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Abstract. Combining Grid and P2P technologies can be expladeprovide high-level
data sharing in large-scale distributed environsieHbwever, this combination must
deal with two hard problems: the scale of the nétvemd the dynamic behavior of the
nodes. In this paper, we present our solution inPAP(Atlas Peer-to-Peer
Architecture), a data management system with hégkdl services for building large-
scale distributed applications. We focus on datslability and data discovery which
are two main requirements for implementing largalescGrids. We have validated
APPA's services through a combination of experiagon over Grid5000, which is a
very large Grid experimental platform, and simuaatusing SimJava. The results show
very good performance in terms of communicatiort aosl response time.

1. Introduction

Grid technology has been successful at providiggével resource sharing services
for virtual organizations, typically formed by geaghically distributed institutions
and companie$l2]. As Grid technology is evolving to supportdarscale virtual
organizationsg.g. with very large numbers of members, the requiraméor data
management get harder. Data management in Gridse®asinitially achieved using
distributed file systems for scientific computingpéications. Recently, in the context
of the standard Open Grid Services Architecture $8J{30], the need for high-level
database access has been recognized. This led teetinition of OGSA-DAI[31], a
service-based architecture for database accesstwvé&rid. OGSA-DAI extends the
distributed database architecti82] to provide distribution transparency using Web
services. However, as in distributed database mgsté relies on some centralized
directory. This may make it inappropriate for vatwrganizations which are highly
dynamic, with large numbers of autonomous membdrighwmay join or leave the
Grid very often. Examples of such dynamic virtueganizations include home users
of a large image editing application, schools imedl in a joint project, or small
businesses organized as a federation. In thesepéesnthe members may wish to
collaborate simply using their individual machingghout relying on a centralized
Web site and database.

1 Work partially funded by ARA “Massive Data” of thé&rench ministry of research and the
European Strep Grid4All project.
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To support dynamic, scalable virtual organizatidhse, main requirements for Grid
data management are to scale up to large numberedes and support autonomic
and dynamic behavior. To some extent, these rageinés have been addressed by
Peer-to-peer (P2P) systems which adopt a compldtdgntralized approach to data
sharing. Popular examples of P2P systems such atel@(15] and Freenefll]
have millions of users sharing petabytes of dater dlie Internet. However, most
deployed P2P systems are quite simpteg.(file sharing) and support limited
functions €.g.keyword search). Most of the research on P2P mgstes focused on
dealing with the dynamic behavior of nodes (alsledapeers) and improving the
performance of query routing in the unstructuredtewyns which rely on flooding.
This work led to structured solutions based onrithisted hash tables (DHTE.g.
CAN [34] and Chord39], or hybrid solutions with super-peers thatardsubsets of
peerg27].

The complementary nature of Grid and P2P compuwtimggests that the two are
likely to converge over tim¢l3]. Grids can take advantage of P2P techniques to
support large-scale and dynamic virtual organizegtioOn the other hand, P2P
systems can exploit Grid techniques to support -feghl services, deal with
semantically rich datae(g. XML documents, relational tables, etc.), providenare
secure and trusted environment for users, etcowih this convergence, P-Grjl]
and Organic Grid8] propose self-organizing and scalable Grid s=wion top of a
P2P network. The expected result of such convesgena new class of technologies
which address scalability, high data availabilitgnd self organization, while
providing a persistent and standardized infrastingctor advanced applications.

Such convergence is also having impact on Griddstatization. One problem
with OGSA is that it does not support the dynangbdwvior of nodes, which is typical
of P2P. For instance, a node's IP address may ehduag to mobility or firewall
network address translation. To support the spefafitures of P2P, OGSA-P3#9]
has been recently proposed to revisit OGSA: scpJedynamic data discovery, data
availability, group support, location awarenessysi¢y, and connectivity.

Providing an infrastructure for advanced data mansent in large-scale Grid or
P2P systems is quite challenging because of th&e swfathe network and the
autonomy and unreliable nature of nodes. Most tectes designed for distributed
database systems which statically exploit schendanatwork information no longer
apply. New techniques are needed which should bentialized, dynamic and self-
adaptive and satisfy the requirements of dynamidsGr

In this paper, we present our solution in APPA gAtPeer-to-Peer Architecture), a
data management system for large-scale P2P and @pptications. APPA has a
network-independent architecture that can be implgad over various overlay
networks. This allows us to exploit continuing pregs in such networks. APPA uses
novel solutions to provide high level data manag#mservices in large-scale
distributed environments. We focus on data avditgtand data discovery which are
two main requirements for supporting OGSA-P2P. Waveh validated APPA's
services through a combination of experimentatioer dsrid5000[17], a very large
Grid experimentation platform in France, and sirtiala using SimJava[18].
Furthermore, we have implemented APPA on top of AXI9] and other P2P
networks such as CARB4] and Chord39]. The results show very good performance
in terms of communication cost and response time.
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This work is done in the context of the Grid4Alir&pean projedtl6] whose goal
is to democratize Grid technology by enabling ailds of usersg.g.domestic users,
schools, small enterprises) to share their ressurd® deal with dynamicity,
autonomy and scaling issues, Grid4All uses P2mtgabks.

The rest of the paper is organized as follows. i&ec® describes the APPA
architecture. Section 3 introduces APPA'’s solutmpersistent data management and
support for updates. Section 4 describes high-lelgh replication and distributed
semantic reconciliation. Section 5 describes qpeogessing in APPA. In Section 6,
we first describe the validation of APPA over JXT@hord and CAN, and then we
present a performance evaluation of APPA's servibesugh experimentation and
simulation. Section 7 discusses related work. 8e@iconcludes.

2. APPA Architecture

APPA (Atlas P2P Architecture) has a layered serb@msed architecture (see Figure
1). Besides the traditional advantages of usingvices (encapsulation, reuse,
portability, etc.), this enables APPA to be networttependent so it can be
implemented over different structureeld. DHT) and super-peer P2P networks. The
main reason for this choice is to be able to explpid and continuing progress in
such networks. Another reason is that it is unjikblat a single network design will
be able to address the specific requirements ofynuliffierent Grid applications.
Obviously, different implementations will vyield €&fent trade-offs between
performance, fault-tolerance, scalability, qualitfyservice, etc. For instance, fault-
tolerance can be higher in DHTs because no nodesiagle point of failure. On the
other hand, through index servers, super-peer regstnable more efficient query
processing. Furthermore, different P2P networksldcdie combined in order to
exploit their relative advantages,g. DHT for key-based search and super-peer for
more complex searching.

There are three layers of services in APPA: P2Rvarét basic services and
advanced services.

P2P network. This layer provides network independence with isess that are

common to different P2P networks:

» Peer id assignmentiassigns a unique id to a peer using a specifibodee.g.a
combination of super-peer id and counter in a siyeer network.

» Peer linking: links a peer to some other peerg.by locating a zone in CAN.

» Key-based storage and retrieval (KSR):stores and retrieves kef; data) pair in
the P2P networke.g. through hashing over all peers in DHT networksusing
super-peers in super-peer networks. An importapéasof KSR is that it allows
managing data using object semantios. (vith KSR it is possible to get and set
specific data attributes).

» Key-based timestamping (KTS):generates monotonically increasing timestamps
which are used for ordering the events occurrethénP2P system. This service is
useful to improve data availability.
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Fig. 1. APPA Architecture

Peer communication:enables peers to exchange messages. It also alpesr to
call a remote serviceg.g. a Web service using SOAP, which is provided by
another peer over the P2P network.

Basic services.This layer provides elementary services for theaaded services
using the P2P network layer:

Persistent data management (PDM):provides high availability for thékey,
data) pairs which are stored in the P2P network.

Communication cost management: estimates the communication costs for
accessing a set of data items that are storedeifP#P network. These costs are
computed based on latency and transfer rates,haydare refreshed according to
the dynamic connections and disconnections of nodes

Group membership managementallows peers to join an abstragbup, become
membersof the group and send and receive membershipicaitdns. This is
similar to group communicatidii][10].

Advanced servicesThis layer provides advanced services for semalhticich data
sharing including schema management, replicd2di{25] , query processinf][3],
security, etc. using the basic services.

APPA provides support for the requirements speatifig OGSA-P2P as follows:
Scale up:this is the most important requirement of a P2&esy and is met by
all services of APPA.

Dynamic data discovery:it is needed for looking up the desired data & @rid
system. In APPA, this requirement is supported ipaig the Query Processing
service.

Data availability: P2P environments are very dynamic, and the nodgsleave
the system at any time, thereby the data stord@bean get unavailable. So, we
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need some mechanisms for improving data availgbilin APPA, this
requirement is satisfied by the PDM and Replicaservices.

»  Group support: groups are an essential mechanism to collect ggabgate a set
of resources or users with common characteristigether. In APPA, the Group
Membership Management service provides suppogrmups.

* Location awareness:it allows the applications to use location infotioa to
optimize their communications over the network AIRPA, the Communication
Cost Management service provides support for lonadiwareness.

e Security: P2P systems bring a set of unique notions of tarsl security
requirements which must be dealt with. In APPA, tBecurity service is
responsible for satisfying these requirements. Wbk on this service is ongoing
and we are using mechanisms such as those propog&dand[38].

e Connectivity: to enable decentralized sharing of computing nes®)
collaborative workspaces, information and servidgeis, necessary for the nodes
at the edge of the network to communicate with ezblr and with the services
at the heart of the network. In APPA, this requiesinis supported by the Peer
Linking and Peer Communication services.

3. Persistent Data Management

One of the main characteristics of the systems ddeess is the dynamic behavior of
nodes which can join and leave the system frequeatlanytime. When a node gets
offline, the data it stores becomes unavailableifmiprove data persistence, we can
rely on data replication by storinds,(datg pairs at several nodes. If one node is
unavailable, the data can still be retrieved frdm dther nodes that hold a replica.
However, the mutual consistency of the replicasraipdates can be compromised as
a result of nodes leaving the network or concurtgrdates. Therefore, some of the
replicas may not beurrent i.e. they do not reflect the latest data stored ith the
network. For some applicationse.§. agenda management, bulletin boards,
cooperative auction management, reservation marexgemic.) having the ability to
get a current replica is very important.

In APPA, the PDM service provides data persisteaheeugh replication by using
multiple hash functions. It also addresses effityetihe problem of retrieving current
replicas based on timestamping. For doing its taBk¥M takes advantage of KSR
and KTS which are two services in the lower layleABPA architecture.

In this section, we first discuss how PDM provid#sta persistence, then we
introduce the concept of timestamping, and finally present the update operations
which are the main operations of the PDM service.

3.1 Data Persistence Using Multiple Hash Functions
In APPA, the KSR service maps a Keyo a hodep using a hash function We call

p theresponsible for k wrt. hand denote it bysp(k, h) A node may be responsible
for k wrt. a hash functioin; but not responsible fdc wrt. another hash functioh,.
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There is a set of hash functioHswhich can be used for mapping the keys to nodes.
The KSR service has an operatiput,(k, data)that, given a hash functidw"H, a
data itemdata and its associated kdy stores the paitk, data) at rsp(k,h) This
operation can be issued concurrently by severaksio@here is another operation
get(k) that retrieves the data associated Withored atsp(k,h)

To improve data persistence, PDM stores each dadaita associated key at
several nodes using a set of hash functidpSH. the setH, is called the set of
replication hash functions The number of replication hash functions, /H, /, can
be different for different networks. For instange,a P2P network with low node’s
availability, data availability can be increasethgsa high value ofH, / (e.g.20).

Over time, some of the replicas stored viitht some nodes may get staey.due
to the absence of some nodes at update time. Tableeto return current replicas,
before storing a data, PDM “stamps” it with a l@jitimestamp which is generated
by KTS. Therefore, given a data itethata and its associated kdy /h/H,, PDM
replicates the paitk, {data, timestamp}pt rsp(k,h) Upon a request for the data
associated with a key, PDM returns one of the capliwhich are stamped with the
latest timestamp.

3.2 Timestamping

To generate timestamps, APPA uses KTS which isstilolited service. The main
operation of KTS iggen_ts(k)which, given a key, generates a real number as a
timestamp for kThe timestamps generated by KTS haventtmmotonicityproperty,
i.e. two timestamps generated for the same key are toically increasing. In other
words, for any two timestamys; andts, generated for a kdyrespectively at timeg
andt,, if t;< t, then we havés< ts,. This property permits us to order the timestamps
generated for the same key according to the timehath they have been generated.

KTS generates the timestamps in a completely Higed fashion, using local
logical counters. At anytime, it generates at nmw timestamp for a kely Thus,
regarding the monotonicity property, there is altarder on the set of timestamps
generated for the same key. However, there is tal trder on the timestamps
generated for different keys. In additiongen_ts KTS has another operation denoted
by last_ts(k)which, given a ke, returns the last timestamp generateckfoy KTS.

The idea of timestamping by KTS is like the idealafa storage in DHTs which is
based on having a responsible for storing each aladadetermining the responsible
dynamically using a hash function. In KTS, for ed@y, there is a responsible of
timestamping which is determined dynamically usingash function. Due to space
limitations, we don not describe the details of KTS

3.3 Update Operations

The main operations of the PDM service imsert andretrieve operations. The detail
of these operations is as follows.

Insert(k, data): replicates a data and its associated key in thgonk as follows.
First, it uses KTS to generate a timestampkfa.g.ts. Then, for eacih/H; it stores



Data Management in the APPA System 7

the pair(k, {data, ts})at the node that isp(k,h).When a nod@, which is responsible
for k wrt. one of the hash functions involvedHhty, receives the paiik, {data, ts}) it
comparegs with the timestamp, sag,, of its data (if any) associated wkhif ts>ts,,

p overwrites its data and timestamp with the newsoriRecall that, at anytime,
KTS.gen_ts (kyenerates at most one timestampkioand different timestamps fdr
have the monotonicity property. Thus, in the caseancurrent calls tansert(k,
data), i.e.from different nodes, only the one that obtains l#test timestamp will
succeed to store its data in the network.

Retrieve(k): retrieves the most recent replica associated kviththe network as
follows. First, it uses KTS to determine the latixstestamp generated fér e.g.ts;.
Then, for each hash functidiH,, it uses the KSR operatiayet,(k) to retrieve the
pair {data, timestampJstored along wittk at rsp(k,h) If timestampis equal tots,
then the data is a current replica which is retdrag output and the operation ends.
Otherwise, the retrieval process continues whileingain data,, the most recent
replica. If no replica with a timestamp equalt$pis found {.e. no current replica is
found) then the operation returns the most reagritaa availablei.e. data,,.

4. Data Replication

Data replication is largely used to improve datailability and performance in
distributed systems. In APPA, PDM is a low-levelrviege that employs data
replication to improve the availability of pairkey, data) stored in the network. For
solving update conflicts by taking into account laggtion semantics, APPA provides
a higher-level replication service. This serviceais optimistic solution35] that
allows the asynchronous updating of replicas shahdpplications can progress even
though some nodes are disconnected or have fdiked.result, users can collaborate
asynchronously. However, concurrent updates mayecaaplica divergence and
conflicts, which should be reconciled.

In this section, we present the DSR algorithm (filbsted Semantic Reconci-
liation) [24][25], a dynamic distributed version of the semangiconciliation provi-
ded by IceCub¢21][33]. Unlike IceCube, DSR is based on a distribuaed parallel
approach. With DSR, a subset of nodes, called mievs, are selected to concur-
rently reconcile conflicting updates. DSR workspedy over clusters, P2P, and Grid
systems €.g. we have implemented a DSR prototyj2d] and validated it on the
Grid5000 platform). We now describe the main teand assumptions we consider
for DSR followed by the main DSR algorithm itself.

We assume that DSR is used in the context of aalidcommunity which requires
a high level of collaboration and relies on a readde number of nodes (typically
hundreds or even thousands of interacting u$é5§)

In our solution, arobjectis the minimal unit of replication in a systene. it can
be a relational table, an XML document, etc. We chbject itema component of the
object,e.g.a tuple in a relational table or an element ilXdfi. document. Areplica
is a copy of an objecte(g. copy of a relational table or XML document) whie
replica itemis a copy of an object itene.g.a copy of a tuple or XML element). We
assumanulti-mastemeplication,i.e. multiple replicas of an obje®, notedRy, Ry, ...,
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R, are stored in different nodes which can read otevR,, R, ..., R,. Conflicting
updates are expected, but it is assumed that tpcaton tolerates some level of
replica divergence until reconciliation.

In order to update replicas, nodes prodteative actions (henceforth actions)
that are executed only if they conform to the aggilon semantics. Awmction is
defined by the application programmer and reprasemt application-specific
operation €.g.a write operation on a file or document, or a bas® transaction). The
application semantics is described by means of trmings between actions. A
constraintis the formal representation of an applicationanmant €.g. an update
cannot follow a delete).

On the one hand, users and applications can cceatgdraints between actions to
make their intents explicit (they are callader-defined constraintsOn the other
hand, the reconciler node identifies conflictindiats, and asks the application if
these actions may be executed together in any gcdermutativeactions) or if they
are mutually dependent. New constraints are credtedrepresent semantic
dependencies between conflicting actions (theycalledsystem-defined constraits
Details about the language used to express comstican be found if83].

A clusteris a set of actions related by constraints, andhedulds an ordered list
of actions that do not violate constraints.

With DSR, data replication proceeds basically dkvies. First, nodes execute
local actions to update replicas while respectisgridefined constraints. Then, these
actions (with the associated constraints) are dtamethe network using the PDM
service. Finally, reconciler nodes retrieve actiamsl constraints from the network
and produce a global schedule, by performing conflisolution in 5 distributed steps
based on the application semantics. This schedulecally executed at every node,
thereby assuring eventual consistefi@y]. The replicated data is eventually consis-
tent if, when all nodes stop the production of restions, all nodes will eventually
reach the same value in their local replicas.

In order to avoid communication overhead and dudyteamic connections and
disconnections, we distinguishplica nodeswhich are the nodes that hold replicas,
from reconciler nodeswhich is a subset of the replica nodes that gp#gte in
distributed reconciliation.

We now present DSR in more details. We first intrael the reconciliation objects
necessary to DSR. Then, we present the five steffedSR algorithm. Finally, we
describe how DSR deals with dynamic connectionsdiscbnnections.

4.1 Reconciliation Objects

Data managed by DSR during reconciliation are lbgldeconciliation objectghat
are stored in the network giving the object idéettif To enable the storage and
retrieval of reconciliation objects, each recomtibn object has a unique identifier.
DSR uses five reconciliation objects:
» Action log R (noted LR): it holds all actions that try to update any repl{noted
Ry, R, ..., R) of the objecR.
» Action groups of R (noted Gg): actions that manage a common object item are put
together into the same action group in order toblenghe parallel checking of
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semantic conflicts among actions (each action gaaupbe checked independently
of the others); every objeB may have a set of action groups, which are stored
theaction groups of Reconciliation object.

» Clusters set (notedCS): all clusters produced during reconciliation areluded in
theclusters seteconciliation object; a cluster is not associatétt an object.

» Action summary (noted AS): it comprises constraints and action memberstaps (
action is anembeirof one or more clusters).

» Schedule (notedS): it contains an ordered list of actions.
The node that holds a reconciliation object isezhlthe provider nodefor that

object €.g.schedule provideis the node that currently hol&s

4.2 DSR Algorithm

DSR executes reconciliation in 5 distributed stepshown in Figure 2.

Actions Extended

Clusters

Integrated Schedule

Clusters

4
Clusters
Integration

5
Clusters
Ordering

1
Actions
Grouping

2
Clusters
Creation

3
Clusters
Extension

Fig. 2. DSR Steps

» Step 1 — actions groupingfor each objecR, reconcilers put actions that try to
update common object itemsRfinto the same group, thereby producg

e Step 2 — clusters creationreconcilers split action groups into clustersemanti-
cally dependent conflicting actions (two acticmsanda, are semantically inde-
pendentf the application judge safe to execute them tiogge in any order, even if
a; and a, update a common object item; otherwisg,and a, are semantically
dependent Clusters produced in this step are stored inctheters set, and the
associated action memberships are included indti@rasummary.

» Step 3 — clusters extensiaruser-defined constraints are not taken into agtcu
clusters creation. Thus, in this step, reconciettend clusters by adding to them
new conflicting actions, according to user-definemhstraints. The associated
action memberships are also included in the acionmary.

» Step 4 — clusters integration clusters extensions lead to the overlap of ciaste
actions (an overlap occurs when different clustenge common actions, and this is
identified by analyzing action memberships). Insthstep, reconcilers bring
together overlapping clusters, thereby producitegrated clusters.

» Step 5 — clusters orderingin this step, reconcilers produce the global daleby
ordering actions of integrated clusters; all replodes execute this schedule.

At every step, the DSR algorithm takes advantagdatd parallelismi.e. several
nodes perform simultaneously independent activitiesa distinct subset of actions
(e.g. ordering of different clusters). No centralizedtemion is applied to partition
actions. In fact, whenever a set of reconciler soguest data to a provider, the
provider node naively supplies reconcilers with wththe same amount of data (the
provider node knows the maximal number of recorgileecause it receives this
information from the node that launches reconddiat
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DSR avoids network overhead by minimizing the nurdfeexchanged messages
and the amount of transferred data. The numberessages is lineavrt. the number
of reconcilers, and the number of reconcilers islame. Concerning data transfer,
most of messages carry only data identifierg.(actions’ identifiers) instead of the
entire data items.

4.3 Managing Dynamic Disconnections and Reconnecti®

Whenever distributed reconciliation takes place,set of nodesNy may be
disconnected. As a result, the global schedule at applied by nodes oNg.
Moreover, actions produced I nodes and not yet stored in the network via APPA
PDM service are not reconciled. In order to assewentual consistency despite
disconnections, the APPA replication service prdseas follows. Each node locally
stores the identifier of the last schedule it hasally executed (note®,s). In
addition, the replication service stores in thenoek (using the APPA PDM service)
a chronological sequence of schedules’ identifpecgluced by reconciliations, which
is calledschedule historyand notedH = (Sg1, Sa2, ---» San)- AS any reconciliation
object, the schedule history has a unique identifighe application knows this
identifier and can provide it to the reconciler essdWhen a node of Ny reconnects,

it proceeds as follows: (I) checks whetheg,; is equal taSq,, and, if not (;e. n's
replicas are out of dateh locally applies all schedules that follo8s in the H
history; (2) actions locally produced byand not yet stored in the network using the
APPA PDM service are put into the involved actiogd for later reconciliation.

At the beginning of reconciliation, a set of corteekc replica nodes must be
allocated to proceed as reconciler nodes. To ma@nreconciliation time, such
allocation should be dynamic,e. nodes should be allocated based on the
reconciliation contextq.g.number of actions, number of replicas, networkpprtes,
etc.). We elaborated a cost model and the assdcialgorithms for allocating
reconciler nodes based on communication c@8§26]. These algorithms take into
account cost changes due to dynamic disconnediahseconnections.

5. Query Processing

Query processing in APPA deals with schema-basestiepi and considers data
replication. In this section, we first present sohemapping in APPA, and then we
describe the main phases of query processing. Weiatroduce support for Top-k
queries as a way to reduce network communication.

5.1 Schema Mapping

In order to support schema-based queries, APPA meat with heterogeneous
schema management. In systems composed of autosomodles, a node should be
able to express queries over its own schema withelying on a centralized global
schema as in data integration syst¢A@j[43]. Several solutions have been proposed
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to support decentralized schema mappieg,. [27][41]. For instance, Piazzgil]
proposes a general, network-independent, solutiahgupports a graph of pair-wise
mappings between heterogeneous node schemas. Ag#3fausimpler solution that
takes advantage of the collaborative nature ofaphications. It assumes that nodes
that wish to cooperate.g. for the duration of an experiment, agree o@@nmon
Schema DescriptiofCSD). Given a CSD, a node schema can be speciaty
views. This is similar to the local-as-view approdn data integratiofi23] except
that, in APPA, queries at a node are expressedistghie views, not the CSD.

When a node decides to share data, it needs toed@fnode schema, only once, to
map its local schema to the CSD. To simplify thecdssion, we use the relational
model (APPA uses XML) and the Datalog-like notatimin[40] for mapping rules.
Thus, a node schema includes node mappings, oneqarrelation. Given 2 CSD
relation definitiong; andr,, an example of node mapping at nqds:

p:r(A,B,D) [Jcsd:n(A,B,C), csd:(C,D,E)

In APPA, mapped schemas are stored in the netwsinguhe PDM service.

5.2 Query Processing Phases

Given a user query on a node schema, the objetite find the minimum set of
relevant nodes (query matching), route the queryhtsse nodes (query routing),
collect the answers and return a (ranked) listnsfagers to the user. Since the relevant
nodes may be disconnected, the returned answerbenagomplete.

Query processing proceeds in four main phasegiuéy reformulation, (2) query
matching, (3) query optimization and (4) query daposition and execution.

Query reformulation. The user query (on the node schema) is rewrittenquery
on CSD relations. This is similar to query modifioa using views. For instance, the
following query at node:

select A,D from r where B=b

would be rewritten on the CSD relations as:

select A,D fromyr, where B=b and .C=r,.C

Query matching. Given a reformulated quel®, it finds all the nodes that have
data relevant to the query. For simplicity, we asswonjunctive queries. Letbe the
set of nodes in the system, the problem is to fhd/ P where eacltp in P’ has
relevant datai.e. refers to relations o in its mapped schema. These nodes can be
iteratively (for eachQ’s relation) retrieved using the PDM service. Betbe the set of
relations involved inQ, and ms(p,r) denote that the mapped schema of npde
involves relatiorr, query matching produces:

P'={p|(pLP) U (Lr[R [Jms(p,r)) }

Query optimization. Because of data replication, each relevant data bwy
replicated at some nodesm. The optimization objective is to minimize the to$
query processing by selecting best candidate nptie(sach relevant data based on a
cost function. Selecting more than one candidatkens necessary in a very dynamic
environment since some candidate nodes may havéhéehetwork. Thus, selecting
several candidate nodes increases the answer’'sle@mgss but at the expense of
redundant work. This step produces aef/P’ of best nodes.
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node 1 node 2 node 3 node 4

Fig. 3. Example of parallel execution using intermediatedes. This strategy exhibits
independent parallelism between nodes 1-4 (thets@leoperations can all be done in parallel)
and nodes 5-6 (the union operations can be dongaiallel). It can also yield pipelined
parallelism. For instance, if the left-hand operaficn intermediate node is smaller than the
right-hand operand, then it would be entirely tfarred first so the other operand could be
pipelined thus yielding parallelism between nodes-2and nodes 4-6: Parallel execution
strategies improve both the query response timdtendlobal efficiency of the system.

Query decomposition and execution.This phase is similar to that in data
integration systems and APPA reuses well-knownggehisticated techniques. Since
some nodes iP” may have only subsets @J's relations, query decomposition
produces a number of subqueries (not necessarffgreft), one for each node,
together with a composition query to integrate. through join and union operations,
the intermediate resulf®3]. Finally, the subqueries are sent to the nodeB”,
which reformulate it on their local schema (usihg hode mappings), execute it, and
send the results back to the sending node, whgraties the results. Result compo-
sition can also exploit parallelisfd4] using intermediate nodes. For instance, let us
consider relations; andr, defined over CSD and relationss; ands, defined over
CSDs, each stored at a different node, and the gselgct * from r, s where r.a=s.a
and r.b=2and s.c=5issued by a nodg. A parallel execution strategy f@ is shown
in Figure 3.

5.3 Top-k Queries

High-level queries over a large-scale distributgdteam may produce very large
numbers of results that may overwhelm the usersavad such overwhelming,
APPA uses Top-k queries whereby the user can gpadiimited numberk) of the

most relevant answefg]. For example, consider a Grid system with mabdoctors
who want to share some (restricted) patient datarfoepidemiological study. Then,
one doctor may want to submit the following quewgiothe system to obtain the 10
top answers ranked by a scoring function over agleveeight:

SELECT *

FROM  Patient P

WHERE (P.disease = “hepathitis”) AND
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(P.age < 50) AND (P.weight0)
ORDER BY scoring-function(age, weight)
STOP AFTER10

The scoring function specifies how closely eactadm matches the conditions.
For relational data, the most used scoring funstiare Min, Euclideanand Sum
functions [9]. For instance, in the query above, the scorfngction could be
sun{(age/10)*2,weight/20) thus giving more importatceage.

Formally, letQ be a Top-k query and” the set of nodes that have relevant data to
Q. Let D be the set of all relevant data items.(tuples) that are owned by the nodes
involved inP”. Let Sc(d, Q)be a scoring function that denotes the scorelefaace
of a data itemdZD to Q. The goal is to find the s@t/7D, such that/T /= k and ;7
d; 0T, 7d, [7(D - T) thenSc(d, Q)= Sc(d, Q).

Efficient execution of Top-k queries in a largelsddistributed system is difficult.
To process a Top-k query, a naive solution istti@uery originator sends the query
to all nodesand merges all the results, which it gets backs Eblution hurts response
time as the central node is a bottleneck and doesaale up. APPA takes advantage
of parallelism and executes Top-k queries by al@sed algorithm, in which several
nodes participate in merging the results and boghlip the top results to the query
originator.

6. APPA Validation

To validate the design of APPA and perform expenitwewith collaborative

applications, we have developed a prototype orofaXTA, Chord and CAN. In this
section, we describe APPA’s implementation. Thewe, rg@port on the results of
performance evaluation which was done through eéxpartation and simulation.

6.1 APPA over JXTA

JXTA (JuXTAposition) is an open network computintatfiorm designed for P2P
computing[19]. JXTA provides various services and abstraxgtior implementing
P2P applications. Furthermore, it can integraté WMeb service standards to provide
higher-level peer-to-peer communication. Since Gt@hdards (OGSA and OGSA-
P2P) rely on Web services, using JXTA is a goodsbfs building Grids. JXTA
protocols aim to establish a network overlay on tfpthe Internet and non-IP
networks, allowing nodes to directly interact aetf-serganize independently of their
physical network. JXTA technology leverages opeandards like XML, Java
technology, and key operating system concepts. Bingu existing, proven
technologies and concepts, the objective is tady@&P2P system that is familiar to
developers.

JXTA provides a good support for the APPA's P2Pwdet services. The
functionality provided by APPA's peer id assignmepeer linking, and peer
communication service are already available in K& A core layer. Thus, APPA
simply uses JXTA’s corresponding functionality.dontrast, JXTA does not provide
an equivalent service for key-based storage andevat (KSR). Thus, we
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implemented KSR on top of Meteor which is an opearse JXTA service. Also, for

implementing the KTS service, we use Meteor. APPA&vanced services, like
replication and query processing, are provideddsdJcommunity services. The key
advantage of APPA’s implementation is that onlyR&P network layer depends on
the JXTA platform. Thus, APPA is portable and canused over other platforms by
replacing the services of the P2P network layer.

6.2 APPA over Chord and CAN

In addition to JXTA and to further validate APPAistwork independence, we have
implemented APPA's services over two of the mosivkm DHTs, Chord and CAN.
Most of the APPA's services can be easily impleegriver Chord and CAN, in
particular the KSR and KTS services.

Chord is a simple and efficient DHT. It can lookaplata, which is stored at some
node in the network, i®(log n) routing hops where is the number of nodes. A
Chord node requires information abéog (n) other nodes for efficient routing. Chord
has an effective algorithm for maintaining thisoirrhation in a dynamic environment
Its lookup mechanism is provably robust in the fat&equent node failures and re-
joins, and it can answer queries even if the sy$setontinuously changing.

CAN (Content Addressable Network) is based on aicédgd-dimensional
Cartesian coordinate space, which is partitiongéd hyper-rectangles, called zones.
Each node in the system is responsible for a zand,a node is identified by the
boundaries of its zone. A data is hashed to a poittie coordinate space, and it is
stored at the node whose zone contains the paatsdinates. Each node maintains
information about all its neighbors.e. 2*d neighbors. The lookup operation is
implemented by forwarding the message along a thethapproximates the straight
line in the coordinate space from the sender tonttde storing the data. In CAN, a
stored data can be retrievedddn®) wheren is the number of nodes.

The performance of APPA's services over Chord spoeds qualitatively with
their performance over CAN. However, there are sauentitative differences in
performance because of inherent differences irpthocols of Chord and CAN. For
example, the KSR service is more efficient over idhthan CAN. In contrast,
communicating messages between neighbors, whichsupported by the
Communication Management service, is more efficmrgr CAN because in CAN
the nodes' neighborhood is organized accordingmtancunication latencies.

6.3 Performance Evaluation

We evaluated the performance of APPA’s advancedcssr through experimentation
and simulation. The experimentation over Grid50Q8 wiseful to validate services
and calibrate our simulator. The simulator allovsstal scale up to high numbers of
nodes. In this section, we first describe our expental and simulation setup, and
then we report the main performance evaluationltesthich we observed during our
tests.
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6.3.1 Experimental and Simulation Setup

We validated APPA’s service®.f. KSR, KTS, PDM and Replication) over the
Grid5000 platform [17]. Grid5000 aims at building a highly reconfigbte,
controllable and monitorable experimental Grid folah, gathering 9 sites
geographically distributed in France featuring &@ltof 5000 nodes. Within each site,
the nodes are located in the same geographic adeecanmunicate through Gigabyte
Ethernet links as clusters. Communications betwdasters are made through the
French academic network (RENATER). Grid5000’s noalesaccessible through the
OAR batch scheduler, from a central user interfwaed by all the users of the Grid.
A cross-clusters super-batch system, OARGrid, igettly being deployed and
tested. The home directories of the users are radumith NFS on each of the
infrastructure’s clusters. Data can thus be diyeattcessed inside a cluster. Data
transfers between clusters have to be handledebysérs. The storage capacity inside
each cluster is a couple of hundreds of gigabytes.

To have a topology close to P2P overlay networksdetermine the nodes’ neigh-
bors and we allow that every node communicate witly its neighbors in the overlay
network. Additionally, in order to study the scalép of these services with larger
numbers of nodes, we implemented simulators usag Jand SimJavl8] (a
process based discrete event simulation packagell&ions were executed on an
Intel Pentium 1V with a 2.6 GHz processor, and 1 &Bnain memory, running the
Windows XP operating system.

Performing tests over GRID5000 has been easierdtiana P2P network because
Grid5000 is much more controllable. For exampléetst a new version of a service,
we only need to reserve the required number of sjodeploy the service over the
nodes and execute the test program. But, in a BR#&ork it is more difficult to do so
because of the dynamic nature of peerg, some of peers may leave the system
during the execution of the test program. Our tebtwed that the APPA's service
can work well over both Grid and P2P networks,@ltjh there are some quantitative
differences in performancé.e. the performance of the services over Grid5000 is
better than over a typical P2P network becausenefhigh speed communication
network.

6.3.2 Main Results

In this section, we briefly report on the main peniance evaluation results which we
observed during our tests on the performance ofAd8ervices. More details can be
found in[2][3][24][25][26].

We evaluated the scalability of the PDM and KT Sisess through simulation over
a large number of nodes using SimJava. We compgheegderformance of PDM and
BRK (from the BRICK project{22]) which we used as baseline algorithm. The
experimental and simulation results show that udigs, PDM achieves major
performance gains, in terms of response time anthuanication cost, compared with
BRK. The response time and communication cost dfiRjpow logarithmically with
the number of nodes of the system. Increasing theber of replicas of each data
increases very slightly the response time and comation cost of PDM. In
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addition, even with a high number of node failul@BM still works well. We have
done our tests in an environment where the lifetoh@odes is low. However, the
simulation results show that increasing nodestifife increases the performance of
PDM.

We also evaluated the query processing serviceugreexperimentation and
simulation. The results show very good performaitégrms of communication cost
and response time. The response time and comntiamicaost of the query
processing service grow logarithmically with themher of nodes of the network. For
top-k queries, we studied the effect of severabpeters €.g. number of nodes,
number of requested answers, etc.) on the perfaenari the query processing
service. The results show very good performancterims of communication cost and
response time. For instance, increasing the nurobeequested answersge. k,
increases very slightly the response time of ogor@thm.

In addition, we validated our semantic reconcidiati solution through
experimentation and simulation. Our algorithms take account the communication
costs for selecting the best reconciler nodes.cBorputing communication costs, we
use local information and we deal with the dynab®bavior of nodes. We also limit
the scope of event propagatioa.d. joins or leaves) in order to avoid network
overload. We compared the performance of recoticitiausing random selection of
reconcilers and cost-based selection. The expetahessults showed that the cost-
based reconciliation outperforms the random aprdgca factor of 26. In addition,
the number of connected nodes does no affect théorpemnce of cost-based
reconciliation since the reconciler nodes are asechs possible to the reconciliation
objects. Compared with the IceCube’s centralizddtiem, our algorithm yields high
data availability and excellent scalability, withceptable performance and limited
overhead.

7. Related Work

Data grid applications need to access, share, reamag integrate massive amounts
of data distributed across heterogeneous and gatugedly spread Grid resources.
The main work in this area has been on providirtg dacess and integration services
for the Grids with a relatively low dynamicity amdoderated scale. The following
research efforts are good representatives of sock. w

The Spitfire projec{42] in the European Data Grid Project provides eans to
access relational databases on the Grid. It isna thén layer on top of an RDBMS
(by default MySQL) that provides a JDBC driver.uges Web Service technology
(Jakarta Tomcat) to provide SOAP-based RPC (thrd\gache Axis) to a few user-
definable database operations.

The Open Grid Services Architecture Data Access latehration(OGSA-DAI)
[31] [5] is another project concerned with constructimgldleware to assist with
access and integration of data shared over the Gsidg Web services. It is engaged
in identifying the requirements, designing solutiand delivering software that will
meet this purpose. The project is working closeithwhe Global Grid Forum DAIS-
WG [31] and the Globus tearfl4]. OGSA-DAI software currently supports the
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exposure of data resources, such as relationaMir ¥atabases, over Grids. Various
interfaces are provided and many popular databaseagement systems are
supported. The software also includes a collectdncomponents for querying,
transforming and delivering data in different waymd a simple toolkit for

developing client applications. One component istiibuted Query Processing
(OGSA-DQP) that deals with processing queries @&ISA-DAI data services and
over other services available on the Grid. OGSA-Dx@Rpts techniques from parallel
databases to provide implicit parallelism for coexptlata-intensive queries.

The two above projects deal with data access aedriation services by adapting
distributed database technolof?2] to the Grid using Web services. However, they
do not address some issues which arise in larde-aca dynamic environments and
which are important for data management in thesar@mments,e.g. low data
availability.

Grid-DBMS [4] deals with dynamically managing data sources Gmid
environments. It automatically reconfigures its pmments, according to the Grid
state, in order to maintain a desired performaseell It tries to offer a robust and
uniform access to data sources shared over the Badever, for providing data
availability, Grid-DBMS relies on replicating wholiatabases using the underlying
DBMSs' replication services, which is ineffective highly dynamic environments.
Furthermore, the scalability of Grid-DBMS has neth demonstrated.

To summarize, these solutions for data access rtegration in Grids do not
address highly dynamic environments. Thus, theyneameet the requirements of
OGSA-P2Pg.g.data availability, which APPA supports.

Specific P2P data management systems have beelopeddor managing shared
data in P2P networks. P-Grid (the Grid of Pefl})s a peer-to-peer lookup system
based on a virtual distributed search tree, stradtlike a distributed hash table. In P-
Grid, each node holds part of the overall tree ddjpey on its pathi.e. the binary bit
string representing the subset of the tree’s in&diom that the node is responsible for.
A decentralized and self-organizing process buRd&rid’s routing infrastructure
which is adapted to a given distribution of datgsketored by nodes. This process
also addresses uniform load distribution of dataagte and uniform replication of
data to support uniform availability. On top of Pif3s lookup system, other self-
organizing services may be implementedy(identity, adaptive media dissemination,
trust management). Unlike APPA, which is independ#the overlay network, P-
Grid relies on a specific virtual distributed sdatee.

The JXTA-GRID project[20] addresses the use of JXTA technology for Grid
computing. JXTA-GRID will take advantage of exigtiservices of both JXTA and
OGSA, e.g.using JXTA for data discovery and message comnatioit, and OGSA
for job allocation and work-load management. Howeuwe our knowledge, no
version of JXTA-GRID has been yet released.

Edutella[28] is a P2P system for data management in super-petworks. In
Edutella, a small percentage of nodes, super-peers, are responsible for indexing
the shared data and routing the queries. The fugms are assumed to be highly
available with very good computing capacity. Supeers are arranged in a
hypercube topology, according to the HyperCuP maltf36]. When a node connects
to Edutella, it should register at one of the sypers. Upon registration, the node
provides to the super-peer its RDF-based metadih&initial Edutella services are as
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follows: 1) query servicdor processing the queries based on RDF metadata; 2
replication service that provides data availabiitd workload balancing; 3) mapping
service which is responsible for doing the mapgirgveen the metadata of different
nodes to enable interoperability between them; dhdannotation service which
annotates materials stored anywhere within the dldutetwork. The main difference
with APPA is that Edutella can only be implementedtop of a super-peer network,
but APPA can be built on both super-peer and siradtnetworks.

PeerDB[37] is a P2P system designed with the objectivehigh level data
management in unstructured P2P networks. It exptaiibile agents for flooding the
query to the nodes such that their hop-distanam fite query originator is less than a
specified valuej.e. TTL (Time-To-Live). Then, the query answers ar¢hgeed by
the mobile agents and returned back to the queginator. The architecture of
PeerDB consists of three layers, namely the P2&r ldnat provides P2P capabilities
(e.g.facilitates exchange of data and resource disgdvéite agent layer that exploits
agents as the workhorse, and the object managelaget (which is also the
application layer) that provides the data storagk@ocessing capabilities.

These P2P systems are typically dependent on theorle (i.e. unstructured,
structured or super-peer) for which they have lssigned and cannot be easily used
in other P2P networks. Thus, they cannot easilyesidthe requirements of dynamic
Grids.

One of the distinguishing features of APPA is itetwork-independent
architecture, so it can be implemented over diffemverlay networks. Furthermore,
APPA can support all the requirements specifie@BSA-P2P.

8. Conclusion

In this paper, we have presented the main servi¢eAPPA (Atlas Peer-to-Peer
Architecture), a data management system for lacgiesP2P and Grid applications.
APPA has a network-independent architecture thatbeaimplemented over various
overlay networks. The main advantage of such achite is to be able to exploit
rapid and continuing progress in such networksalt also be used as a basis for
implementing OGSA-P2P. APPA can support the requérgs of OGSA-P2P such as
scalability, dynamic data discovery, data availghil group support, location
awareness, security, and connectivity.

We focused on two main requirements of OGSA-P2Ra dsailability which is
addressed by the persistent data management atidatiep services, and data
discovery which is addressed by the query procgssémvice. APPA provides data
persistence with high availability through replioat by using multiple hash
functions. It addresses efficiently the problenretfieving current replicas based on
timestamping. APPA also provides a higher-levellicagion service with multi-
master replication. This service enables asynclusmwollaboration among users. In
order to resolve conflicting updates, we use a ridisied semantic-based
reconciliation algorithm which exploits parallelisQuery processing in APPA deals
with schema-based queries and considers dataa#pfic The main phases of query
processing are query reformulation on a commonrsatgescription, query matching
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to find relevant nodes, query optimization to seldest nodes, and query
decomposition and execution.

APPA is portable and can be used over other plagdyy replacing the services of
the P2P network layer. We have implemented APPAopnof JXTA and other P2P
networks such as CAN and Chord. We have validatB®PARs services through a
combination of experimentation over the Grid5000pesinental platform.
Additionally, in order to study the scalability tifese services with larger numbers of
nodes, we implemented simulators using SimJava.efimental and simulation
results showed that APPA's services have good ipeaiace and scale up.
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