N

N
N

HAL

open science

On the S-labeling Problem
Guillaume Fertin, Stéphane Vialette

» To cite this version:

Guillaume Fertin, Stéphane Vialette. On the S-labeling Problem. Proc. 5th Euroconference on Com-
binatorics, Graph Theory and Applications (EUROCOMB 2009), 2009, Bordeaux, France. pp.273-277.

hal-00416570

HAL Id: hal-00416570
https://hal.science/hal-00416570
Submitted on 15 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00416570
https://hal.archives-ouvertes.fr

On the S-Labeling problem

Guillaume Fertin

Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241
Université de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 - France
guillaume.fertin@univ-nantes.fr

Stéphane Vialette

IGM-LabInfo, CNRS UMR 8049, Université Paris-Est,
b Bd Descartes 77454 Marne-la-Vallée, France
vialette@univ-mlv.fr

Abstract

Let G be a graph of order n and size m. A labeling of G is a bijective mapping
0:V(G) — {1,2,...,n}, and we call ©(G) the set of all labelings of G. For any
graph G and any labeling § € ©(G), let SL(G,0) = >_ cp() min{f(u) : u € e}. In
this paper, we consider the S-LABELING problem, defined as follows: Given a graph
G, find a labeling § € O(G) that minimizes SL(G,#). The S-LABELING problem
has been shown to be NP-complete [Via06]. We prove here basic properties of any
optimal S-labeling of a graph G, and relate it to the VERTEX COVER problem.
Then, we derive bounds for SL(G, 6), and we give approximation ratios for different
families of graphs. We finally show that the S-LABELING problem is polynomial-
time solvable for split graphs.

Due to space constraints, proofs are totally absent from this paper. They will be
available in its journal version.

1 Preliminaries and Basic Properties

We assume readers have basic knowledge about graph theory [Die00] and we
shall thus use most conventional terms of graph theory without defining them
(we will only recall basic notations here). Let G be a graph. We write V(G)
for the set of vertices, E(G) for the set of edges, and A(G) (or A, if it is clear
from the context) for the maximum degree of G. The order (resp. size) of G is



its number of vertices (resp. edges). The size of a minimum cardinality vertex
cover of G is denoted 7(G). Let G be a graph of order n and size m. A labeling
of G is a bijective mapping 0 : V(G) — {1,2,...,n} and we denote by O(G)
the set of all labelings of G. For any graph G and any labeling 6 € O(G), we
let SL(G, 0) stand for ) gy min{f(u) : u € e}. To abbreviate notations, we
write SL(G) for min{SL(G, 0) : 0 € O(G)}, and [k] for {1,2,...k}, where k is
a positive integer. We are now in position to formally define the S-LABELING
problem we are interested in: Given a graph G of order n, find a bijective
mapping 6 : V(G) — [n] that minimizes SL(G, 6).

Optimal S-labelings of special graphs are informative. It can be easily

seen that SL(K,) = #n(n* — 1) is the (n — 1)-th tetrahedral number. Indeed,

SL(KR) = 2icicn1 (0 — 1) = Xicicn1 2o1<jeid = 2iicn—1 Liy where T
is the i-th trlangular number. Furthermore, SL(K,,,) = “2%(1 + min{n, m}).
Also, SL(C,) = — SL(P,4y) if n is even, and SL(C,) = @+ —
SL(P,11) if n is odd.

For any graph G and any labeling 6 € ©(G), we write X (G, #) for the set
of minimum vertices of G' with respect to 6, i.e., X(G,0) = {u : I{u,v} €
E(G) s.t. (u) < 6(v)}. Straightforward, yet crucial, properties of S-labelings
are given in the following two lemmas.

Lemma 1.1 For any graph G and any labeling 6 € ©(G), X (G, 0) is a vertex
cover of G.

Lemma 1.2 For any graph G of order n and size m, there exists a positive
integer t, T(G) < t < m, and positive integers a; < A, 1 < i < t, satisfying
(1) Y ojcicii = m, (i) a; > a1 for any 1 < ¢ <t —1, and such that
SL(G) = X cicrtiai

In the light of Lemma 1.1, it would be tempting to claim that 7(G) =
|X(G,0)| for any (or at least one) § € O(G) such that SL(G,0) = SL(G).
Unfortunately, this is not true as shown by considering the (4, 2)-bunch graph
(4 paths of length 2 having the same end vertex, see Figure 1). The above
remark and example raise the question whether |X(G 91 can be bounded for at
least one optimal S-labeling 6 of G. We have the following result.

Lemma 1.3 For any graph G of maximum degree A, there exists an optimal

S-labeling 0 of G such that X (Cé)a‘ < V2A —

Lemma 1.4 For any graph G of order n and size m,

m
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Figure 1. The (4, 2)-bunch graph : (a) the Minimum Vertex Cover of cardinality 4
and its associated S-labeling 6 such that SL(G,0) = 20 ; (b) an optimal S-labeling
', achieving a sum of 18, such that | X (G, 6")] = 5. Labels that are not taken into
account in the sum are not drawn.

We note that there exists families of graphs for which the upper bound

(resp. the lower bound) is reached. Indeed, it can be seen that % =

gn(n? — 1) = SL(K,), since in that case m = in(n — 1). Similarly, for any

even n, SL(C,,) = "212” = AL%J%%JH), since A =2 and n = m in that case.
However, in the rest of this paper, we shall use another lower bound than
the one given in Lemma 1.4 above. More precisely, we will use the following

weaker —but simpler— result, which will prove useful in the next section.

Lemma 1.5 For any graph G of size m and mazximum degree A,

m(m + A)
SL(G) = TN

2 Approximation algorithms

2.1 Deterministic approrimation algorithms

In this section, we are interested in giving deterministic approximation algo-
rithms for the S-LABELING problem, for different families of graphs. Since
the upper bound from Lemma 1.4 is obtained by the probabilistic method, it
cannot be exploited in this context. However, we have the following results.

Lemma 2.1 For any graph G of order n and size m, there exists a (determin-
istic) polynomial-time algorithm for computing a labeling 0 of G that satisfies
SL(G,0) < 7.

Corollary 2.2 For any graph G of order n and size m, SL(G) < "5*.

Thanks to the above corollary and to the lower bound given in Lemma 1.5,
we have the following three propositions.



Proposition 2.3 There exists a polynomial-time deterministic algorithm for
the S-LABELING problem for reqular graphs, whose approrimation ratio is 2.

Proposition 2.4 There exists a polynomial-time deterministic approximation
algorithm for the S-LABELING problem for trees of mazimum degree A, whose
approximation ratio is A.

Proposition 2.5 There exists a polynomial-time deterministic algorithm for
the S-LABELING problem for graphs of mazimum degree A, whose approxima-
tion ratio is 2.

2.2 Randomized approximation algorithms

In this section, we are able to provide better approximation ratios than in
Propositions 2.3 to 2.5. Indeed, if one does not ask for deterministic algo-
rithms, then the upper bound from Lemma 1.4 can be exploited, and leads to
the following three propositions.

Proposition 2.6 There exists a polynomial-time randomized approximation
algorithm for the S-LABELING problem for reqular graphs, whose expected ap-
4

proximation ratio s 3.

Proposition 2.7 There exists a polynomial-time randomized approximation
algorithm for the S-LABELING problem for trees of maximum degree A, whose

: - a2
expected approximation ratio is =

Proposition 2.8 There exists a polynomial-time randomized approximation

algorithm for the S-LABELING problem for graphs of maximum degree A,

whose expected approximation ratio is %.

3 A polynomial-time algorithm for split graphs

We show in this section that the S-LABELING problem is polynomial-time
solvable for split graphs. A split graph is a chordal graph with a chordal
complement [Gol80]. The vertices of a split graph can be partitioned into a
clique K and a stable set S, although this partition may not be unique.

Lemma 3.1 Let G be a split graph with clique K and stable set S. There
exists an optimal S-labeling 6 € O(G) such that: (i) 1 < 0(u) < |K]| for all
u e K, and (i) for any distinct u,v € K, 0(u) < 0(v) if dg(u) > da(v).

Combining the above lemma with any linear-time recognition algorithm
for split graphs [Gol80] (if we assume that the partition V(G) = K U S is not



part of the input), we obtain the following result.

Proposition 3.2 The S-LABELING problem for split graphs is polynomial-
time solvable.

4 Conclusion

In this paper, we have provided a short study of the S-LABELING problem,
which was initially proved to be NP-complete in [Via06]. We have extracted
some basic properties and bounds for optimal S-labelings, before proving dif-
ferent specific results for different classes of graphs. Though this work is
still in progress, we would like to point several open problems here, such as:
(1) What is the complexity of the S-LABELING problem for trees 7 for bi-
partite graphs 7, (2) Does there exist a PTAS for the S-LABELING problem,
for any graph G 7 for specific families of graphs 7, (3) Does there exist a
constant ratio approximation algorithm for the S-LABELING problem, for any
graph G 7 for specific families of graphs 7 More specifically, is it possible to
improve the approximation ratios given in Section 2 7, and (4) Can we obtain

a better bound than v/2A — 1 for % ?
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