
HAL Id: hal-00416459
https://hal.science/hal-00416459

Submitted on 15 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Management in the APPA System
Reza Akbarinia, Vidal Martins

To cite this version:
Reza Akbarinia, Vidal Martins. Data Management in the APPA System. Journal of Grid Computing,
2007, 5 (3), pp.303-317. �10.1007/s10723-007-9070-z�. �hal-00416459�

https://hal.science/hal-00416459
https://hal.archives-ouvertes.fr

Data Management in the APPA System1

Reza Akbarinia1,3,Vidal Martins1,2

1ATLAS group, INRIA and LINA, University of Nantes, France
2PPGIA/PUCPR – Pontifical Catholic University of Paraná, Brazil

3Shahid Bahonar University of Kerman, Iran
{FirstName.LastName@univ-nantes.fr }

Abstract. Combining Grid and P2P technologies can be exploited to provide high-level
data sharing in large-scale distributed environments. However, this combination must
deal with two hard problems: the scale of the network and the dynamic behavior of the
nodes. In this paper, we present our solution in APPA (Atlas Peer-to-Peer
Architecture), a data management system with high-level services for building large-
scale distributed applications. We focus on data availability and data discovery which
are two main requirements for implementing large-scale Grids. We have validated
APPA's services through a combination of experimentation over Grid5000, which is a
very large Grid experimental platform, and simulation using SimJava. The results show
very good performance in terms of communication cost and response time.

1. Introduction

Grid technology has been successful at providing high-level resource sharing services
for virtual organizations, typically formed by geographically distributed institutions
and companies [12]. As Grid technology is evolving to support large-scale virtual
organizations, e.g. with very large numbers of members, the requirements for data
management get harder. Data management in Grids has been initially achieved using
distributed file systems for scientific computing applications. Recently, in the context
of the standard Open Grid Services Architecture (OGSA) [30], the need for high-level
database access has been recognized. This led to the definition of OGSA-DAI [31], a
service-based architecture for database access over the Grid. OGSA-DAI extends the
distributed database architecture [32] to provide distribution transparency using Web
services. However, as in distributed database systems, it relies on some centralized
directory. This may make it inappropriate for virtual organizations which are highly
dynamic, with large numbers of autonomous members which may join or leave the
Grid very often. Examples of such dynamic virtual organizations include home users
of a large image editing application, schools involved in a joint project, or small
businesses organized as a federation. In these examples, the members may wish to
collaborate simply using their individual machines without relying on a centralized
Web site and database.

1 Work partially funded by ARA “Massive Data” of the French ministry of research and the

European Strep Grid4All project.

2 Reza Akbarinia, Vidal Martins

To support dynamic, scalable virtual organizations, the main requirements for Grid
data management are to scale up to large numbers of nodes and support autonomic
and dynamic behavior. To some extent, these requirements have been addressed by
Peer-to-peer (P2P) systems which adopt a completely decentralized approach to data
sharing. Popular examples of P2P systems such as Gnutella [15] and Freenet [11]
have millions of users sharing petabytes of data over the Internet. However, most
deployed P2P systems are quite simple (e.g. file sharing) and support limited
functions (e.g. keyword search). Most of the research on P2P systems has focused on
dealing with the dynamic behavior of nodes (also called peers) and improving the
performance of query routing in the unstructured systems which rely on flooding.
This work led to structured solutions based on distributed hash tables (DHT), e.g.
CAN [34] and Chord [39], or hybrid solutions with super-peers that index subsets of
peers [27].

The complementary nature of Grid and P2P computing suggests that the two are
likely to converge over time [13]. Grids can take advantage of P2P techniques to
support large-scale and dynamic virtual organizations. On the other hand, P2P
systems can exploit Grid techniques to support high-level services, deal with
semantically rich data (e.g. XML documents, relational tables, etc.), provide a more
secure and trusted environment for users, etc. Following this convergence, P-Grid [1]
and Organic Grid [8] propose self-organizing and scalable Grid services on top of a
P2P network. The expected result of such convergence is a new class of technologies
which address scalability, high data availability, and self organization, while
providing a persistent and standardized infrastructure for advanced applications.

Such convergence is also having impact on Grid standardization. One problem
with OGSA is that it does not support the dynamic behavior of nodes, which is typical
of P2P. For instance, a node's IP address may change due to mobility or firewall
network address translation. To support the specific features of P2P, OGSA-P2P [29]
has been recently proposed to revisit OGSA: scale up, dynamic data discovery, data
availability, group support, location awareness, security, and connectivity.

Providing an infrastructure for advanced data management in large-scale Grid or
P2P systems is quite challenging because of the scale of the network and the
autonomy and unreliable nature of nodes. Most techniques designed for distributed
database systems which statically exploit schema and network information no longer
apply. New techniques are needed which should be decentralized, dynamic and self-
adaptive and satisfy the requirements of dynamic Grids.

In this paper, we present our solution in APPA (Atlas Peer-to-Peer Architecture), a
data management system for large-scale P2P and Grid applications. APPA has a
network-independent architecture that can be implemented over various overlay
networks. This allows us to exploit continuing progress in such networks. APPA uses
novel solutions to provide high level data management services in large-scale
distributed environments. We focus on data availability and data discovery which are
two main requirements for supporting OGSA-P2P. We have validated APPA's
services through a combination of experimentation over Grid5000 [17], a very large
Grid experimentation platform in France, and simulation using SimJava [18].
Furthermore, we have implemented APPA on top of JXTA [19] and other P2P
networks such as CAN [34] and Chord [39]. The results show very good performance
in terms of communication cost and response time.

Data Management in the APPA System 3

 This work is done in the context of the Grid4All European project [16] whose goal
is to democratize Grid technology by enabling all kinds of users (e.g. domestic users,
schools, small enterprises) to share their resources. To deal with dynamicity,
autonomy and scaling issues, Grid4All uses P2P techniques.

The rest of the paper is organized as follows. Section 2 describes the APPA
architecture. Section 3 introduces APPA’s solution to persistent data management and
support for updates. Section 4 describes high-level data replication and distributed
semantic reconciliation. Section 5 describes query processing in APPA. In Section 6,
we first describe the validation of APPA over JXTA, Chord and CAN, and then we
present a performance evaluation of APPA's services through experimentation and
simulation. Section 7 discusses related work. Section 8 concludes.

2. APPA Architecture

APPA (Atlas P2P Architecture) has a layered service-based architecture (see Figure
1). Besides the traditional advantages of using services (encapsulation, reuse,
portability, etc.), this enables APPA to be network-independent so it can be
implemented over different structured (e.g. DHT) and super-peer P2P networks. The
main reason for this choice is to be able to exploit rapid and continuing progress in
such networks. Another reason is that it is unlikely that a single network design will
be able to address the specific requirements of many different Grid applications.
Obviously, different implementations will yield different trade-offs between
performance, fault-tolerance, scalability, quality of service, etc. For instance, fault-
tolerance can be higher in DHTs because no node is a single point of failure. On the
other hand, through index servers, super-peer systems enable more efficient query
processing. Furthermore, different P2P networks could be combined in order to
exploit their relative advantages, e.g. DHT for key-based search and super-peer for
more complex searching.

There are three layers of services in APPA: P2P network, basic services and
advanced services.
P2P network. This layer provides network independence with services that are
common to different P2P networks:
• Peer id assignment: assigns a unique id to a peer using a specific method, e.g. a

combination of super-peer id and counter in a super-peer network.
• Peer linking: links a peer to some other peers, e.g. by locating a zone in CAN.
• Key-based storage and retrieval (KSR): stores and retrieves a (key, data) pair in

the P2P network, e.g. through hashing over all peers in DHT networks or using
super-peers in super-peer networks. An important aspect of KSR is that it allows
managing data using object semantics (i.e. with KSR it is possible to get and set
specific data attributes).

• Key-based timestamping (KTS): generates monotonically increasing timestamps
which are used for ordering the events occurred in the P2P system. This service is
useful to improve data availability.

4 Reza Akbarinia, Vidal Martins

• Peer communication: enables peers to exchange messages. It also allows a peer to
call a remote service, e.g. a Web service using SOAP, which is provided by
another peer over the P2P network.

Basic services. This layer provides elementary services for the advanced services
using the P2P network layer:
• Persistent data management (PDM): provides high availability for the (key,

data) pairs which are stored in the P2P network.
• Communication cost management: estimates the communication costs for

accessing a set of data items that are stored in the P2P network. These costs are
computed based on latency and transfer rates, and they are refreshed according to
the dynamic connections and disconnections of nodes.

• Group membership management: allows peers to join an abstract group, become
members of the group and send and receive membership notifications. This is
similar to group communication [7] [10].

Advanced services. This layer provides advanced services for semantically rich data
sharing including schema management, replication [24] [25] , query processing [2] [3],
security, etc. using the basic services.

APPA provides support for the requirements specified by OGSA-P2P as follows:
• Scale up: this is the most important requirement of a P2P system and is met by

all services of APPA.
• Dynamic data discovery: it is needed for looking up the desired data in the Grid

system. In APPA, this requirement is supported mainly by the Query Processing
service.

• Data availability: P2P environments are very dynamic, and the nodes may leave
the system at any time, thereby the data stored at them get unavailable. So, we

Fig. 1. APPA Architecture

Data Management in the APPA System 5

need some mechanisms for improving data availability. In APPA, this
requirement is satisfied by the PDM and Replication services.

• Group support: groups are an essential mechanism to collect and aggregate a set
of resources or users with common characteristics together. In APPA, the Group
Membership Management service provides support for groups.

• Location awareness: it allows the applications to use location information to
optimize their communications over the network. In APPA, the Communication
Cost Management service provides support for location awareness.

• Security: P2P systems bring a set of unique notions of trust and security
requirements which must be dealt with. In APPA, the Security service is
responsible for satisfying these requirements. The work on this service is ongoing
and we are using mechanisms such as those proposed in [6] and [38].

• Connectivity: to enable decentralized sharing of computing resources,
collaborative workspaces, information and services, it is necessary for the nodes
at the edge of the network to communicate with each other and with the services
at the heart of the network. In APPA, this requirement is supported by the Peer
Linking and Peer Communication services.

3. Persistent Data Management

One of the main characteristics of the systems we address is the dynamic behavior of
nodes which can join and leave the system frequently, at anytime. When a node gets
offline, the data it stores becomes unavailable. To improve data persistence, we can
rely on data replication by storing (k, data) pairs at several nodes. If one node is
unavailable, the data can still be retrieved from the other nodes that hold a replica.
However, the mutual consistency of the replicas after updates can be compromised as
a result of nodes leaving the network or concurrent updates. Therefore, some of the
replicas may not be current, i.e. they do not reflect the latest data stored with k in the
network. For some applications (e.g. agenda management, bulletin boards,
cooperative auction management, reservation management, etc.) having the ability to
get a current replica is very important.

In APPA, the PDM service provides data persistence through replication by using
multiple hash functions. It also addresses efficiently the problem of retrieving current
replicas based on timestamping. For doing its tasks, PDM takes advantage of KSR
and KTS which are two services in the lower layer of APPA architecture.

In this section, we first discuss how PDM provides data persistence, then we
introduce the concept of timestamping, and finally we present the update operations
which are the main operations of the PDM service.

3.1 Data Persistence Using Multiple Hash Functions

In APPA, the KSR service maps a key k to a node p using a hash function h. We call
p the responsible for k wrt. h, and denote it by rsp(k, h). A node may be responsible
for k wrt. a hash function h1 but not responsible for k wrt. another hash function h2.

6 Reza Akbarinia, Vidal Martins

There is a set of hash functions H which can be used for mapping the keys to nodes.
The KSR service has an operation puth(k, data) that, given a hash function h∈H, a
data item data and its associated key k, stores the pair (k, data) at rsp(k,h). This
operation can be issued concurrently by several nodes. There is another operation
geth(k) that retrieves the data associated with k stored at rsp(k,h).

To improve data persistence, PDM stores each data and its associated key at
several nodes using a set of hash functions Hr⊂H. the set Hr is called the set of
replication hash functions. The number of replication hash functions, i.e. Hr, can
be different for different networks. For instance, in a P2P network with low node’s
availability, data availability can be increased using a high value of Hr (e.g. 20).

Over time, some of the replicas stored with k at some nodes may get stale, e.g. due
to the absence of some nodes at update time. To be able to return current replicas,
before storing a data, PDM “stamps” it with a logical timestamp which is generated
by KTS. Therefore, given a data item data and its associated key k, ∀h∈Hr, PDM
replicates the pair (k, {data, timestamp}) at rsp(k,h). Upon a request for the data
associated with a key, PDM returns one of the replicas which are stamped with the
latest timestamp.

3.2 Timestamping

To generate timestamps, APPA uses KTS which is a distributed service. The main
operation of KTS is gen_ts(k) which, given a key k, generates a real number as a
timestamp for k. The timestamps generated by KTS have the monotonicity property,
i.e. two timestamps generated for the same key are monotonically increasing. In other
words, for any two timestamps ts1 and ts2 generated for a key k respectively at times t1
and t2, if t1< t2 then we have ts1< ts2. This property permits us to order the timestamps
generated for the same key according to the time at which they have been generated.

KTS generates the timestamps in a completely distributed fashion, using local
logical counters. At anytime, it generates at most one timestamp for a key k. Thus,
regarding the monotonicity property, there is a total order on the set of timestamps
generated for the same key. However, there is no total order on the timestamps
generated for different keys. In addition to gen_ts, KTS has another operation denoted
by last_ts(k) which, given a key k, returns the last timestamp generated for k by KTS.

The idea of timestamping by KTS is like the idea of data storage in DHTs which is
based on having a responsible for storing each data and determining the responsible
dynamically using a hash function. In KTS, for each key, there is a responsible of
timestamping which is determined dynamically using a hash function. Due to space
limitations, we don not describe the details of KTS.

3.3 Update Operations

The main operations of the PDM service are insert and retrieve operations. The detail
of these operations is as follows.

Insert(k, data): replicates a data and its associated key in the network as follows.
First, it uses KTS to generate a timestamp for k, e.g. ts. Then, for each h∈Hr it stores

Data Management in the APPA System 7

the pair (k, {data, ts}) at the node that is rsp(k,h). When a node p, which is responsible
for k wrt. one of the hash functions involved in Hr, receives the pair (k, {data, ts}), it
compares ts with the timestamp, say ts0, of its data (if any) associated with k. If ts>ts0,
p overwrites its data and timestamp with the new ones. Recall that, at anytime,
KTS.gen_ts (k) generates at most one timestamp for k, and different timestamps for k
have the monotonicity property. Thus, in the case of concurrent calls to insert(k,
data), i.e. from different nodes, only the one that obtains the latest timestamp will
succeed to store its data in the network.

Retrieve(k): retrieves the most recent replica associated with k in the network as
follows. First, it uses KTS to determine the latest timestamp generated for k, e.g. ts1.
Then, for each hash function h∈Hr, it uses the KSR operation geth(k) to retrieve the
pair {data, timestamp} stored along with k at rsp(k,h). If timestamp is equal to ts1,
then the data is a current replica which is returned as output and the operation ends.
Otherwise, the retrieval process continues while saving in datamr the most recent
replica. If no replica with a timestamp equal to ts1 is found (i.e. no current replica is
found) then the operation returns the most recent replica available, i.e. datamr.

4. Data Replication

Data replication is largely used to improve data availability and performance in
distributed systems. In APPA, PDM is a low-level service that employs data
replication to improve the availability of pairs (key, data) stored in the network. For
solving update conflicts by taking into account application semantics, APPA provides
a higher-level replication service. This service is an optimistic solution [35] that
allows the asynchronous updating of replicas such that applications can progress even
though some nodes are disconnected or have failed. As a result, users can collaborate
asynchronously. However, concurrent updates may cause replica divergence and
conflicts, which should be reconciled.

In this section, we present the DSR algorithm (Distributed Semantic Reconci-
liation) [24] [25], a dynamic distributed version of the semantic reconciliation provi-
ded by IceCube [21] [33]. Unlike IceCube, DSR is based on a distributed and parallel
approach. With DSR, a subset of nodes, called reconcilers, are selected to concur-
rently reconcile conflicting updates. DSR works properly over clusters, P2P, and Grid
systems (e.g. we have implemented a DSR prototype [24] and validated it on the
Grid5000 platform). We now describe the main terms and assumptions we consider
for DSR followed by the main DSR algorithm itself.

We assume that DSR is used in the context of a virtual community which requires
a high level of collaboration and relies on a reasonable number of nodes (typically
hundreds or even thousands of interacting users) [45].

In our solution, an object is the minimal unit of replication in a system, i.e. it can
be a relational table, an XML document, etc. We call object item a component of the
object, e.g. a tuple in a relational table or an element in an XML document. A replica
is a copy of an object (e.g. copy of a relational table or XML document) while a
replica item is a copy of an object item (e.g. a copy of a tuple or XML element). We
assume multi-master replication, i.e. multiple replicas of an object R, noted R1, R2, …,

8 Reza Akbarinia, Vidal Martins

Rn, are stored in different nodes which can read or write R1, R2, …, Rn. Conflicting
updates are expected, but it is assumed that the application tolerates some level of
replica divergence until reconciliation.

In order to update replicas, nodes produce tentative actions (henceforth actions)
that are executed only if they conform to the application semantics. An action is
defined by the application programmer and represents an application-specific
operation (e.g. a write operation on a file or document, or a database transaction). The
application semantics is described by means of constraints between actions. A
constraint is the formal representation of an application invariant (e.g. an update
cannot follow a delete).

On the one hand, users and applications can create constraints between actions to
make their intents explicit (they are called user-defined constraints). On the other
hand, the reconciler node identifies conflicting actions, and asks the application if
these actions may be executed together in any order (commutative actions) or if they
are mutually dependent. New constraints are created to represent semantic
dependencies between conflicting actions (they are called system-defined constraints).
Details about the language used to express constraints can be found in [33].

A cluster is a set of actions related by constraints, and a schedule is an ordered list
of actions that do not violate constraints.

With DSR, data replication proceeds basically as follows. First, nodes execute
local actions to update replicas while respecting user-defined constraints. Then, these
actions (with the associated constraints) are stored in the network using the PDM
service. Finally, reconciler nodes retrieve actions and constraints from the network
and produce a global schedule, by performing conflict resolution in 5 distributed steps
based on the application semantics. This schedule is locally executed at every node,
thereby assuring eventual consistency [33]. The replicated data is eventually consis-
tent if, when all nodes stop the production of new actions, all nodes will eventually
reach the same value in their local replicas.

In order to avoid communication overhead and due to dynamic connections and
disconnections, we distinguish replica nodes, which are the nodes that hold replicas,
from reconciler nodes, which is a subset of the replica nodes that participate in
distributed reconciliation.

We now present DSR in more details. We first introduce the reconciliation objects
necessary to DSR. Then, we present the five steps of the DSR algorithm. Finally, we
describe how DSR deals with dynamic connections and disconnections.

4.1 Reconciliation Objects

Data managed by DSR during reconciliation are held by reconciliation objects that
are stored in the network giving the object identifier. To enable the storage and
retrieval of reconciliation objects, each reconciliation object has a unique identifier.
DSR uses five reconciliation objects:
• Action log R (noted LR): it holds all actions that try to update any replica (noted

R1, R2, …, Rn) of the object R.
• Action groups of R (noted GR): actions that manage a common object item are put

together into the same action group in order to enable the parallel checking of

Data Management in the APPA System 9

semantic conflicts among actions (each action group can be checked independently
of the others); every object R may have a set of action groups, which are stored in
the action groups of R reconciliation object.

• Clusters set (noted CS): all clusters produced during reconciliation are included in
the clusters set reconciliation object; a cluster is not associated with an object.

• Action summary (noted AS): it comprises constraints and action memberships (an
action is a member of one or more clusters).

• Schedule (noted S): it contains an ordered list of actions.
The node that holds a reconciliation object is called the provider node for that

object (e.g. schedule provider is the node that currently holds S).

4.2 DSR Algorithm

DSR executes reconciliation in 5 distributed steps as shown in Figure 2.

Fig. 2. DSR Steps

• Step 1 – actions grouping: for each object R, reconcilers put actions that try to
update common object items of R into the same group, thereby producing GR.

• Step 2 – clusters creation: reconcilers split action groups into clusters of semanti-
cally dependent conflicting actions (two actions a1 and a2 are semantically inde-
pendent if the application judge safe to execute them together, in any order, even if
a1 and a2 update a common object item; otherwise, a1 and a2 are semantically
dependent). Clusters produced in this step are stored in the clusters set, and the
associated action memberships are included in the action summary.

• Step 3 – clusters extension: user-defined constraints are not taken into account in
clusters creation. Thus, in this step, reconcilers extend clusters by adding to them
new conflicting actions, according to user-defined constraints. The associated
action memberships are also included in the action summary.

• Step 4 – clusters integration: clusters extensions lead to the overlap of clusters’
actions (an overlap occurs when different clusters have common actions, and this is
identified by analyzing action memberships). In this step, reconcilers bring
together overlapping clusters, thereby producing integrated clusters.

• Step 5 – clusters ordering: in this step, reconcilers produce the global schedule by
ordering actions of integrated clusters; all replica nodes execute this schedule.
At every step, the DSR algorithm takes advantage of data parallelism, i.e. several

nodes perform simultaneously independent activities on a distinct subset of actions
(e.g. ordering of different clusters). No centralized criterion is applied to partition
actions. In fact, whenever a set of reconciler nodes request data to a provider, the
provider node naively supplies reconcilers with about the same amount of data (the
provider node knows the maximal number of reconcilers because it receives this
information from the node that launches reconciliation).

3

Clusters
Extension

4
Clusters
Integration

2
Clusters
Creation

1

Actions
Grouping

5
Clusters
Ordering

Actions Action
Groups

Clusters Extended
Clusters

Integrated
Clusters

Schedule

10 Reza Akbarinia, Vidal Martins

DSR avoids network overhead by minimizing the number of exchanged messages
and the amount of transferred data. The number of messages is linear wrt. the number
of reconcilers, and the number of reconcilers is not large. Concerning data transfer,
most of messages carry only data identifiers (e.g. actions’ identifiers) instead of the
entire data items.

4.3 Managing Dynamic Disconnections and Reconnections

Whenever distributed reconciliation takes place, a set of nodes Nd may be
disconnected. As a result, the global schedule is not applied by nodes of Nd.
Moreover, actions produced by Nd nodes and not yet stored in the network via APPA
PDM service are not reconciled. In order to assure eventual consistency despite
disconnections, the APPA replication service proceeds as follows. Each node locally
stores the identifier of the last schedule it has locally executed (noted Slast). In
addition, the replication service stores in the network (using the APPA PDM service)
a chronological sequence of schedules’ identifiers produced by reconciliations, which
is called schedule history and noted H = (Sid1, Sid2, …, Sidn). As any reconciliation
object, the schedule history has a unique identifier. The application knows this
identifier and can provide it to the reconciler nodes. When a node n of Nd reconnects,
it proceeds as follows: (1) n checks whether Slast is equal to Sidn, and, if not (i.e. n’s
replicas are out of date), n locally applies all schedules that follow Slast in the H
history; (2) actions locally produced by n and not yet stored in the network using the
APPA PDM service are put into the involved action logs for later reconciliation.

At the beginning of reconciliation, a set of connected replica nodes must be
allocated to proceed as reconciler nodes. To minimize reconciliation time, such
allocation should be dynamic, i.e. nodes should be allocated based on the
reconciliation context (e.g. number of actions, number of replicas, network properties,
etc.). We elaborated a cost model and the associated algorithms for allocating
reconciler nodes based on communication costs [25] [26]. These algorithms take into
account cost changes due to dynamic disconnections and reconnections.

5. Query Processing

Query processing in APPA deals with schema-based queries and considers data
replication. In this section, we first present schema mapping in APPA, and then we
describe the main phases of query processing. We also introduce support for Top-k
queries as a way to reduce network communication.

5.1 Schema Mapping

In order to support schema-based queries, APPA must deal with heterogeneous
schema management. In systems composed of autonomous nodes, a node should be
able to express queries over its own schema without relying on a centralized global
schema as in data integration systems [40] [43]. Several solutions have been proposed

Data Management in the APPA System 11

to support decentralized schema mapping, e.g. [27] [41]. For instance, Piazza [41]
proposes a general, network-independent, solution that supports a graph of pair-wise
mappings between heterogeneous node schemas. APPA uses a simpler solution that
takes advantage of the collaborative nature of the applications. It assumes that nodes
that wish to cooperate, e.g. for the duration of an experiment, agree on a Common
Schema Description (CSD). Given a CSD, a node schema can be specified using
views. This is similar to the local-as-view approach in data integration [23] except
that, in APPA, queries at a node are expressed against the views, not the CSD.

When a node decides to share data, it needs to define a node schema, only once, to
map its local schema to the CSD. To simplify the discussion, we use the relational
model (APPA uses XML) and the Datalog-like notation of [40] for mapping rules.
Thus, a node schema includes node mappings, one per local relation. Given 2 CSD
relation definitions r1 and r2, an example of node mapping at node p is:

p:r(A,B,D) ⊆ csd:r1(A,B,C), csd:r2(C,D,E)
In APPA, mapped schemas are stored in the network using the PDM service.

5.2 Query Processing Phases

Given a user query on a node schema, the objective is to find the minimum set of
relevant nodes (query matching), route the query to these nodes (query routing),
collect the answers and return a (ranked) list of answers to the user. Since the relevant
nodes may be disconnected, the returned answers may be incomplete.

Query processing proceeds in four main phases: (1) query reformulation, (2) query
matching, (3) query optimization and (4) query decomposition and execution.

Query reformulation. The user query (on the node schema) is rewritten in a query
on CSD relations. This is similar to query modification using views. For instance, the
following query at node p:

select A,D from r where B=b
would be rewritten on the CSD relations as:
select A,D from r1,r2 where B=b and r1.C=r2.C
Query matching. Given a reformulated query Q, it finds all the nodes that have

data relevant to the query. For simplicity, we assume conjunctive queries. Let P be the
set of nodes in the system, the problem is to find P’⊆ P where each p in P’ has
relevant data, i.e. refers to relations of Q in its mapped schema. These nodes can be
iteratively (for each Q’s relation) retrieved using the PDM service. Let R be the set of
relations involved in Q, and ms(p,r) denote that the mapped schema of node p
involves relation r, query matching produces:

P’= { p | (p∈P) ∧ (∃ r∈R ∧ ms(p,r)) }
Query optimization. Because of data replication, each relevant data may be

replicated at some nodes in P’. The optimization objective is to minimize the cost of
query processing by selecting best candidate node(s) for each relevant data based on a
cost function. Selecting more than one candidate node is necessary in a very dynamic
environment since some candidate nodes may have left the network. Thus, selecting
several candidate nodes increases the answer’s completeness but at the expense of
redundant work. This step produces a set P” ⊆ P’ of best nodes.

12 Reza Akbarinia, Vidal Martins

Fig. 3. Example of parallel execution using intermediate nodes. This strategy exhibits
independent parallelism between nodes 1-4 (the select (σ) operations can all be done in parallel)
and nodes 5-6 (the union operations can be done in parallel). It can also yield pipelined
parallelism. For instance, if the left-hand operand of an intermediate node is smaller than the
right-hand operand, then it would be entirely transferred first so the other operand could be
pipelined thus yielding parallelism between nodes 2-5-q and nodes 4-6-q. Parallel execution
strategies improve both the query response time and the global efficiency of the system.

Query decomposition and execution. This phase is similar to that in data
integration systems and APPA reuses well-known, yet sophisticated techniques. Since
some nodes in P” may have only subsets of Q’s relations, query decomposition
produces a number of subqueries (not necessarily different), one for each node,
together with a composition query to integrate, e.g. through join and union operations,
the intermediate results [23]. Finally, the subqueries are sent to the nodes in P” ,
which reformulate it on their local schema (using the node mappings), execute it, and
send the results back to the sending node, who integrates the results. Result compo-
sition can also exploit parallelism [44] using intermediate nodes. For instance, let us
consider relations r1 and r2 defined over CSD r and relations s1 and s2 defined over
CSD s, each stored at a different node, and the query select * from r, s where r.a=s.a
and r.b=2 and s.c=5 issued by a node q. A parallel execution strategy for Q is shown
in Figure 3.

5.3 Top-k Queries

High-level queries over a large-scale distributed system may produce very large
numbers of results that may overwhelm the users. To avoid such overwhelming,
APPA uses Top-k queries whereby the user can specify a limited number (k) of the
most relevant answers [2]. For example, consider a Grid system with medical doctors
who want to share some (restricted) patient data for an epidemiological study. Then,
one doctor may want to submit the following query over the system to obtain the 10
top answers ranked by a scoring function over age and weight:

 SELECT *
 FROM Patient P
 WHERE (P.disease = “hepathitis”) AND

Data Management in the APPA System 13

 (P.age < 50) AND (P.weight > 70)
 ORDER BY scoring-function(age, weight)
 STOP AFTER 10
The scoring function specifies how closely each data item matches the conditions.

For relational data, the most used scoring functions are Min, Euclidean and Sum
functions [9]. For instance, in the query above, the scoring function could be
sum((age/10)*2,weight/20) thus giving more importance to age.

Formally, let Q be a Top-k query and P” the set of nodes that have relevant data to
Q. Let D be the set of all relevant data items (i.e. tuples) that are owned by the nodes
involved in P” . Let Sc(d, Q) be a scoring function that denotes the score of relevance
of a data item d∈D to Q. The goal is to find the set T ⊆ D, such that: T = k and ∀
d1∈ T, ∀ d2 ∈ (D – T) then Sc(d1, Q) ≥ Sc(d2, Q).

Efficient execution of Top-k queries in a large-scale distributed system is difficult.
To process a Top-k query, a naïve solution is that the query originator sends the query
to all nodes and merges all the results, which it gets back. This solution hurts response
time as the central node is a bottleneck and does not scale up. APPA takes advantage
of parallelism and executes Top-k queries by a tree-based algorithm, in which several
nodes participate in merging the results and bubbling up the top results to the query
originator.

6. APPA Validation

To validate the design of APPA and perform experiments with collaborative
applications, we have developed a prototype on top of JXTA, Chord and CAN. In this
section, we describe APPA’s implementation. Then, we report on the results of
performance evaluation which was done through experimentation and simulation.

6.1 APPA over JXTA

JXTA (JuXTAposition) is an open network computing platform designed for P2P
computing [19]. JXTA provides various services and abstractions for implementing
P2P applications. Furthermore, it can integrate with Web service standards to provide
higher-level peer-to-peer communication. Since Grid standards (OGSA and OGSA-
P2P) rely on Web services, using JXTA is a good basis for building Grids. JXTA
protocols aim to establish a network overlay on top of the Internet and non-IP
networks, allowing nodes to directly interact and self-organize independently of their
physical network. JXTA technology leverages open standards like XML, Java
technology, and key operating system concepts. By using existing, proven
technologies and concepts, the objective is to yield a P2P system that is familiar to
developers.

JXTA provides a good support for the APPA's P2P Network services. The
functionality provided by APPA's peer id assignment, peer linking, and peer
communication service are already available in the JXTA core layer. Thus, APPA
simply uses JXTA’s corresponding functionality. In contrast, JXTA does not provide
an equivalent service for key-based storage and retrieval (KSR). Thus, we

14 Reza Akbarinia, Vidal Martins

implemented KSR on top of Meteor which is an open-source JXTA service. Also, for
implementing the KTS service, we use Meteor. APPA’s advanced services, like
replication and query processing, are provided as JXTA community services. The key
advantage of APPA’s implementation is that only its P2P network layer depends on
the JXTA platform. Thus, APPA is portable and can be used over other platforms by
replacing the services of the P2P network layer.

6.2 APPA over Chord and CAN

In addition to JXTA and to further validate APPA’s network independence, we have
implemented APPA's services over two of the most known DHTs, Chord and CAN.
Most of the APPA's services can be easily implemented over Chord and CAN, in
particular the KSR and KTS services.

Chord is a simple and efficient DHT. It can lookup a data, which is stored at some
node in the network, in O(log n) routing hops where n is the number of nodes. A
Chord node requires information about log (n) other nodes for efficient routing. Chord
has an effective algorithm for maintaining this information in a dynamic environment.
Its lookup mechanism is provably robust in the face of frequent node failures and re-
joins, and it can answer queries even if the system is continuously changing.

CAN (Content Addressable Network) is based on a logical d-dimensional
Cartesian coordinate space, which is partitioned into hyper-rectangles, called zones.
Each node in the system is responsible for a zone, and a node is identified by the
boundaries of its zone. A data is hashed to a point in the coordinate space, and it is
stored at the node whose zone contains the point’s coordinates. Each node maintains
information about all its neighbors, i.e. 2*d neighbors. The lookup operation is
implemented by forwarding the message along a path that approximates the straight
line in the coordinate space from the sender to the node storing the data. In CAN, a
stored data can be retrieved in O(dn1/d) where n is the number of nodes.

The performance of APPA's services over Chord corresponds qualitatively with
their performance over CAN. However, there are some quantitative differences in
performance because of inherent differences in the protocols of Chord and CAN. For
example, the KSR service is more efficient over Chord than CAN. In contrast,
communicating messages between neighbors, which is supported by the
Communication Management service, is more efficient over CAN because in CAN
the nodes' neighborhood is organized according to communication latencies.

6.3 Performance Evaluation

We evaluated the performance of APPA’s advanced services through experimentation
and simulation. The experimentation over Grid5000 was useful to validate services
and calibrate our simulator. The simulator allows us to scale up to high numbers of
nodes. In this section, we first describe our experimental and simulation setup, and
then we report the main performance evaluation results which we observed during our
tests.

Data Management in the APPA System 15

6.3.1 Experimental and Simulation Setup

We validated APPA’s services (e.g. KSR, KTS, PDM and Replication) over the
Grid5000 platform [17]. Grid5000 aims at building a highly reconfigurable,
controllable and monitorable experimental Grid platform, gathering 9 sites
geographically distributed in France featuring a total of 5000 nodes. Within each site,
the nodes are located in the same geographic area and communicate through Gigabyte
Ethernet links as clusters. Communications between clusters are made through the
French academic network (RENATER). Grid5000’s nodes are accessible through the
OAR batch scheduler, from a central user interface shared by all the users of the Grid.
A cross-clusters super-batch system, OARGrid, is currently being deployed and
tested. The home directories of the users are mounted with NFS on each of the
infrastructure’s clusters. Data can thus be directly accessed inside a cluster. Data
transfers between clusters have to be handled by the users. The storage capacity inside
each cluster is a couple of hundreds of gigabytes.

To have a topology close to P2P overlay networks, we determine the nodes’ neigh-
bors and we allow that every node communicate only with its neighbors in the overlay
network. Additionally, in order to study the scalability of these services with larger
numbers of nodes, we implemented simulators using Java and SimJava [18] (a
process based discrete event simulation package). Simulations were executed on an
Intel Pentium IV with a 2.6 GHz processor, and 1 GB of main memory, running the
Windows XP operating system.

Performing tests over GRID5000 has been easier than over a P2P network because
Grid5000 is much more controllable. For example to test a new version of a service,
we only need to reserve the required number of nodes, deploy the service over the
nodes and execute the test program. But, in a P2P network it is more difficult to do so
because of the dynamic nature of peers, e.g. some of peers may leave the system
during the execution of the test program. Our tests showed that the APPA's service
can work well over both Grid and P2P networks, although there are some quantitative
differences in performance, i.e. the performance of the services over Grid5000 is
better than over a typical P2P network because of the high speed communication
network.

6.3.2 Main Results

In this section, we briefly report on the main performance evaluation results which we
observed during our tests on the performance of APPA's services. More details can be
found in [2] [3] [24] [25] [26].

We evaluated the scalability of the PDM and KTS services through simulation over
a large number of nodes using SimJava. We compared the performance of PDM and
BRK (from the BRICK project [22]) which we used as baseline algorithm. The
experimental and simulation results show that using KTS, PDM achieves major
performance gains, in terms of response time and communication cost, compared with
BRK. The response time and communication cost of PDM grow logarithmically with
the number of nodes of the system. Increasing the number of replicas of each data
increases very slightly the response time and communication cost of PDM. In

16 Reza Akbarinia, Vidal Martins

addition, even with a high number of node failures, PDM still works well. We have
done our tests in an environment where the lifetime of nodes is low. However, the
simulation results show that increasing nodes’ lifetime increases the performance of
PDM.

We also evaluated the query processing service through experimentation and
simulation. The results show very good performance, in terms of communication cost
and response time. The response time and communication cost of the query
processing service grow logarithmically with the number of nodes of the network. For
top-k queries, we studied the effect of several parameters (e.g. number of nodes,
number of requested answers, etc.) on the performance of the query processing
service. The results show very good performance, in terms of communication cost and
response time. For instance, increasing the number of requested answers, i.e. k,
increases very slightly the response time of our algorithm.

In addition, we validated our semantic reconciliation solution through
experimentation and simulation. Our algorithms take into account the communication
costs for selecting the best reconciler nodes. For computing communication costs, we
use local information and we deal with the dynamic behavior of nodes. We also limit
the scope of event propagation (e.g. joins or leaves) in order to avoid network
overload. We compared the performance of reconciliation using random selection of
reconcilers and cost-based selection. The experimental results showed that the cost-
based reconciliation outperforms the random approach by a factor of 26. In addition,
the number of connected nodes does no affect the performance of cost-based
reconciliation since the reconciler nodes are as close as possible to the reconciliation
objects. Compared with the IceCube’s centralized solution, our algorithm yields high
data availability and excellent scalability, with acceptable performance and limited
overhead.

7. Related Work

Data grid applications need to access, share, manage and integrate massive amounts
of data distributed across heterogeneous and geographically spread Grid resources.
The main work in this area has been on providing data access and integration services
for the Grids with a relatively low dynamicity and moderated scale. The following
research efforts are good representatives of such work.

The Spitfire project [42] in the European Data Grid Project provides a means to
access relational databases on the Grid. It is a very thin layer on top of an RDBMS
(by default MySQL) that provides a JDBC driver. It uses Web Service technology
(Jakarta Tomcat) to provide SOAP-based RPC (through Apache Axis) to a few user-
definable database operations.

The Open Grid Services Architecture Data Access and Integration (OGSA-DAI)
 [31] [5] is another project concerned with constructing middleware to assist with
access and integration of data shared over the Grid, using Web services. It is engaged
in identifying the requirements, designing solutions and delivering software that will
meet this purpose. The project is working closely with the Global Grid Forum DAIS-
WG [31] and the Globus team [14]. OGSA-DAI software currently supports the

Data Management in the APPA System 17

exposure of data resources, such as relational or XML databases, over Grids. Various
interfaces are provided and many popular database management systems are
supported. The software also includes a collection of components for querying,
transforming and delivering data in different ways, and a simple toolkit for
developing client applications. One component is Distributed Query Processing
(OGSA-DQP) that deals with processing queries over OGSA-DAI data services and
over other services available on the Grid. OGSA-DQP adapts techniques from parallel
databases to provide implicit parallelism for complex data-intensive queries.

The two above projects deal with data access and integration services by adapting
distributed database technology [32] to the Grid using Web services. However, they
do not address some issues which arise in large-scale and dynamic environments and
which are important for data management in these environments, e.g. low data
availability.

Grid-DBMS [4] deals with dynamically managing data sources in Grid
environments. It automatically reconfigures its components, according to the Grid
state, in order to maintain a desired performance level. It tries to offer a robust and
uniform access to data sources shared over the Grid. However, for providing data
availability, Grid-DBMS relies on replicating whole databases using the underlying
DBMSs' replication services, which is ineffective in highly dynamic environments.
Furthermore, the scalability of Grid-DBMS has not been demonstrated.

To summarize, these solutions for data access and integration in Grids do not
address highly dynamic environments. Thus, they cannot meet the requirements of
OGSA-P2P, e.g. data availability, which APPA supports.

Specific P2P data management systems have been developed for managing shared
data in P2P networks. P-Grid (the Grid of Peers) [1] is a peer-to-peer lookup system
based on a virtual distributed search tree, structured like a distributed hash table. In P-
Grid, each node holds part of the overall tree depending on its path, i.e. the binary bit
string representing the subset of the tree’s information that the node is responsible for.
A decentralized and self-organizing process builds P-Grid’s routing infrastructure
which is adapted to a given distribution of data keys stored by nodes. This process
also addresses uniform load distribution of data storage and uniform replication of
data to support uniform availability. On top of P-Grid’s lookup system, other self-
organizing services may be implemented (e.g. identity, adaptive media dissemination,
trust management). Unlike APPA, which is independent of the overlay network, P-
Grid relies on a specific virtual distributed search tree.

The JXTA-GRID project [20] addresses the use of JXTA technology for Grid
computing. JXTA-GRID will take advantage of existing services of both JXTA and
OGSA, e.g. using JXTA for data discovery and message communication, and OGSA
for job allocation and work-load management. However, to our knowledge, no
version of JXTA-GRID has been yet released.

Edutella [28] is a P2P system for data management in super-peer networks. In
Edutella, a small percentage of nodes, i.e. super-peers, are responsible for indexing
the shared data and routing the queries. The super-peers are assumed to be highly
available with very good computing capacity. Super-peers are arranged in a
hypercube topology, according to the HyperCuP protocol [36]. When a node connects
to Edutella, it should register at one of the super-peers. Upon registration, the node
provides to the super-peer its RDF-based metadata. The initial Edutella services are as

18 Reza Akbarinia, Vidal Martins

follows: 1) query service for processing the queries based on RDF metadata; 2)
replication service that provides data availability and workload balancing; 3) mapping
service which is responsible for doing the mapping between the metadata of different
nodes to enable interoperability between them; and 4) annotation service which
annotates materials stored anywhere within the Edutella network. The main difference
with APPA is that Edutella can only be implemented on top of a super-peer network,
but APPA can be built on both super-peer and structured networks.

PeerDB [37] is a P2P system designed with the objective of high level data
management in unstructured P2P networks. It exploits mobile agents for flooding the
query to the nodes such that their hop-distance from the query originator is less than a
specified value, i.e. TTL (Time-To-Live). Then, the query answers are gathered by
the mobile agents and returned back to the query originator. The architecture of
PeerDB consists of three layers, namely the P2P layer that provides P2P capabilities
(e.g. facilitates exchange of data and resource discovery), the agent layer that exploits
agents as the workhorse, and the object management layer (which is also the
application layer) that provides the data storage and processing capabilities.

These P2P systems are typically dependent on the network (i.e. unstructured,
structured or super-peer) for which they have been designed and cannot be easily used
in other P2P networks. Thus, they cannot easily address the requirements of dynamic
Grids.

One of the distinguishing features of APPA is its network-independent
architecture, so it can be implemented over different overlay networks. Furthermore,
APPA can support all the requirements specified by OGSA-P2P.

8. Conclusion

In this paper, we have presented the main services of APPA (Atlas Peer-to-Peer
Architecture), a data management system for large-scale P2P and Grid applications.
APPA has a network-independent architecture that can be implemented over various
overlay networks. The main advantage of such architecture is to be able to exploit
rapid and continuing progress in such networks. It can also be used as a basis for
implementing OGSA-P2P. APPA can support the requirements of OGSA-P2P such as
scalability, dynamic data discovery, data availability, group support, location
awareness, security, and connectivity.

We focused on two main requirements of OGSA-P2P: data availability which is
addressed by the persistent data management and replication services, and data
discovery which is addressed by the query processing service. APPA provides data
persistence with high availability through replication by using multiple hash
functions. It addresses efficiently the problem of retrieving current replicas based on
timestamping. APPA also provides a higher-level replication service with multi-
master replication. This service enables asynchronous collaboration among users. In
order to resolve conflicting updates, we use a distributed semantic-based
reconciliation algorithm which exploits parallelism. Query processing in APPA deals
with schema-based queries and considers data replication. The main phases of query
processing are query reformulation on a common schema description, query matching

Data Management in the APPA System 19

to find relevant nodes, query optimization to select best nodes, and query
decomposition and execution.

APPA is portable and can be used over other platforms by replacing the services of
the P2P network layer. We have implemented APPA on top of JXTA and other P2P
networks such as CAN and Chord. We have validated APPA's services through a
combination of experimentation over the Grid5000 experimental platform.
Additionally, in order to study the scalability of these services with larger numbers of
nodes, we implemented simulators using SimJava. Experimental and simulation
results showed that APPA's services have good performance and scale up.

References

[1] Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M., Punceva, M.,
and Schmidt, R. P-Grid: A Self-organizing Structured P2P System. ACM SIGMOD
Record, 32(3), 2003.

[2] Akbarinia, R., Pacitti, E., and Valduriez, P. Reducing Network Traffic in Unstructured
P2P Systems Using Top-k Queries. J. Distributed and Parallel Databases, 19(2-3), 2006.

[3] Akbarinia, R., Martins, V., Pacitti, E., and Valduriez, P. Top-k Query Processing in the
APPA P2P System. Int. Conf. on High Performance Computing for Computational
Science (VecPar), 2006.

[4] Aloisio, G., Cafaro, M., Fiore, S., and Mirto, M. The Grid-DBMS: Towards Dynamic Data
Management in Grid Environments. IEEE Int. Symposium on Information Technology:
Coding and Computing (ITCC), 2005.

[5] Antonioletti, M. et al. The Design and Implementation of Grid Database Services in
OGSA-DAI. Concurrency and Computation: Practice and Experience 17 (2-4), 2005.

[6] Balfe, S., Lakhani, A.D., Paterson, K.G. Trusted Computing: Providing Security for Peer-
to-Peer Networks. IEEE Int. Conf. on Peer-to-Peer Computing, 2005.

[7] Castro, M., Jones, M.B., Kermarrec, A., Rowstron, A., Theimer, M., Wang, H., Wolman,
A. An Evaluation of Scalable Application-level Multicast Built Using P2P Overlays. IEEE
Infocom, 2003.

[8] Chakravarti, A. J., Baumgartner, G., Lauria, M. The Organic Grid: Self-organizing
Computation on a Peer-to-peer Network. IEEE Transactions on Systems, Man, and
Cybernetics, Part A 35(3): 373-384 (2005).

[9] Chaudhuri, S., and Gravano, L. Evaluating Top-k Selection queries. VLDB Conf., 1999.
[10] Chockler, G., Keidar, I., Vitenberg, R. Group communication specifications: a

comprehensive study. ACM Computing Surveys, 33(427-469), 2001.
[11] Clarke, I., Miller, S., Hong, T.W., Sandberg, O., Wiley, B. Protecting Free Expression

Online with Freenet. J. IEEE Internet Computing, 6(1), 2002.
[12] Foster, I.T., Kesselman, C., and Tuecke, S.. The Anatomy of the Grid: Enabling Scalable

Virtual Organizations. J. of Supercomputer Applications, 15(3), 2001.
[13] Foster, I.T., and Iamnitchi, A. On Death, Taxes, and the Convergence of Peer-to-Peer and

Grid Computing. Int. Workshop on P2P Systems (IPTPS), 2003.
[14] Globus Alliance. http://www.globus.org/
[15] Gnutella. http://www.gnutelliums.com/.
[16] Grid4All project. www.grid4all.eu/.
[17] Grid5000 Project. http://www.grid5000.fr.
[18] Howell, F., and McNab, R. SimJava: a Discrete Event Simulation Package for Java with

Applications in Computer Systems Modeling. Int. Conf. on Web-based Modeling and
Simulation, 1998.

20 Reza Akbarinia, Vidal Martins

[19] JXTA. http://www.jxta.org/.
[20] JXTA-GRID. http://jxta-grid.jxta.org/.
[21] Kermarrec, A., Rowstron, A., Shapiro, M., Druschel P. The IceCube approach to the reco-

nciliation of diverging replicas. ACM Symp. on Principles of Distributed Computing,
2001.

[22] Knezevic, P., Wombacher, A., and Risse, T. Enabling High Data Availability in a DHT.
Int. Workshop on Grid and P2P Computing Impacts on Large Scale Heterogeneous
Distributed Database Systems (GLOBE), 2005.

[23] Levy, A., Rajaraman, A., Ordille, J. Querying heterogeneous information sources using
source descriptions. VLDB Conf., 1996.

[24] Martins, V., Akbarinia, R., Pacitti, E., Valduriez, P. Reconciliation in the APPA P2P
System. IEEE ICPADS, 2006.

[25] Martins, V., Pacitti, E., and Valduriez, P. Dynamic and Distributed Reconciliation in P2P-
DHT Networks. European Conf. on Parallel Computing (Euro-Par), 2006.

[26] Martins, V., Pacitti, E., Jimenez-Peris, R., and Valduriez, P. Scalable and Available
Reconciliation in P2P networks. Journées Bases de Données Avancées (BDA), 2006.

[27] Nejdl, W., Siberski, W., Sintek, M. Design issues and challenges for RDF- and schema-
based peer-to-peer systems. ACM SIGMOD Record, 32(3), 2003.

[28] Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér, M.,
and Risch, T. EDUTELLA: a P2P networking infrastructure based on RDF. Int. World
Wide Web conf. (WWW), 2002.

[29] OGSAP2P Research Group. http://www.ggf.org/4_GP/ogsap2p.htm.
[30] Open Grid Services Architecture. http://www.globus.org/ogsa/.
[31] Open Grid Services Architecture Data Access and Integration. http://www.ogsadai.org.uk/.
[32] Özsu, T., Valduriez, P. Principles of Distributed Database Systems. Prentice Hall, 1999.
[33] Preguiça, N., Shapiro, M., Matheson, C. Semantics-based reconciliation for collaborative

and mobile environments. Int. Conf. on Cooperative Information Systems (CoopIS), 2003.
[34] Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S. A scalable content-

addressable network. ACM SIGCOMM Conf., 2001.
[35] Saito, Y., Shapiro, M. Optimistic Replication. ACM Computing Surveys, 37(1), 2005.
[36] Schlosser, M., Sintek, M., Decker, S., and Nejdl, W. HyperCuP—Hypercubes, Ontologies

and Efficient Search on P2P Networks. Int. Workshop on Agents and Peer-to-Peer
Computing, 2002.

[37] Siong Ng, W., Ooi, B., Tan, k.L., and Zhou, A. PeerDB: A P2P-based System for
Distributed Data Sharing. Int. Conf. on Data Engineering (ICDE), 2003.

[38] Sit, E., Morris, R. Security Considerations for Peer-to-Peer Distributed Hash Tables. Int.
Workshop on P2P Systems (IPTPS), 2002.

[39] Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H. Chord: A scalable
peer-to-peer lookup service for internet applications. ACM SIGCOMM Conf., 2001.

[40] Tanaka, A., Valduriez, P. The Ecobase environmental information system: applications,
architecture and open issues. ACM SIGMOD Record, 3(5-6), 2000.

[41] Tatarinov, I., Ives, Z.G., Madhavan, J., Halevy, A., Suciu, D., Dalvi, N., Dong, X.,
Kadiyska, Y., Miklau, G., Mork, P. The Piazza peer data management project. ACM
SIGMOD Record 32(3), 2003.

[42] The Spitfire Project. http://edg-wp2.web.cern.ch/edg-wp2/spitfire/index.html.
[43] Tomasic, A., Raschid, L., Valduriez, P. Scaling access to heterogeneous data sources with

DISCO. IEEE Trans. on Knowledge and Data Engineering, 10(5), 1998.
[44] Valduriez, P. Parallel Database Systems: open problems and new issues. J. Distributed

and Parallel Databases, 1(2), 1993.
[45] Whittaker, S., Issacs, E., O’Day, V. Widening the Net: Workshop report on the theory and

practice of physical and network communities. ACM SIGCHI Bulletin, 29(3), 1997.

