Cardoso focused on the algebraic properties of 
the fourth-order cumulants, and interpreted them 
as linear operators acting on matrices. A simple 
case is the action on the identity yielding a cumu- 
lant matrix whose diagonalization gives an esti- 
mate of ICA [8]. When the action is defined on 
a set of matrices, one obtains several cumulant 
matrices whose joint diagonalization provides more 
robust estimates [55]. This is equivalent to opti- 
mizing a cumulant-based criterion [55], and is then 
similar in spirit to the approach presented herein. 
Other algebraic approaches, using only fourth-or- 
der cumulants, have also been investigated [9, 10]. 

In [36], Inouye proposed a solution for the sep- 
aration of two sources, whereas at the same time 
Comon [13] proposed another solution for N 7> 2. 
Together with Cardoso's solution, these were 
among the first direct (within polynomial time) 
solutions to the ICA problem. In [61], Inouye and 
his colleagues derived identifiability conditions for 
the ICA problem. Their Theorem 2 may be seen to 
have connections to earlier works [19]. On the 
other hand, our Theorem 11 (also presented in [15, 
16]) only requires pairwise independence, which is 
generally weaker than the conditions required by 
[61]. 

In [24], Fety addressed the problem of identify- 
ing the dynamic model of the form y(t) = Fz(t), 
where t is a time index. In general, the identification 
of these models can be completed with the help of 
second-order moments only, and will be called the 

signal separation problem. In some cases, identifia- 
bility conditions are not fulfilled, e.g. when pro- 
cesses z,(t) have spectra proportional to each other, 
so that the signal separation problem degenerates 
into the ICA problem, where the time coherency is 
ignored. Independently, the signal separation prob- 
lem has also been addressed more recently by Tong 
et al. [60]. 

This paper is an extended version of the confer- 
ence paper presented at the Chamrousse workshop 
in July 1991 [16]. Although most of the results were 
already tackled in [16], the proofs were very 
shortened, or not stated at all, for reasons of space. 
They are now detailed here, within the same frame- 
work. Furthermore, some new results are stated, 
and complementary simulations are presented. 

Among other things, it is sought to give sound 
justification to the choice of the objective function 
to be maximized. The results obtained turn out to 
be consistent with what was heuristically proposed 
in [42]. Independently of [29, 30], the author pro- 
posed to approximate the probability density by its 
Edgeworth expansion [16], which has advantages 
over Gram-Charlier's expansion. Contrary to [29, 
30], the hypothesis that odd cumulants vanish is not 
assumed here: Gaeta emphasized in [29] the consist- 
ency of the theoretical results obtained in both ap- 
proaches when third-order cumulants are null. 

It may be considered, however, that a key contri- 
bution of this paper consists of providing a practi- 
cal algorithm that does not require an exhaustive 
search, but can be executed within a polynomial 
time, even in the presence of non-Gaussian noise. 
The complexity aspect is of great interest when the 
dimension ofy  is large (at least greater than 2). On 
the other hand, the robustness in the presence of 
non-Gaussian noise has not apparently been pre- 
viously investigated. Various implementations of 
this algorithm are discussed in [12, 14, 15]; the 
present improved version should, however, be pre- 
ferred. A real-time version can also be implemented 
on a parallel architecture [14]. 

1.4. Applications 

Let us spend a few lines on related applications. 
If x is a vector formed of N successive time samples 
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of a white process, and if M is Toeplitz triangular, 
then model (1.1) represents nothing else but a de- 
convolution problem. The first column of M con- 
tains the successive samples of the impulse response 
of the corresponding causal filter. In the FIR case, 
M is also banded. Such blind identification and/or 
deconvolution problems have been addressed in 
various ways in [5, 21, 45, 46, 50, 52, 62, 64]. Note 
that if M is not triangular, the filter is allowed to be 
non-causal. Moreover, if M is not Toeplitz, the 
filter is allowed to be non-stationary. Thus, blind 
deconvolution may be viewed as a constrained ICA 
problem, which is not dealt with in this paper. In 
fact, in the present study, no structure for matrix 
M will be assumed, so that blind deconvolution or 
other constrained ICAs cannot be efficiently car- 
ried out with the help of the algorithm described in 
Section 4, at least in its present form. 

In antenna array processing, ICA might be utiliz- 
ed in at least two instances: firstly, the estimation of 
radiating sources from unknown arrays (necessarily 
without localization). It has already been used in 
radar experimentation for example [20]. In the 
same spirit, the use of ICA may also have some 
interesting features for jammer rejection or noise 
reduction. Secondly, ICA might be useful in a two- 
stage localization procedure, if arrays are perturbed 
or ill-calibrated. Additional experiments need, 
however, to be completed to confirm the advant- 
ages of ICA under such circumstances. On the 
other hand, the use of high-order statistics (HOS) in 
this area is of course not restricted to ICA. Regard- 
ing methods for sources localization, some refer- 
ences may be found in [8, 9, 26, 32, 47, 53, 59]. It 
can be expected that a two-stage procedure, con- 
sisting of first computing an ICA, and using the 
knowledge of the array manifold to perform a loc- 
alization in the second stage, would be more robust 
against calibration uncertainties. But this needs to 
be experimented with. 

Further, ICA can be utilized in the identification 
of multichannel ARMA processes when the input is 
not observed and, in particular, for estimating the 
first coefficient of the model [12, 15]. In general, the 
first matrix coefficient is in fact either assumed to be 
known [33, 56, 62, 63], or of known form, e.g. 
triangular [35]. Note that the authors of [35] were 
the first to worry about the estimation of the first 

coefficient of non-monic multichannel models. 
A survey paper is in preparation on this subject 
[583. 

On the other hand, ICA can be used as a data 
preprocessing tool before Bayesian detection and 
classification. In fact, by a change of coordinates, 
the density of multichannei data may be approxim- 
ated by a product of marginal densities, allowing 
a density estimation with much shorter observa- 
tions [17]. Other possible applications of ICA can 
be found in areas where PCA is of interest. The 
application to the analysis of chaos is perhaps one 
of the most exotic [25]. 

1.5. Preliminary observations 

Suppose x is a non-degenerate (i.e. non-deter- 
ministic) Gaussian random vector of dimension 
p with statistically independent components, and 
z is a vector of dimension N ~> p defined as z = Cx, 
where C is an N × p full rank matrix. Then if z has 
independent components, matrix C can easily be 
shown (see Appendix A.I) to be of the form 

C = AQA,  (1.2) 

where both A and A are real square diagonal, and 
Q is N × p  and satisfies Q*Q = I. If N = p, A is 
invertible and Q is unitary; this demonstrates that if 
both x and z have a unit covariance matrix, then 
C may be any unitary matrix. Theorem 11 shows 
that when x has at most one Gaussian component, 
this indetermination reduces to a matrix of the form 
DP, where D is a diagonal matrix with entries of 
unit modulus and P is permutation. This latter 
indetermination cannot be reduced further without 
additional assumptions. 

D E F I N I T I O N  1. The ICA of a random vectory of 
size N with finite covariance Vy is a pair {F, A} of 
matrices such that 
(a) the covariance factorizes into 

Vy = FA2F *, 

where A is diagonal real positive and F is full 
column rank p; 

(b) the observation can be written as y = Fz, where 
z is a p × 1 random vector with covariance A 2 
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and whose components are 'the most indepen- 
dent possible', in the sense of the maximization 
of a given 'contrast function' that will be sub- 
sequently defined. 

In this definition, the asterisk denotes transposi- 
tion, and complex conjugation whenever the 
quantity is complex (mainly the real case will be 
considered in this paper). The purpose of the next 
section will be to define such contrast functions. 
Since multiplying random variables by non-zero 
scalar factors or changing their order does not 
affect their statistical independence, ICA actually 
defines an equivalence class of decompositions 
rather than a single one, so that the property below 
holds. The definition of contrast functions will thus 
have to take this indeterminacy into account. 

P R O P E R T Y 2 .  l f  a pair {F, A} is an I C A  o f  a ran- 
dom vector, y, then so is the pair {F', A'} with 

F ' =  F A D P  and A ' =  P * A - 1 A P ,  

where .d is a p x p invertible diagonal real positive 

scaling matrix,  D is a p x p diagonal matrix  with 
entries o f  unit modulus and P is a p x p permutation. 
For conciseness we shall sometimes refer to the 
matrix  A = AD as the diagonal invertible 'scale' 
matrix. 

For the sake of clarity, let us also recall the 
definition of PCA below. 

D E F I N I T I O N  3. The PCA of a random vector 
y of size N with finite covariance Vy is a pair {F, A} 
of matrices such that 
(a) the covariance factorizes into 

Vy = FA2F *, 

where d is diagonal real positive and F is full 
column rank p; 

(b) F is an N x p matrix whose columns are ortho- 
gonal to each other (i.e. F * F  diagonal). 

Note that two different pairs can be PCAs of the 
same random variable y, but are also related by 
Property 2. Thus, PCA has exactly the same in- 
herent indeterminations as ICA, so that we may 
assume the same additional arbitrary constraints 

[15]. In fast, for computational purposes, it is con- 
venient to define a unique representative of these 
equivalence classes. 

D E F I N I T I O N  4. The uniqueness of ICA as well as 
of PCA requires imposing three additional con- 
straints. We have chosen to impose the following: 
(c) the columns of F have unit norm; 
(d) the entries of d are sorted in decreasing order; 
(e) the entry of largest modulus in each column of 

F is positive real. 

Each of the constraints in Definition 4 removes 
one of the degrees of freedom exhibited in Property 
2. More precisely, (c), (d) and (e) determine/1, P and 
D, respectively. With constraint (c), the matrix F de- 
fined in the PCA decomposition (Definition 3) is 
unitary. As a consequence, ICA (as well as PCA) 
defines a so-called p x 1 'source vector', z, satisfying 

y = Fz. (1.3) 

As we shall see with Theorem 1 l, the uniqueness 
of ICA requires z to have at most one Gaussian 
component. 

2. Statements related to statistical independence 

In this section, an appropriate contrast criterion 
is proposed first. Then two results are stated. It is 
proved that ICA is uniquely defined if at most one 
component of x is Gaussian, and then it is shown 
why pairwise independence is a sufficient measure 
of statistical independence in our problem. 

The results presented in this paper hold true 
either for real or complex variables. However, some 
derivations would become more complicated if de- 
rived in the complex case. Therefore, only real vari- 
ables will be considered most of the time for the 
sake of clarity, and extensions to the complex case 
will be mainly addressed only in the appendix. In 
the remaining, plain lowercase (resp. uppercase) 
letters denote, in general, scalar quantities (resp. 
tables with at least two indices, namely matrices or 
tensors), whereas boldface lowercase letters denote 
column vectors with values in ~N. 



292 P. Comon / Signal Processing 36 (1994) 287-314 

2.1. Mutual  information 

Let x be a random variable with values in EN and 
denote by px(U) its probability density function 
(pdf). Vector x has mutually independent compo- 
nents if and only if 

N 

px(u) : [ I  p~,(u~). (2.1) 
i = I  

So a natural way of checking whether x has 
independent components is to measure a distance 
between both sides of (2.1): 

6 Px, • (2.2) 

In statistics, the large class of f-divergences is of 
key importance among the possible distance 
measures available [4]. In these measures the roles 
played by both densities are not always symmetric, 
so that we are not dealing with proper distances. 
For instance, the Kullback divergence is defined as 

( '  , , ,  p,(u) 
6(px, p=) = jpAu) log  p ~  du. (2.3) 

Recall that the Kullback divergence satisfies 

6(px, p:) >1 O, (2.4) 

with equality if and only if pz(u)= p:(u) almost 
everywhere. This property is due to the convexity of 
the logarithm [6]. Now, if we look at the form of 
the Kullback divergence of (2.2), we obtain precise- 
ly the average mutual information of x: 

f , , ,  pAu) 
I(px) = jPxtU)logH~x,(u3 du, ueC N. (2.5) 

From (2.4), the mutual information vanishes if and 
only if the variables xi are mutually independent, 
and is strictly positive otherwise. We shall see that 
this will be a good candidate as a contrast function. 

2.2. Standardization 

Now denote by IF N the space of random variables 
with values in ~N, by ~:~ the Euclidian subspace of 
EN spanned by variables with finite moments up to 
order r, for any r >t 2, provided with the scalar 

product ( x , y )  = E [ x * y ]  and by ~:2 N the subset of 
~:~ of variables having an invertible covariance. For 
instance, we have E~ __ F~. 

The goal of the standardization is to transform 
a random vector of E2 N, z, into another, ~, that has 
a unit covariance. But if the covariance V of vector 
z is not invertible, it is necessary to also perform 
a projection of z onto the range space of V. The 
standardization procedure proposed here fulfils 
these two tasks, and may be viewed as a mere PCA. 

Let z be a zero-mean random variable of n:~, V 
its covariance matrix and L a matrix such that 
V =  LL*. Matrix L could be defined by any 
square-root decomposition, such as Cholesky fac- 
torization, or a decomposition based on the eigen 
value decomposition (EVD), for instance. But our 
preference goes to the EVD because it allows one to 
handle easily the case of singular or ill-conditioned 
covariance matrices by projection. More precisely, 
if 

V = UA2U * (2.6) 

denotes the EVD of V, where A is full rank and 
U possibly rectangular, we define the square root of 
V as L = UA. Then we can define the standardized 
variable associated with z: 

= A -  1U*z. (2.7) 

Note that (?,)i # (zi). In fact, (zi) is merely the 
variable zi normalized by its variance. In the follow- 
ing, we shall only talk about :~i, the ith component 
of the standardized variable ~, so avoiding any 
possible confusion between the similar-looking no- 
tations ~:i and ~g. 

Projection and standardization are thus per- 
--N formed all at once if z is not in E 2 . Algorithm 18 

recommends resorting to the singular value de- 
composition (SVD) instead of EVD in order to 
avoid the explicit calculation of V and to improve 
numerical accuracy. 

Without restricting the generality we may thus 
consider in the remaining that the variable ob- 
served belongs to H:~; we additionally assume that 
N > 1, since otherwise the observation is scalar and 
the problem does not exist. 
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2.3. Negentropy, a measure of  distance to normality 

Define the differential entropy of x as 

S(px) = - f p~(u)logpx(u)du. (2.8) 

Recall that differential entropy is not the 
limit of Shannon's entropy defined for discrete 
variables; it is not invariant by an invertible 
change of coordinates as the entropy was, but only 
by orthogonal transforms. Yet, it is the usual prac- 
tice to still call it entropy, in short. Entropy enjoys 
very privileged properties as emphasized in [54], 
and we shall point out in Section 2.3 that informa- 
tion (2.5) may also be written as a difference of 
entropies. 

As a first example, if z is in ~2 u, the entropies of 
z and ~: are related by [16] 

S(p:) = S(p~) - ½1ogdet V. (2.9) 

I fx  is zero-mean Gaussian, its pdf will be referred 
to by the notation flax(U), with 

written as: 

N 1 H V/i 
l(p~) = J(PI) -- ~ J(Px,) + ~log det V' (2.14) 

i = 1  

where V denotes the variance of x (the proof is 
deferred to Appendix A.3). This relation gives 
a means of approximating the mutual information, 
provided we are able to approximate the negen- 
tropy about zero, which amounts to expanding the 
density PI in the neighbourhood of flax. This will be 
the starting point of Section 3. 

For the sake of convenience, the transform F de- 
fined in Definition 1 will be sought in two steps. In 
the first step, a transform will cancel the last term of 
(2.14). It can be shown that this is equivalent to 
standardizing the data (see Appendix A.4). This 
step will be performed by resorting only to second- 
order moments of y. Then in the second step, an 
orthogonal transform will be computed so that the 
second term on the right-hand side of (2.14) is 
minimized while the two others remain constant. In 
this step, resorting to higher-order cumulants is 
necessary. 

flax(U) = (2re) -N/2I VI-~/2exp{- u ' V - a u } / 2 .  (2.10) 

Among the densities of ~:~ having a given 
covariance matrix V, the Gaussian density is the 
one which has the largest entropy. This well-known 
proposition says that 

S(Ox) >~ S(py), Vx, ye~_~, (2.11) 

with equality iff flax(u)= py(u) almost everywhere. 
The entropy obtained in the case of equality is 

S(flax) = ½IN + Nlog(2rt) + logdet V]. (2.12) 

For densities in ~_2 N, one defines the negentropy as 

J(Px) = S(flax)- S(px), (2.13) 

where flax stands for the Gaussian density with the 
same mean and variance as Px. As shown in Appen- 
dix A.2, negentropy is always positive, is invariant 
by any linear invertible change of coordinates, 
and vanishes if and only if p~ is Gaussian. From 
(2.5) and (2.13), the mutual information may be 

2.4. Measures o f  statistical dependence 

We have shown that both the Gaussian feature 
and the mutual independence can be characterized 
with the help of negentropy. Yet, these remarks 
justify only in part the use of (2.14) as an optimiza- 
tion criterion in our problem. In fact, from Prop- 
erty 2, this criterion should meet the requirements 
given below. 

D E F I N I T I O N  5. A contrast is a mapping ~u from 
the set of densities { p x , x e ~  -N} to ~ satisfying the 
following three requirements. 
- ~(Px) does not change if the components x~ are 

permuted: 

~P(Ppx) = ~(Px), VP permutation. 

- ~ is invariant by 'scale' change, that is, 

7t(Pax) = q'(Px), VA diagonal invertible. 

- If x has independent components, then 

tP(PAx) <~ ~/'(Px), VA invertible. 
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D E F I N I T I O N  6. A contrast will be said to be 
discrimina[ing over a set ~: if the equality 
7J(pAx) = T(px) holds only when A is of the form 
AP,  as defined in Property 2, when x is a random 
vector of ~: having independent components. 

Now we are in a position to propose a contrast 
criterion. 

T H E O R E M  7. The following mapping is a contrast 
over ~_~: 

T(p~) = - I(p~). 

See the appendix for a proof. The criterion pro- 
posed in Theorem 7 is consequently admissible for 
ICA computation. This theoretical criterion, in- 
volving a generally unknown density, will be made 
usable by approximtions in Section 3. Regarding 
computational loads, the calculation of ICA may 
still be very heavy even after approximations, and 
we now turn to a theorem that theoretically ex- 
plains why the practical algorithm designed in 
Section 4, that proceeds pairwise, indeed works. 

The following two lemmas are utilized in the 
proof of Theorem 10, and are reproduced below 
because of their interesting content. Refer to 
[18, 22] for details regarding Lemmas 8 and 9, 
respectively. 

L E M M A  8 (Lemma of Marcinkiewicz-Dugu6 
(1951)). The function q~(u)= e vtu~, where P(u) is 
a polynomial o f  degree m, can be a characteristic 
function only if  m <~ 2. 

L E M M A  9 (Cram6r's lemma (1936)). I f  {xl, 
1 <~ i <~ N}  are independent random variables and if  

N 
X = ~,i=1 aixi  is Gaussian, then all the variables 
xi for  which ai # 0 are Gaussian. 

Utilizing these lemmas, it is possible to obtain 
the following theorem, which can be seen to be 
a variant of Darmois's theorem (see Appendix A.7). 

T H E O R E M  10. Let  x and z be two random vectors 
such that z = Bx, B being a given rectangular 
matrix. Suppose additionally that x has independent 
components and that z has pairwise independent corn- 

ponents. I f  B has two non-zero entries in the same 
column j, then x j  is either Gaussian or deterministic. 

Now we are in a position to state a theorem, from 
which two important corollaries can be deduced 
(see Appendices A.7-A.9 for proofs). 

T H E O R E M  11. Let  x be a vector with independent 
components, o f  which at most one is Gaussian, and 
whose densities are not reduced to a point-like mass. 
Let  C be an orthogonal N x N matrix and z the 
vector z = Cx. Then the following three properties 
are equivalent: 

(i) The components zi are pairwise independent. 
(ii) The components zi are mutually independent. 

(iii) C = AP,  A diagonal, P permutation. 

C O R O L L A R Y  12. The contrast in Theorem 7 is 
discriminating over the set o f  random vectors having 
at most one Gaussian component, in the sense o f  
Definition 6. 

C O R O L L A R Y  13 (Identifiability). Let  no noise be 
present in model ( 1 . 1 ) ,  and define y = M x  and 
y = Fz, x being a random variable in some set ~_ of  
~_s 2 satisfying the requirements of  Theorem 11. Then 
if  T is discriminant over E, T(pz)  = T(px)  if  only if 
F = M A P ,  where A is an invertible diagonal matrix 
and P a permutation. 

This last corollary is actually stating identifiabil- 
ity conditions of the noiseless problem. It shows in 
particular that for discriminating contrasts, the in- 
determinacy is minimal, i.e. is reduced to Property 
2; and from Corollary 12, this applies to the con- 
trast in Theorem 7. We recognize in Corollary 13 
some statements already emphasized in blind de- 
convolution problems [21, 52, 64], namely that 
a non-Gaussian random process can be recovered 
after convolution by a linear time-invariant stable 
unknown filter only up to a constant delay and 
a constant phase shift, which may be seen as the 
analogues of our indeterminations D and P in 
Property 2, respectively. For processes with unit 
variance, we find indeed that M = FDP in the co- 
rollary above. 
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3. O p t i m i z a t i o n  criteria  

3.1. Approximation of the mutual information 

Suppose that we observe .~ and that we look for 
an orthogonal matrix Q maximizing the contrast: 

~(p:) = - l(pO, where ~ = Q.~. (3.1) 

In practice, the densities p~ and py are not known, so 
that criterion (3.1) cannot be directly utilized. The 
aim of this section is to express the contrast in 
Theorem 7 as a function of the standardized cumu- 
lants (of orders 3 and 4), which are quantities more 
easily accessible. The expression of entropy and 
negentropy in the scalar case will be first briefly 
derived. We start with the Edgeworth expansion of 
type A of a density. A central limit theorem says 
that if z is a sum of m independent random vari- 
ables with finite cumulants, then the ith-order 
cumulant of z is of order 

t¢i ~ m ( 2 -  i)/2. 

This theorem can be traced back to 1928 and is 
attributed to Cram6r [65]. Referring to [39, p. 176, 
formula 6.49] or to [1], the Edgeworth expansion 
of the pdf of z up to order 4 about its best Gaussian 
approximate (here with zero-mean and unit vari- 
ance) is given by 

p~(u) 
- 1  ~(u) 

1 
+ ~.. t¢3 h3(u) 

1 10 2 
+ ~ x ,  h4(u) + 6.t x3 h6(u) 

1 35 
+ ~. t¢5 hs(u) + ~. ~c3t¢~. h7(u ) 

280 
+ ~ t¢ 3 h9(u) 

1 56 35 x2 h8(u) 
"t- ~.. K6 h6(u) + 8.1 x3x5 ha(u) + 8.t 

2100 15400 4 
+ ~ ~c 2 x4 hlo(u) + ~ Ks hx2(u) 

+ o(m- 2). (3.2) 

In this expression, x~ denotes the cumulant of 
order i of the standardized scalar variable con- 
sidered (this is the notation of Kendall and Stuart, 
not assumed subsequently in the multichannel 
case), and hi(u)is the Hermite polynomial of degree 
i, defined by the recursion 

ho(u) = 1, hi(u) = u, 
(3.3) 

hk+ l(u) = u hk(U) -- ~u hk(U). 

The key advantage of using the Edgeworth ex- 
pansion instead of Gram-Charlier's lies in the 
ordering of terms according to their decreasing 
significance as a function of m-1/2. In fact, in the 
Gram-Charlier expansion, it is impossible to en- 
quire into the magnitude of the various terms. See 
[39, 40] for general remarks on pdf expansions. 

Now let us turn to the expansion of the negen- 
tropy defined in (2.13). The negentropy itself can be 
approximated by an Edgeworth-based expansion 
as the theorem below shows. 

THEOREM 14. For a standardized scalar variable 
Z, 

7 4 J(pz) = ~ + A ~  + ~ 3  

x 2 (3.4) -- ~tC3t¢ 4 + o (m-2) .  

The proof is sketched in the appendix. Next, 
from (2.14), the calculus of the mutual information 
of a standardized vector $ needs not only the mar- 
ginal negentropy of each component ~i but also the 
joint negentropy of $. Now it can be noticed that 
(see the appendix) 

J(PO = J(Py), (3.5) 

since differential entropy is invariant by an ortho- 
gonal change of coordinates. Denote by Ko. ..q the 
cumulants Cum{~i,~ . . . . .  ~q}. Then using (3.4) 
and (3.5), the mutual information of ~ takes the 
form, up to O(m -2) terms, 

I(p~) ~ J(p~) - 

1 ~ {4K2 i + K ]  +7K~i  2 - -  - -  6 K u i K u i } .  (3.6) 
48 i=1 
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Yet, cumulants satisfy a multilinearity property 
[7], which allows them to be called tensors [43, 44]. 
Denote by F the family of cumulants of j,, and by 
K those of ~: = Q.~. Then this property can be writ- 
ten at orders 3 and 4 as 

Kijk : ~,  QipQjqQkrFpqr, (3.7) 
pqr 

gljkl  : ~ QipQjqQkrQtsFpqrs. (3.8) 
pqrs 

On the other hand, J(p~) does not depend on Q, so 
that criterion (3.1) can be reduced up to order m-2 
to the maximization of a functional ~: 

N 

tp(Q) ~ 4K~i + K,],i + 7K~i 2 : -- 6KiiiKiii i  (3.9) 
i = i  

with respect to Q, bearing in mind that the tensors 
K depend on Q through relations (3.7) and (3.8). 
Even if the mutual information has been proved to 
be a contrast, we are not sure that expression (3.9) is 
a contrast itself, since it is only approximating the 
mutual information. Other criteria that are con- 
trasts are subsequently proposed, and consist of 
simplifications of (3.9). 

If Kiii are large enough, the expansion of J(p~) 
can be performed only up to order O(m-3/2 ), yield- 
ing ~,(Q) = 4~K2i. On the other hand, if Kiii are all 
null, (3.9) reduces to if(Q) = ~K2ii. It turns out that 
these two particular forms of ~,(Q) are contrasts, as 
shown in the next section. Of course, they can be 
used even if Km are neither all large nor all null, but 
then they would not approximate the contrast in 
Theorem 7 any more. 

3.2. Simpler criteria 

The function ~,(Q) is actually a complicated ra- 
tional function in N ( N -  1)/2 variables, if indices 
vary in {1, ... , N}. The goal of the remainder of the 
paper is to avoid exhaustive search and save com- 
putational time in the optimization problem, as 
well as propose a family of contrast functions in 
Theorem 16, of simpler use. The justification of 
these criteria is argued and is not subject to the 
validity of the Edgeworth expansion; in other 
words, it is not absolutely necessary that they ap- 
proximate the mutual information. 

L E M M A  15. Denote by "Q the matrix obtained by 
raising each entry of an orthogonal matrix Q to the 
power r. Then we have 

H ZQu II ~ II u II. 

THEOREM 16. The functional 

N 

~'(Q) = Z K2 i l . . . i ,  
i = 1  

where Kii... i are marginal standardized cumulants of 
order r, is a contrast for any r >1 2. Moreover, for 
any r >>. 3, this contrast is discriminating over the set 
of random vectors having at most one null marginal 
cumulant of order r. Recall that the cumulants are 
functions of Q via the multilinearity relation, e.g. 
(3.7) and (3.8). 

The proofs are given in the appendix (see also 
[15] for complementary details). These contrast 
functions are generally less discriminating than 
(3.1) (i.e. discriminating over a smaller subset of 
random vectors). In fact, if two components have 
a zero cumulant of order r, the contrast in Theorem 
16 fails to separate them (this is the same behaviour 
as for Gaussian components). However, as in The- 
orem 11, at most one source component is allowed 
to have a null cumulant. 

Now, it is pertinent to notice that the quantity 

~2, ~ K 2 (3.10) i l i 2 . . . i r  
il . . . i t  

is invariant under linear and invertible transforma- 
tions (cf. the appendix). This result gives, in fact, an 
important practical significance to contrast func- 
tions such as in Theorem 16. Indeed, the maximiza- 
tion of ~,(Q) is equivalent to the minimization of 
~2 - ~,(Q), which is eventually the same as minimiz- 
ing the sum of the squares of all cross-cumulants of 
order r, and these cumulants are precisely the 
measure of statistical dependence at order r. An- 
other consequence of this invariance is that if 
~/'(y) = ~(x), where x has uncorrelated compo- 
nents at orders involved in the definition of ~b, then 
y also has independent components in the same 
sense. A similar interpretation can be given for 
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expression (3.9) since 

~3,4 = • 4K2k + K2u + 3KijkKijnKkqrKqr, 
ijklmnqr 

+ 4KijkKimnKjmrKknr -- 6KijkKumKjktm 

(3.11) 

is also invariant under linear and invertible trans- 
formations [16] (see the appendix for a proof). 
However, on the other hand, the minimization of 
(3.11) does not imply individual minimization of 
cross-cumulants any more, due to the presence of 
a minus sign, among others. 

The interest in maximizing the contrast in 
Theorem 16 rather than minimizing the cross- 
cumulants lies essentially in the fact that only 
N cumulants are involved instead of O(N').  Thus, 
this spares us a lot of computations when estima- 
ting the cumulants from the data. A first analysis of 
complexity was given in [15], and will be addressed 
in Section 4. 

3.3. Link with blind identification and deconvolution 

Criterion (3.9) and that in Theorem 16 may be 
connected with other criteria recently proposed in 
the literature for the blind deconvolution problem 
[3, 5, 21, 31, 48, 52, 64]. For instance, the criterion 
proposed in [52] may be seen to be equivalent to 
maximize 2 ~ K , , .  In [21], one of the optimization 
criteria proposed amounts to minimizing ~S(pz,), 
which is consistent with (2.13), (2.14) and (3.1). In 
[5], the family of criteria proposed contains (3.1). 

On the other hand, identification techniques 
presented in [35, 45, 46, 57, 63] solve a system of 
equations obtained by equation error matching. 
Although they work quite well in general, these 
approaches may seem arbitrary in their selection of 
particular equations rather than others. Moreover, 
their robustness is questioned in the presence of 
measurement noise, especially non-Gaussian, as 
well as for short data records. In [62] a matching in 
the least-squares (LS) sense is proposed; in [12] the 
use of much more equations than unknowns im- 
proves on the robustness for short data records. 
A more general approach is developed in [28], 

where a weighted LS matching is suggested. Our 
equation (3.9) gives a possible justification to the 
process of selecting particular cumulants, by show- 
ing their dominance over the others. In this context, 
some simplifications would occur when developing 
(3.9) as a function of Q since the components yi are 
generally assumed to be identically distributed (this 
is not assumed in our derivations). However, the 
truncation in the expansion has removed the opti- 
mality character of criterion (3.1), whereas in the 
recent paper [34] asymptotic optimality is ad- 
dressed. 

4. A practical algorithm 

4.1. Pairwise processing 

As suggested by Theorem 11, in order to maxi- 
mize (3.9) it is necessary and sufficient to consider 
only pairwise cumulants of ?:. The proof of Theorem 
11 did not involve the contrast expression, but was 
valid only in the case where the observation y was 
effectively stemming linearly from a random vari- 
able x with independent components (model (1.1) in 
the noiseless case). It turns out that it is true for any 
.~ and any ?: = Q.~, and for any contrast of poly- 
nomial (and by extension, analytic) form in 
marginal cumulants of ~ as is the case in (3.9) or 
Theorem 16. 

T H EO REM 17. Let ~k(Q) be a polynomial in mar- 
ginal cumulants denoted by K. Then the equation 
dO = 0 imposes conditions only on components of 
K having two distinct indices. The same statement 
holds true for the condition d2O < 0. 

The proof resorts to differentiation tools bor- 
rowed from classical analysis, and not to statistical 
considerations (see the appendix). The theorem 
says that pairwise independence is sufficient, pro- 
vided a contrast of polynomial form is utilized. This 
motivated the algorithm developed in this section. 

Given an N ×  T data matrix, Y =  {y(t), 
1 ~< t ~< T}, the proposed algorithm processes each 
pair in turn (similarly to the Jacobi algorithm in the 
diagonalization of symmetric real matrices); Zi: will 
denote the ith row of a matrix Z. 
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A L G O R I T H M  18 
(1) Compute the SVD of the data matrix as 

Y = vz[J*,  where Vis N x p, Z is p x p and U* 
is p x T, and p denotes the rank of Y. Use 
therefore the algorithm proposed in [11] since 
T is often much larger than N. Then 

Z = x /~U*  and L = VZ/x//T. 
(2) Initialize F = L. 
(3) Begin a loop on the sweeps: k = 1, 2 . . . . .  kmax; 

kmax ~< 1 + x//-p. 
(4) Sweep the p(p - 1)/2 pairs (i, j), according to 

a fixed ordering. For each pair: 
(a) estimate the required cumulants of (Zi:, Z j:), 

by resorting to K-statistics for instance 
[39, 44], 

(b) find the angle a maximizing 6(Q"'J~), where 
Q(i,j) is the plane rotation of angle a, 
a ~ ] -  n/4, re/4], in the plane defined by 
components { i, j}, 

(c) accumulate F : =  FQ "'j)*, 
(e) update Z : =  (2{~'J)Z. 

(5) End of the loop on k if k = k . . . .  or if all estim- 
ated angles are very small (compared to 1/T). 

(6) Compute the norm of the columns of F: 
Aii = II 5 i  II. 

(7) Sort the entries of A in decreasing order: 

.4 := pAp* and F : =  FP*. 

(8) Normalize F by the transform F : =  FA-1 
(9) Fix the phase (sign) of each column o f F  accord- 

ing to Definition 4(e). This yields F : =  FD. 

The core of the algorithm is actually step 4(b), 
and as shown in [15] it can be carried out in 
various ways. This step becomes particularly 
simple when a contrast of the type given by 
Theorem 16 is used. Let us take for example the 
contrast in Theorem 16 at order 4 (a similar and 
less complicated reasoning can be carried out at 
order 3). 

Step 4(b) of the algorithm maximizes the contrast 
in dimension 2 with respect to orthogonal trans- 
formations. Denote by Q the Givens rotation 

1 1 0 [0 
and ( =  0 -  1/0. (4.1) 

Then the contrast takes the same value at 0 and 
- 1/0. Yet, it is a rational function of 0, so that it 

can be expressed as a function of variable ~ only. 
More precisely, we have 

4 

~(~) = [(2 + 4]-2 ~ bRig, (4.2) 
k = 0  

where coefficients b k a r e  given in the appendix. 
Here, we have somewhat abused the notations, and 
write @ as a function of ~ instead of Q itself. How- 
ever, there is no ambiguity since 0 characterizes 
Q completely, and ~ determines two equivalent 
solutions in 0 via the equation 

0 2 - ~ 0 -  1 = 0 .  (4.3) 

Expression (4.2) extends to the case of complex 
observations, as demonstrated in the appendix. The 
maximization of (4.2) with respect to variable 

leads to a polynomial rooting which does not 
raise any difficulty, since it is of low degree (there 
even exists an analytical solution since the degree is 
strictly smaller than 5): 

4 

(o(~) = ~ ck~k= O. (4.4) 
k = O  

The exact value of coefficients Ck is also given in the 
appendix. Thus, step 4(b) of the algorithm consists 
simply of the following four steps: 
- compute the roots of ~o(~) by using (A.39); 
- c o m p u t e  the corresponding values of ~k(~) 

by using (A.38); 
- retain the absolute maximum; (4.5) 
- root Eq. (4.3) in order to get the solution 0o in the 

interval ] - 1, 1]. 
The solution 0o corresponds to the tangent of the 

rotation angle. Since it is sufficient to have one 
representative of the equivalence class in Property 
2, the solution in ] - 1, 1] suffices. Obvious real- 
time implementations are described in [14]. Addi- 
tional details on this algorithm may also be found 
in [15]. In particular, in the noiseless case the 
polynomial (4.4) degenerates and we end up with 
the rooting of a polynomial of degree 2 only. How- 
ever, it is wiser to resort to the latter simpler algo- 
rithm only when N = 2 [15]. 
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4.2. Convergence 

It is easy to show [15,] that Algorithm 18 is such 
that the global contrast function ~O(Q) monotoni- 
cally increases as more and more iterations are run. 
Since this real positive sequence is bounded above, 
it must converge to a maximum. How many sweeps 
(kmax) should be run to reach this maximum de- 
pends on the data. The value of kmax has been 
chosen on the basis of extensive simulations: the 

value kmax = 1 + ~ seems to give satisfactory 
results. In fact, when the number of sweeps, k, 
reaches this value, it has been observed that the 
angles of all plane rotations within the last sweep 
were very small and that the contrast function had 
reached its stationary value. However, iterations 
can obviously be stopped earlier. 

In [52,], the deconvolution algorithm proposed 
has been shown to suffer from spurious maxima 
in the noisy case. Moreover, as pointed out in 
[64-1, even in the noiseless case, spurious maxima 
may exist for data records of limited length. 
This phenomenon has not been observed 
when running ICA, but could a priori also 
happen. In fact, nothing ensures the absence of 
local maxima, at least based on the results we 
have presented up to now. Algorithm 18 finds 
a sequence of absolute maxima with respect to 
each plane rotation, but no argument has 
been found that ensures reaching the global abso- 
lute maximum with respect to the cumulated 
rotation. So it is only conjectured that this 
search is sufficient over the group of orthogonal 
matrices. 

4.3. Computa t iona l  complex i ty  

When evaluating the complexity of Algorithm 
18, we shall count the number of floating point 
operations (flops). A flop corresponds to a multipli- 
cation followed by an addition. Note that the com- 
plexity is often assimilated to the number of multi- 
plications, since most of the time there are more 
multiplications than additions. In order to make 
the analysis easier, we shall assume that N and 
T are large, and only retain the terms of highest 
orders. 

In step 1, the SVD of a matrix of size N x Tis to 
be calculated. Since T will necessarily be larger than 
N, it is appropriate to resort to a special technique 
proposed by Chan [-11-] consisting of running a QR 

factorization first. The complexity is then of 
3 T N  2 - 2N3/3. Making explicit the matrix L re- 
quires the multiplication of an N x p matrix by 
a diagonal matrix of size p. This requires an addi- 
tional N p  flops, which is negligible with respect to 
T N  2 . 

In step 4(a), the five pairwise cumulants of order 
4 must be calculated. If zi: and z j: are the two row 
vectors concerned, this may be done as follows for 
reasonable values of T (T > 100): 

(u = zi:" zi:, termwise product T flops 

(ii  = z j:. z j:, termwise product T flops 

~i~ = zi:. z~:, termwise product T flops 

Fiiii = ( * ( , / T -  3, scalar product T +  1 flops 

1]iij = ( * ( i j / T ,  scalar product T + 1 flops 

ffiijj ~ - ( * ( j j / T - -  1, scalar product T +  1 flops 

I]jjj = (*~ j j /T ,  scalar product T + 1 flops 

= ~ j ( j ~ / T -  3, scalar product T + 1 flops l~jjjj * 

(4.6) 

So step 4(a) requires O(8T) flops. The polynomial 
rooting of step 4(b) requires O(1) flops, as well as 
the selection of the absolute maximum. The accu- 
mulation of Step 4(c) needs 4N flops because only 
two columns of F are changed. The update Step 
4(d) is eventually calculated within 4T flops. 

If the loop on k is executed K times, then the 
complexity above is repeated O ( K p 2 / 2 )  times. 
Since p ~< N, we have a complexity bounded by 
(12T+ 4 N ) K N 2 / 2 .  The remaining normalization 
steps require a global amount of O ( N p )  flops. 

As conclusion, and if T >>N, the execution of 
Algorithm 18 has a complexity of 

O(6KN 2 T) flops. (4.7) 

In order to compare this with usual algorithms in 
numerical analysis, let us take realistic examples. If 
T = O(N 2) and K = O(N1/2), the global complex- 
ity is O(N9/2) ,  and if T = O(N3/2), we get O(N 4) 
flops. These orders of magnitude may be compared 
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to usual complexities in O(N 3) of most matrix 
factorizations. 

The other algorithm at our disposal to compute 
the ICA within a polynomial time is the one pro- 
posed by Cardoso (refer to [10] and the references 
therein). The fastest version requires O(N 5) flops, if 
all cumulants of the observations are available and 
if N sources are present with a high signal to noise 
ratio. On the other hand, there are O(N4/24) differ- 
ent cumulants in this 'supersymmetric' tensor. 
Since estimating one cumulant needs O(~T) flops, 
1 < c~ ~< 2, we have to take into account an addi- 
tional complexity of O(aN4T/24).  In this operator- 
based approach, the computation of the cumulant 
tensor is the task that is the most computationally 
heavy. For  T =  O(N 2) for instance, the global 
complexity of this approach is roughly O(N6). 
Even for T =  O(N), which is too small, we get 
a complexity of O(NS). Note that this is always 
larger than (4.9). The reason for this is that only 
pairwise cumulants are utilized in our algorithm. 

Lastly, one could think of using the multilinear- 
ity relation (3.8) to calculate the five cumulants 
required in step 4(a). This indeed requires little 
computational means, but needs all input cumu- 
lants to be known, exactly as in Cardoso's method 
above. The computational burden is then domin- 
ated by the computation of input cumulants and 
represents O ( T N  4) flops. 

5. S imula t ion  results 

5.1. Performance criterion 

In this section, the behaviour of ICA in the pres- 
ence of non-Gaussian noise is investigated by 
means of simulations. We first need to define a dis- 
tance between matrices modulo a multiplicative 
factor of the form AP, where A is diagonal invert- 
ible and P is a permutation. Let A and A be two 
invertible matrices, and define the matrices with 
unit-norm columns 

A =  AA -1, A = A z ]  -1, 

with A~k = IIa:kll, ARk = IIm:kll- 

The gap ~(A, .4) is built from the matrix D = A - 1A 
as 

+ ~ .  ~ IDi ,  I 2 - 1  + ~  ~. I D i , 1 2 - 1 .  (5.1) 

It is shown in the appendix that this measure of 
distance is indeed invariant by postmultiplication 
by a matrix of the form AP: 

e(AAP,  .,4) = e(A, AAP)  = e(A, 4). (5.2) 

Moreover, ~(A, ,4) = 0 if and only ifA and A can be 
deduced from each other by multiplication by a 
factor AP: 

e(A, ,4) = 0 ,~  A = AAP.  (5.3) 

5.2. Behaviour in the presence o f  non-Gaussian 
noise when N = 2 

Consider the observations in dimension N for 
realization t: 

y(t) = (1 - I~)Mx(t) + pflw(t), (5.4) 

where 1 ~< t ~< T, x and w are zero-mean standard- 
ized random variables uniformly distributed in 

[ -  x ~ ,  x ~ ]  (and thus have a kurtosis of - 1.2), 
p is a positive real parameter of [0, 1] and 
/~ = II M [1/111 II, [1' II denoting the L 2 matrix norm 
(the largest singular value). Then when p ranges 
from 0 to 1, the signal to noise kurtosis ratio de- 
creases from infinity to zero. Since x and w have the 
same statistics, the signal to noise ratio can be 
indifferently defined at orders 2 or 4. One may 
assume the following as a definition of the signal to 
noise ratio (see Fig. 1): 

In this section we assume N = 2 and 

M =  - 3  " 

SNRdB = 101oglo 1 - p 
# 
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Fig. 1. Identification block diagram. We have in particular 
y =  Fz = LQ*(P*A ID)z. The matrix (P*A-1D) is optional 
and serves to determine uniquely a representative of the equiva- 
lence class of solutions. 
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Fig. 2. Average values of the gap ~ between the true mixmg 
matrix M and the estimated one, F, as a function of the noise 
rate and for various data lengths. Here the dimension is N = 2, 
and averages are computed over v trials. 

We represent in Figs. 2 - 4  the behaviour of  Algo-  
rithm 18 when the contrast  in Theorem 16 is used 
at order r = 4 (which also coincides  with (3.9) since 
the densities are symmetr ica l ly  distributed in this 
simulation).  The mean of the error e defined in (5.1) 
has been plotted as a function of # in Fig. 2, and as 
a function of  T in Fig. 3. The mean  was calculated 
over a number  v of averagings (indicated in Fig. 2) 
chosen so that the product v T  is constant: 
v T ~ 24000.  The curves presented in Fig. 2 have 
been calculated for/~ ranging from 0 to 1 by steps of 
0.02. Fig. 4 shows  the standard deviat ions of  e ob- 
tained with the same data. A similar s imulat ion was 
presented in [16] ,  where signal and noise had dif- 
ferent kurtosis.  

0.25 

0.2 

0.15 
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0.35 

0.3 = 

100 200 300 400 500 600 700 800 900 1000 
T 

Fig. 3. Average values of the gap ~ as a function of the data 
length Tand for various noise rates/~. The dimension is N = 2. 
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Fig. 4. Standard deviations of the gap *: for the same input and 
output data as for Fig. 2. 

Most  surprising in these s imulat ions  in the excel- 
lent behaviour of ICA even in the close neighbour- 
hood  of /a  = 0.5 (viz. 0 dB); keep in mind that the 
#-scale is z o o m i n g  about  0 dB (according to Fig. 9, 
an SNR of 1 dB corresponds to /~ = 0.44 for 
example).  The exact value of  p for which the ICA 
remains interesting depends on the integration 
length T. In fact, the shorter the T, the larger the 
apparent noise, since est imation errors are also 
seen by the algorithm as extraneous noise. In Fig. 3, 
for instance, it can be noticed that the calculation of 
ICA with T = I00 in the noiseless case is about as 
good  as with T =  300 when # = 0.4. For larger 
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values of/~, the ICA algorithm considers the vector 
M x  as a noise and the vector I~flw as a source 
vector. Because w has independent components, it 
could be checked out conversely that e(I, F) tends 
to zero as p tends to one, showing that matrix F is 
approaching AP. 

5.3. Behaviour in the noiseless case when N > 2 

Another interesting experiment is to look at the 
influence of the choice of the sweeping strategy on 
the convergence of the algorithm. For this purpose, 
consider now t0 independent sources. In Algorithm 
18, the pairs are described according to a standard 
cyclic-by-rows ordering, but any other ordering 
may be utilized. To see the influence of this order- 
ing without modifying the code, we have changed 
the order of the source kurtosis. In ordering 1, the 
source kurtosis are 

180 
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1(30 
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20 

0 

i 
=10 

ii, 

Gap 

20 40 60 80 100 120 140 160 
Number of pairs processed 

Fig. 5. Gap between the true mixing matrix M and the estim- 
ated one, F, as a function of the number  of iterations. These are 
asymptotic results, i.e. the data length may be considered infi- 
nite. Solid and dashed lines correspond to three different order- 
ings. The dimension is N = 10. 

E1 - 1  1 - 1  1.5 - 1 . 5  2 - 2  1 - 1 ]  (5.6) 

whereas in ordering 2 and 3 they are, respectively, 

[1 2 1.5 1 1 - 1  - 1 . 5  - 2  - 1  - 1 ]  

and (5.7) 

[1 1 1.5 2 1 - 1  - 1 . 5  - 1  - 1  - 2 ] .  

The presence of cumulants of opposite signs does 
not raise any obstacle, as well as the presence of at 
most one null cumulant as shown in [16]. The mixing 
matrix, M, is Toeplitz circulant with the vector 

[-3 0 2 1 - 1  1 0 1 - 1  - 2 ]  (5.8) 

as first row. 
No noise is present. This simulation is performed 

directly from cumulants, using unavoidably the 
procedure described in the last paragraph of Sec- 
tion 4.3, so that the performances are those that 
would be obtained for T = ~ with real-world sig- 
nals (see Appendix A.21). The contrast utilized is 
that in Theorem 16 with r = 4. The evolution of 
gap e between the original matrix, M, and the 
estimated matrix, F, is plotted in Fig. 5 for the three 
orderings, as a function of the number of Givens 
rotations computed. Observe that the gap .e is not 
necessarily monotonically decreasing, whereas the 
contrast always is, by construction of the algo- 

20 
Contrast 

N=IO 

.-' ~ f J  / , 

. ,,"// ()y-' 

0 20 40 60 80 100 120 140 160 
Number of pairs processed 

Fig. 6. Evolution of the contrast function as more and more 
iterations are performed, in the same problem as shown in Fig. 5, 
with the same three ordefings. 

rithm. For convenience, the contrast is also repres- 
ented in Fig. 6. The contrast reaches a stationary 
value of 18.5 around the 90th iteration, that is at the 
end of the second sweep. It can be noticed that this 
corresponds precisely to the sum of the squares of 
source cumulants (5.6), showing that the upper 
bound is indeed reached. Readers desiring to pro- 
gram the ICA should pay attention to the fact that 
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the speed of convergence can depend on the stan- 
dardizat ion code (e.g. changing the sign of  a 
singular vector can affect the behaviour  of the 
convergence). 

It is clear that  the values of  source kurtosis can 
have an influence on the convergence speed, as in 
the Jacobi a lgori thm (provided they are not  all 
equal of  course). In the latter algorithm, it is well 
known that  the convergence can be speeded up by 
processing the pair for which non-diagonal  terms 
are the largest. Here, the difference is that  cross- 
terms are not  explicitly given. Consequently,  even if 
this strategy could also be applied to the diagonal- 
ization of the tensor cumulant ,  the computa t ion  of 
all pairwise cross-cumulants  at each iteration is 
necessary. We would eventually loose more  in com- 
plexity than we would gain in convergence speed. 

5.4. Behaviour in the presence o f  noise when N > 2 

Now, it is interesting to perform the same experi- 
ment as in Section 5.2, but for values of  N larger 
than 2. We again take the experiment described by 
(5.4). The components  of  x and w are again inde- 
pendent  r andom variables identically and uniform- 

ly distributed in [ -  x/3, x f3 ] ,  as in Section 5.2. In 
Fig. 7, we report  the gap e that we obtain for 
N = 10. The matrix M was in this example again 
the Toeplitz circulant matrix of  Section 5.3 with 
a first row defined by 

[3 0 2 1 - 1  1 0 1 - 1  - 2 ] .  

It may  be observed in Fig. 7 that  an integration 
length of  T = 100 is insufficient when N = 10 (even 
in the noiseless case), whereas T = 500 is accept- 
able. For  T = 100, the gap e showed a very high 
variance, so that the top solid curve is subject to 
impor tan t  errors (see the s tandard  deviations in 
Fig. 8); the number  v of  trials was indeed only 50 for 
reasons of computa t iona l  complexity. As in the 
case of N = 2 and for larger values of  T, the in- 
crease of e is quite sudden when # increases. With 
a logari thmic scale (in dB), the sudden increase 
would be even much steeper. After inspection, the 
ICA can be computed  with Algori thm 18 up to 
signal to noise ratios of  about  + 2 dB (# = 0.35) 
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Fig. 7. Averages of the gap e between the true mixing matrix 
M and the estimated one, F, as a function of the noise rate and 
for various data lengths, T. Here the dimension is N = 10. 
Notice the gap is small below a 2dB kurtosis signal to noise 
ratio (rate # = 0.35) for a sufficient data length. The bottom solid 
curve corresponds to ultimate performances with infinite integ- 
ration length. 
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Fig. 8. Standard deviations of the gap e obtained for integration 
length T and computed over v trials, for the same data as for 
Fig. 7. 

for integration lengths of the order  of 1000 samples. 
The cont inuous bo t tom solid curve in Fig. 7 shows 
the performances that would be obtained for infi- 
nite integration length. In order  to compute  the 
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Fig. 9. SNR as a function of the norse rate/~. 
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ICA in such a case, the validation algorithm de- 
scribed in Appendix A.21 has been utilized, as in 
Section 5.3. It can be inferred from this curve that, 
for N = 10, an intregration of T = 5000 reaches 
performances very close to the ultimate. 

Source MATLAB codes of these experiments can 
be obtained from the author upon request. Other 
simulation results related to ICA are also reported 
in [15]. 

Simulation results demonstrate convergence and 
robustness of the algorithm, even in the presence of 
non-Gaussian noise (up to 0 dB for a noise having 
the same statistics as the sources), and with limited 
integration lengths. The influence of finite integra- 
tion and non-Gaussian noise are recent investiga- 
tions in the area of high-order statistics. 

It is envisaged that this tool might be useful in 
antenna array processing (separation and recogni- 
tion of sources from unknown arrays, localization 
from perturbed arrays, jammers rejection, etc.), 
Bayesian classification, data compression, as well 
as many areas where PCA has been already utilized 
for many years, such as detection, linear whitening 
or exploratory analysis. However, it has not been 
proved (but also never been observed to happen) 
that the algorithm proposed cannot be stuck at 
some local maximum. The algorithm is indeed 
guaranteed to reach the global maximum only in 
the case of two sources in the presence of non- 
Gaussian noise. 

7. Appendix A 

7.A.1. Proof of  relation (1.2) 

6. Conclusions 

The definition of ICA given within the flame- 
work of this paper depends on a contrast function 
that serves as a rotation selection criterion. One of 
the contrasts proposed is built from the mutual 
information of standardized observations. For 
practical purposes this contrast is approximated by 
the Edgeworth expansion of the mutual informa- 
tion, and consists of a combination of third- and 
fourth-order marginal cumulants. 

A particular contrast of interest is the sum of 
squares of marginal cumulants of order 4. An 
efficient algorithm is proposed that maximizes this 
criterion, by rooting a sequence of polynomials 
of degree 4. The overall complexity of the algo- 
rithm depends on the integration length, but it is 
reasonable to say that N 4 to N 5 floating point 
operations are required to compute an ICA in 
dimension N. 

Since x is non-degenerate, it admits an invertible 
p × p covariance matrix, which we may denote by 
A 2 for convenience, where matrix A is diagonal, 
invertible and positive real. Denote by an asterisk 
transposition and complex conjugation. The 
covariance of z can be written as CA-ZC *, and 
must be diagonal since z has independent compo- 
nents. Thus, denote by A z this covariance matrix, 
where A is diagonal and positive real (since C is full 
column rank, A has exactly N - p  null entries). 
Thus, we have CA zC* = A 2. Let P be a permuta- 
tion matrix such that the p first diagonal entries of 
A' = PAP* are non-zero. Denote by Ap the p × p 
block formed of these entries. Then the relation 
(PCA-1 ) (PCA-1 )  * = A  'z shows that the N - p  
rows of matrix A = PCA-1 are null. Denote by 
Ap the block formed of the p first rows. Then there 
exists a unitary matrix Qp such that Ap = ApQ o. 
This is equivalent to 

A 1 
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Denote by Q' the last N x p block matrix. By con- 
struction, we consequently have C = P*A'Q'A, 
which can be written as C = AQA, with Q = P*Q' 
and Q'*Q' = I. [] 

7.A.2. Properties of (2.13) 

Adding and subtracting a term in the definition 
of negentropy gives 

J(p~) = flogp~(u)px(u)du- flog4~(u)p~(u)du 

+ f log4)~(u)p~(u)du- f log~(u)d~x(u)(u)du, 

7.A.3. Proof of (2.14) 

From (2.13) we start with 

J(Px) -- ~ J(Px,) 
i 

= s ( ¢ ~ )  - S (p~)  - Y~ s ( ¢ x , )  + y~ S (px , ) .  
i i 

Using now (2.5), 

J(P*) -- E J(Px,) = I(p,) + S(c~x) - E S(~bx,)" 
i i 

(A.5) 

Eq. (2.14) is then obtained by replacing Gaussian 
entropies by their values given in (2.12). [] 

which can be written as 

J(p~) = log ~ px(u)du 

+ flog - du. (A.1) 

Now, by definition, q~(u) and px(u) have the same 
first- and second-order moments. Yet, since 
log ~(u)  is a polynomial of degree 2, we have 

f l o g  49x(u)(ax(u)du = flog dpx(U)px(u)du. (A.2) 

Combining the two last equations shows that 
negentropy (2.1 3) may be written in another man- 
ner, as a Kullback divergence: 

r , , ,  p A u )  
J(P,) = JpAm~og ~ du. (A.3) 

This proves, referring to (2.4), that 

7.A.4. Necessary and sufficient condition .for 
the last term of (2.14) to be zero 

The last term of (2.14) is zero when 

N 

det V = 1-[ Vii. (a.6) 

It is obvious that if V is diagonal, (A.6) is satisfied. 
Let us prove the reverse, and assume that (A.6) 
holds. Then write the Cholesky factorization of 
covariance V as V = LL*. This yields 

i 

Vii = ~ L2k (a.7) 
k = l  

and after substitution in (A.6) 

L ~ =  L 2 +  Z LZk - (A.8) 
i = 1  i = 1  k = l  

This relation is possible only if either some row of 
L is null or when all L~k are null. In other words, if 
V is invertible, it must be diagonal. [~ 

S ( p ~ )  >>. o, (A.4) 7.A.5. Proof of Theorem 7 

with equality iff q~x = Px almost everywhere. Again 
as a Kullback divergence between two densities 
defined on the same space, negentropy is invariant 
by an invertible change of coordinates. 

The second requirement of Definition 5 is satis- 
fied because the random variable is standardized. 
Regarding the third one, note first that from (2.4) or 
(2.5) the mutual information can cancel only when 
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all components are mutually independent. Again 
because of (2.4), the information is always positive. 
Thus, we indeed have ~(Ax)  <~ O, with equality if 
and only if the components are independent. 

At this stage a comment is relevant. In scalar 
blind deconvolution problems [21], in order to 
prove that the minimization of entropy was an 
acceptable criterion, it was necessary to resort to 
the property 

S(~a,x~) - S(x) >>, log(~a~2)/2, (A.9) 

satisfied as soon as the random variables xi are 
independently and identically distributed (i.i.d.) ac- 
cording to the same distribution as x. Directions for 
the proof of (A.9) may be found in [6]. In our 
framework, the proof was somewhat simpler and 
property (A.9) was not necessary. This stems from 
the fact that we are dealing with multivariate 
random variables, and thus multivariate entropy. 
In return, the components of x are not requested to 
be i.i.d. [] 

where xi are independent random variables. Then if 
X I  and Xz are independent, all variables xj for 
which ajb i ~ 0 are Gaussian. 

This theorem can also be found in [19; 49, p. 218; 
38, p. 89]. Its proof needs Lemmas 8 and 9, and also 
the following lemma published in 1953 by Darmois 
[193. 

L E M M A  20 (Darmois' lemma). Let f l , f z ,  ga and 
g2 be continuous functions in an open set U, and null 
at the origin. I f  

f l (au + cv) + f2(bu + dr) = gl(u) + g2(v), 

Vu, v~U,  

where a, b, c are non-zero constants such that 
ad va bc, then J](x) are polynomials of degree <~ 2. 

The proof of the lemma makes use of successive 
finite differences [38, 19, p. 5]. More general results 
of this kind can be found in Kagan et al. [38]. 

7.A.6. Proofs of  Lemma 8 and 9 

Lemma 8 was first proved by Marcinkiewicz in 
1940, but Dugu6 gave a shorter proof in 1951 [22]. 
Extensions of these lemmas may be found in Kagan 
et al. [38], but have the inconvenience of being 
more difficult to prove. Lemma 9 is due to Cram6r 
and may be found in his book of 1937 [18]. See also 
[38, p. 21] for extensions. Some general comments 
on these lemmas can also be found in [19]. [] 

7.A.8. Proof of  Theorem 11 

Implications (iii) =~ (ii) and (ii) ~ (i) are quite ob- 
vious. We shall prove the last one, namely (i) =, (iii). 
Assume z has pairwise independent components, 
and suppose C is not of the form AP. Since C is 
orthogonal, it necessarily has two non-zero entries 
in at least two different columns. Then by applying 
Theorem 10 twice, x has at least two Gaussian 
components, which is contrary to our hypo- 
thesis. [] 

7.A.7. Remarks on Theorem 10 

This theorem may be seen to be a direct conse- 
quence of a theorem due to Darmois [19]. This was 
unnoticed in [15]. 

T H E O R E M  19 (Darmois' theorem (1953)). De- 
fine the two random variables Xx and X2 as 

N N 

X l  = ~ aixi, Xz  = ~ bixi, 
i=l  i=1  

7.A.9. Proofs of  Corollaries 12 and 13 

To prove Corollary 12, assume that 
~tt(PAx) - - - -  ~(p~), where x has independent compo- 
nents. Then ~(Px) = 0 because of(2.4), which yields 
~(PAx) = 0. Next, again because of (2.4), Ax has 
independent components. Now Theorem I1 im- 
plies that A = AP, which was to be proved. On the 
other hand, the reverse implication is immediate 
since ~(PAPx) = kU(Px) is satisfied by any contrast; 
see Definition 5 and Theorem 7. 
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To prove Corollary 13, consider y = Mx and 
y = Fz. From Section 2.2, we may assume M is full 
rank, and since it has more rows than columns by 
hypothesis, as pointed out after (1.1), there exists 
a square invertible matrix, A, such that x = Az. In 
addition, since x and z have a regular covariance, it 
also holds that MA = F. Then, if 7 j is discriminat- 
ing, it implies by Definition 6 that A = AP, where 
A is a scaling diagonal matrix and P is a permuta- 
tion. Premultiplying by M this last equality event- 
ually gives F = MAP. [] 

7.A.lO. Sketch of the proof Jbr (3.4) 

Start with the expansion 

(1 + v)log(1 + v) 

= v + v2/2 - v3/6 + v4/12 + o(v4). (A.IO) 

Let the relation pe(x) = qS(x)(1 + v(x)). Then v(x) is 
obviously defined through relation (3.2), and the 
negentropy (2.13) can be written as 

d(p~) = f (x)(1 + v(x))log(1 + v(x))dx. (A.11) 

Inserting (A.10) into (A.11), and then replacing v(x) 
by its value given by (3.2), leads to a long expres- 
sion. In this expression, a number of simplifications 
can be performed by resorting to the following 
properties of Hermite polynomials. 

orthogonality with respect to the Gaussian 
kernel: 

f dp(u)hp(u)hq(u) = p! 6pq; (A.12) du 

- other less known properties that can be proved 
by successive integrations by parts: 

f (a h~(u)h4(u)du 3!3, 1 (u) (A. 3) 

f 
f 

q~(u)h 2(u)h6(u) du = 6!, 

(a(u)h~(u) du = 93"3! z. 

(A.14) 

(A.15) 

Then retaining only the terms at least of order 
O(rn-Z), according to (3.1), yields finally (3.4). [] 

7.A.11. Proof oJ" (3.5) 

If z = Ay, then 

= - fp~(Au)log{lAIp~(Au)}lAIdu, (m.16) S(p~.) 

which yields S(p~.) = S(p~) - ]A] log I A I. When A is 
orthogonal, IAI = 1 and S(p~,) = S(p~) as well as 
s(o,) = s ( ~ : ) .  [ ]  

7.A.12. Proof of  Lemma 15 

Lemma 15 and Theorem 16 also hold for unitary 
matrices. Since the proof has the same complexity, 
we shall derive it in this case. Denote by 0 the 
matrix obtained by replacing all its entries by their 
modulus. Consider a unitary matrix Q; then the 
matrix 2 0 is bistochastic (i.e. the sum of its entries 
in any row or column is equal to 1). Yet from the 
Birkhoff theorem, the set of bistochastic matrices is 
a convex polyhedron whose vertices are permuta- 
tions. Thus, 20 can be decomposed as 

2 Q = 2 ~ s P s ,  0~s>~0, ~ ' ~ s  = 1, (a.17) 
s s 

where P~ are permutation matrices. Denote by fi the 
vector of components luil. Then we have the in- 
equality 

112Qull ~< 1120~11 ~< ~ s l l P ~ l l  = Iluil. [] (A.18) 
s 

7.A.13. Proof of Theorem 16 

Since Q is orthogonal, we have IQi~l ~< 1 and, 
consequently, IrQijl <~ 12Qu[ as soon as r >/2, which 
can also be written as '0u  ~< 20u. Applying the 
triangular inequality gives 

i , j ,k  i , j ,k  

<~ ~ 2Q~iZQkjfii~j. (A.19) 
i , j ,k  

Then using Lemma 15 we get 

II~Qull 2 ~< 112Q~112 ~< I1~112 = [lull 2. (A.20) 
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Now consider a standardized random vector 
.~ having zero cross-cumulants of order r and de- 
note by u~ its marginal cumulants of order r. Be- 
cause of the multilinearity of cumulants (e.g. (3.7) or 
(3.8)), the very left-hand side of (A.20) is nothing 
else but ~(Q.~). So we have just proved with (A.20) 
that kU(Q.~)~< 7'(.~) for any orthogonal matrix Q. 
This shows that Theorem 16 is indeed a contrast, as 
soon as r ~> 2. 

Note that, for r = 2, the equality IIZ(2u IJ = Jl u II 
always holds, so that the contrast is actually degen- 
erated. It remains to prove that Theorem 16 is 
discriminating for any r > 2. 

Assume equality in (A.20). Then, in particular, 

1120~[I 2 - pIrO~ll 2 = 0 (A.21)  

for some vector u having at most one null com- 
ponent. But because of (A.19), this implies that 
all the differences involved in (A.21) individually 
vanish: 

(2Qit)~ - ('Oit)zi = O, Vi. 

Again, because fij, *(2u and 2Qu are positive, this 
yields 

( 2 0 ~ ) i -  ( r O l - I ) i  -~- O,  V i ,  (A .22)  

7.A.14. Proof  o f  (3.10) 

Since only standardized cumulants are involved, 
we only need consider orthogonal transforms. 
Again from the multilinearity of cumulants, we 
have 

2 
il ... ir Pl ... pr ql ... qr 

Qi~q, "'" Qirq.Fp, .. p l'q .... q., (A.24) 

Now put the first sum inside the two others, and 
remember that because Q is orthogonal we have 

2 QipQi, = 6p,. 
i 

Then (A.24) simplifies into 

f 2 , :  ~ E 6 , , q , . . . 3 ~ q f ,  .... p Fq .... q.,(A.25) 
pt ... Pr qt .., qr 

which is eventually nothing else but the sum 

f2~= 2 r 2 .... p~, 
Pl ... pr 

which does not depend on matrix Q. These results 
also hold in the complex case, as shown in 
[15]. 

and next 7.A.15. Proof  o f  (3.11) 

(2Qij _ '(~ij)uj - 0, Vi, j. (A.23) 

Consequently, for all values of i, and for at least 
p - 1  values of j, we have O 2 . = - ~  J Qu. Since 
0 ~< 0u ~ 1, 20u is necessarily either zero or one for 
those pairs (i, j). Now, a p x p doubly stochastic 
matrix 2() containing only zeros or ones in 
a p x ( p -  1) submatrix is a permutation. The 
matrix Q is thus equal to a permutation up to 
multiplication of numbers of unit modulus. This 
may be written as Q = DP, where D need only be 
diagonal with unit modulus entries. This proves the 
second part Of the theorem. 

This result also holds in the complex case, as 
demonstrated in [15], provided the following 
definition is used in Theorem 16: ~ (Q)=  
Z [ K u  ... i[ 2" [ ]  

~'~3,4 can  be shown to be invariant in exactly the 
same way as the proof of (3.10) was derived. In fact, 
replace cumulants K as functions of cumulants 
F and matrix Q, using the multilinearity (3.7) and 
(3.8). Note that if a row index of Q, say i, is present 
in a monomial of (3.11) then it appears twice. The 
sum over i can be pulled and calculated first. Then 
the two terms, say Qi. and Qib, disappear from 
(3.11) since, by orthogonality of Q, 

Qi.Qib  = 6.b. (A.26)  
i 

Then repeat the procedure as long as entries of 
Q are left in the expression of f23.4. This finally 
gives the expression 

: F a b c d  -~- 
abc abcd 
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3 y~ /'.bc/'.b.l"..:r.:. 
abcdef 

+ 4/'abc/',e, ~'bar/'..: - 6 ~ /',b, Fade/'bcde, 
abcde  

(A.27) 

which proves the invariance of ~3.4. Note that this 
would also be true if Q were complex unitary, if 
squares were replaced by squared moduli. [] 

7.A.16. Proof of Theorem 17 

It is sufficient to look at the derivatives of 
a monomial. So define 

¢(Q) = ~ I] K: , ,  (A.28) 
i ~ S  

where the notation ~*i stands for a repetition of 
index i ~ times and S is a finite set of integers. The 
differentiation yields 

d~,(Q) = Z Z dK: ,  [] Kp,~. (A.29) 
i aeS #¢:a 

Yet, we have two relations below: 

dK:i  = ~ ~', dQuKs.t,- lri ,  (A.30) 
J 

dQ = dA Q, (A.31) 

for some skew-symmetric matrix dA. Stationary 
points of ¢(Q) just cancel the derivative for all 
perturbations dQ, and thus from (A.31) for all skew- 
symmetric matrices dA. Write any skew-symmetric 
matrix as a linear combination of matrices A(p, q) 
defined by 

A ( p ,  q )ij = 6pi6qj - -  (~pj(~qi"  

Consequently, the cancellation of (A.29) is equiva- 
lent to 

Z a(Kq,,. ,,'v I-[ K~ .p-  Kv,,._l:q 1-I K~..) 

= 0, Vp, q. (A.32) 

Reasoning in the same way for d2~b(Q) shows that, 
at any stationary point, d2~k contains only terms of 
the form 

K~. s, K~,I~_I~. ~ and Kz. i , (a_2) . j ,  (A.33) 

in which still only two distinct indices enter. In fact, 
let us give just the expression of d2~b at stationary 

points: 

Z °~I(°~ - 2)K2q.,,-zrv H K~.p 

+ Kq,(, 1)*p H flKqao-1)*p H K:P 

- (~ - 1) ]-I K:p + (0~ - 2)K2,.,-2)*q ]-I Ko*q 

+ Kp.~, 1)'q H flKp.(~_l,.p I~ K:q 

- (• - -  1) H K:qt" (A.34) 
) 

As a conclusion, dO as well as  d2@ involve only 
pairwise cumulants. This proof would actually ex- 
tend to dN/. Let us end with an example. Suppose 
O(Q) El 2 . = KiliKui i, then S = {4, 3, 3} and (A.32) 
gives 

2 2 dO = o "*~ 4(KpppqKppp-  gpqqqKqqq) 

+ 6(KppqKpvpKpppp- KpqqKqqqKqqqq) = 0 

Vp, q. [] 

7.A.17. Proof of the contrast expression (4.2) 

The proof is a little tedious but raises no diffi- 
culty. Assume that the pair of components to be 
processed is (1,2) without restricting generality, 
and start with the definition of the contrast: 

tlJ(pz) = K2111 4- K2222. (A.35) 

Next substitute back in (A.35) expressions of Killl as 
functions of 0, taking (3.8) and (4.1) into account: 

(1 + 02)2K1111 = 1"222204 + 4F122z0 a + 6/112202 

+ 4Fl1120 + F1111, 

(1 + 02)2K2222  = / '111104 - -  4/ '1112 03 + 6/'1122 02 

- -  4 / '12220 + / '2222, (A.36) 

and group the terms such that the expression de- 
pends only on ~ = 0 - 1/0. For the sake of simpli- 
city, denote 

ao = F l l l l ,  a l  = 4/ '1112,  a2 = 6/ '1122, 
(A.37) 

a3 = 4/"1222, a4 = / '2222. 
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Then the contrast  (A.35) is of  the form (4.2) if we 
denote the coefficients as follows: 

b~ = ao ~ + a] ,  

b3 = 2 ( a 3 a 4 -  aoal) ,  

b2 = 4ao z + 4a ] + a 2 + a 2 + 2aoa2 + 2aza4, 

bx = 2 ( -  3aoal + 3aaa4 + ala4 - aoa3 (A.38) 

+ a2a3 - a la2)  

bo = 2(a 2 + a 2 + a 2 + a3 z + a4 z + 2aoa2 

+ 2ao a4 + 2ala3 + 2a2a4). [] 

7.A.18. Exact form of  Eq. (4.4) defining 
stationary points 

Taking the derivative of ~(~) given in (4.2) with 
respect to ~ yields directly (4.4) if we denote 

c,, = r1111r~l~2 -/'2222/'1222, 

2 2 
C 3 = I) - -  4 ( f f 1 1 1 2  ÷ / " 1 2 2 2 )  

- 3/"llZ2(r1111 + /"2222), 

c2 = 30, (A.39) 

C 1 = 3v - 2 / "1111 /"2222  - 3 2 / " 1 1 1 2 / ' 1 2 2 2  

- -  3 6 F 2 1 2 2 ,  

Co = -- 4(v + 4c4), 

with 

v = (/"11xl + r2222 - 6r~22)(/"~22~ -/"1112), 

V = /"2111 + /"2222 . 

7.A.19. Extension to the complex case 

In the complex case, the characteristic function 
can be defined in the s tandard  way, i.e. q~y(u)= 
E{exp[iRe(y*u)]} ,  but cumulants  can take 
various forms. Here we use / ] / j u = c u m { ~ i ,  
Y*, .v*, .vl} as a definition of  cumulants.  We con- 

sider plane rotat ions with real cosine and complex 
sine: 

O=s/c,  c 2 ÷ [ s l  2 =  1. (A.40) 

Ou tpu t  cumulants  given in the real case in (A.36) 
now take the following form [-15]: 

K l l l l / C  4 = F2222020 .2 ÷ 200"{1"2122 0 ÷ F 1 2 2 2 0 "  } 

÷ 41"112200" ÷ {/"2112 02 ÷ F1221 0 . 2 }  

+ 2 { F l x l 2 0 +  F11210"} + FllXl, 

(A.41) 

K 2 2 2 2 / c  4 

= f f l l l l 0 2 0  . 2  - -  200"{Ft1120 + F 1 1 2 1 0 " }  

+ 41"112200" + {/'2112 02 + / 1 2 2 1 0 * 2  } 

- 2{r2,220 + r~2220"} + r2222. 

Then the contrast  function, which is real by con- 
struction, can be calculated as a function of  the 
variable ~ = 0 - 1/0", since ~, is a rational function 
satisfying ~,(1/0") = ~O(0). It can be shown that the 
precise form of ~(~) is 

2 2 
~(~) = Z ~ b~j~i~*J/[~¢ * + 4] 2, (A.42) 

i = - 2  j = - 2  
0~<i+j~<4 

where the coefficients bij are defined as follows. 
Denote  for the sake of simplicity 

ao = / ' 1 1 1 1 ,  al = 4 / ' 1 1 1 2 ,  a2  = ff1122,  (A.43) 

I~ 2 ~ 2/- '2112 , a 3 ~ 4/"1222 , a 4  ~ /"2222.  

Then 

b22 = a~  + a L  

b21 = a4a* - aoal, b12 = b*l, 

b~l = 4(a 2 + a ]) + (a~a* + aaa~)/2 

+ 2a2(ao + a4), 

b2o = (a~ + a'2)/4 + 82(ao + a,),  bo2 = b~o, 

blo = az(a* - a,) + a2(a3 - a*)/2 

+ 3(a4a~ - aoal) + (a4al - aoa~), 

box = b~o, (A.44) 
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b2-1 = a2(a~ - ai)/2, b-12 = b*-1, 

b1-1 = 2a2a2 + (a 2 + a2)/2 + a,a* 

+ 2a2(ao + a4), b_ l l  = b*_l,  

b 2 _  2 = a2/2, b 22 = b * - 2 ,  

bo = 2a 2 + a , a *  + a2a'~ + 2a 2 + a3a* + 2a ] 

+ 4aoa4 + ala3 + ala3 "4- 4a2(ao + a4). 

The other coefficients are null. It may be checked 
that this exPression of the contrast coincides with 
(A.38) when all the quantities involved are real. 

Next, stationary points of ff can be calculated in 
various ways. One possibility is to resort to the 
equation 

K l l 1 1 K 1 1 1 2  - K 1 2 2 2 K 2 2 2 2 . =  0, (A.45) 

which is satisfied at any stationary point of contrast 
(A.35) (relation (A.32) indeed extends to the com- 
plex case). The other possibility is to differentiate 
(A.42) with respect to the modulus p and argument 
~o of 4, respectively, and set the derivatives to zero. 
We obtain a system of two polynomials of two 
variables, whose degree in p is equal to 4 and 3, 
respectively. The exact form of the system obtained 
is not given here for reasons of space. It can be 
solved by first performing an elimination on p us- 
ing successive greatest common divisors of coeffi- 
cients (which are polynomials in ei~). Next, rooting 
the polynomial in e i~' alone gives admissible values 
of q~. Then substitution in the original system 
allows one to obtain the corresponding admissible 
values of p. As in the real case, the pairs (p, tp) 
corresponding to maxima are selected by replacing 

by Re i~° in the expression of the contrast. 

Let us prove the converse implication. If 
e(A, A )=  0, then each term in (5.1) must vanish; 
this yields 

(a) ~ l D i j [ =  1, ( N ) ~ I D u I = I ,  
j i 

(c) ~ IDul z = 1, (d) ~ IDul z = 1. 
j i 

(A.46) 

The first two relations show that matrix b is bi- 
stochastic. Yet, we have shown in Appendix A.13 
that for any bistochastic matrix D, if there exists 
a vector ~ with real positive entries and at most one 
null component such that 

II D~ II = II 2 ~  II, (A.47) 

then/ )  is a permutation. Here the result we have to 
prove is weaker. In fact, choose as vector ~ the 
vector formed of ones. From (A.46) we have 

~ = 2 ~  = 1, (A.48) 

which of course implies (A.47). Thus, b is a permu- 
tation, and ,zi is of the expected form. [] 

7.A.21. Description o f  the 'validation' algorithm 

This algorithm aims to provide ultimate perfor- 
mances when statistics are perfectly known. It is 
supposed that M is known as well as the vector of 
source and noise cumulants, denoted by r~pppp in 
this appendix, 1 ~< p ~< 2N. The algorithm differs 
from Algorithm 18 only in that moments are de- 
duced from the current transformation and the 
source cumulants. 

7.A.20. Proof  o f  (5.2) and (5.3) 

Assume/]  = AAP. Then by definition the gap is 
a function of the matrix D' = P*D if we denote 
D = A- 1A (in fact, A A P  = A A P  = A_P). However, 
a glance at (5.1) suffices to see that the order in 
which the rows of D are set does not change the 
expression of the gap e(A, ,zi). 

A L G O R I T H M  21 (Validation). 
(1) Compute the SVD of the matrix 

(2) 
(3) 

(4) 

A A =  
[ ( 1 -  p)M #flI] as AA = VZU*, where V is 
N x p, S is p × p and U* is p x 2N, and p de- 
notes the rank of AA. Set L = VS. 
Initialize F -- L. 
Begin a loop on the sweeps: k = 1, 2 . . . . .  kmax; 

kmax ~< 1 + xfP" 
Sweep the p( p -  1)/2 pairs (i,j), according to 
a fixed ordering. For  each pair: 
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(a) Use the multilinearity relation (3.8) in order 
to compute the required cumulants F~(i,j) as 
functions of cumulants tcpppp, and matrices 
AA and F. 

(b) Find the angle ~ maximizing ~(Q(i.j)), 
where Q(~'J) is the plane rotation of angle a, 
a ~ ] -  ~/4, rt/4], in the plane defined by 
components {i,j}.  Use the expressions 
given in Appendices A~17 and A.18 for this 
purpose. 

(c) Accumulate F := FQ (i'j)*. 
(5) End of the loop on k if k = k . . . .  or if all estim- 

ated angles are small (compared to machine 
precision). 

(6) Compute the norm of the columns of F: 
Aii = II F..i II. 

(7) Sort the entries of A in decreasing order: 

A := PAP* and F : =  FP*. 

(8) Normalize F by the transform F ' =  F A -  1 

(9) Fix the phase (sign) of each column of F accord- 
ing to Definition 4(e). This yields F : =  FD. 

Source MATLAB codes can be obtained from the 
author upon request. [] 
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