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Abstract

We show how energy flow lines answer the question about diffraction phenomena presented in

1818 by the French Academy: ”deduce by mathematical induction, the movements of the rays

during their crossing near the bodies”. This provides a complementary answer to Fresnel’s wave

theory of light. A numerical simulation of these energy flow lines proves that they can reach the

bright spot of Poisson-Arago in the shadow center of a circular opaque disc. For a monochromatic

wave in vacuum, these energy flow lines correspond to the diffracted rays of Newton’s Opticks.
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I. INTRODUCTION

The answer Fresnel provided in 1818 in response to the French Academy’s competition

marks the beginning of the refutation of Newton’s corpuscular theory of light and the reha-

bilitation of the Huygens wave theory. The competition topic was presented as follows:

”...diffraction phenomena have been a subject of research for many physicists...but re-

search has not yet sufficiently determined the movement of the rays near the body where

the change occurs...it important...to further study...the physical manner in which rays are

inflected and separated into different bands ... As a result the Academy is proposing this

research...to be presented as follows: 1. Determine all the effects of ray diffraction ...direct

and reflected when they ... pass near the extremities of a body... 2. Deduce from these

experiments, by mathematical induction, the movements of the rays during their crossing

near the bodies.”1

This announcement was made by a jury of great scientists: Pierre-Simon Laplace, Jean

B. Biot, Simeon D. Poisson, Joseph L. Gay-Lussac - all Newtonian - as well as Dominique

F. Arago who was the only one who believed in wave theory.

FIG. 1: Newton’s rays diffracted by a hair and a small circular aperture (1704).2

They all recall the ray concept proposed by Newton in the third book of his Opticks 2 [see

Fig. 1] in order to explain diffraction by a hair or by a circular aperture, and the conclusion

of its experimental part where he wrote:

”When I made the foregoing Observations, I design’d to repeat most of them with more

care and exactness, and to make some new ones for determining the manner how the Rays
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of Light are bent in their passage by Bodies, for making the Fringes of Colours with the

dark lines between them. But I was then interrupted, and cannot now think of taking these

things into farther Consideration. And since I have not finish’d this part of my Design, I

shall conclude with proposing only some Queries, in order to a further search to be made by

others.”2

Fresnel’s essay develops a mathematical wave theory which seems be in conflict with

the corpuscular theory. It describes an impressive number of diffraction experiments all

explained by the same principle: the fringes are due to interference waves issued by each of

the screen points. Fresnel’s principle generalizes Huygens’ principle.

Poissson carefully studied Fresnel’s theory and deduced ”that the center of the shadow

of a circular opaque disc... (should)... be as enlightened as if the disc didn’t exist”1; this

bright spot of light at the center of the shadow, he claimed, ”violated common sense” and

hence refuted Fresnel’s wave theory. However, Arago almost immediatly verified the spot

experimentally. Fresnel won the competition and this discovery induces the acceptance of

wave theory and the refutation of corpuscular theory. This spot of light, today known as

Poisson’s bright spot or spot of Arago, was observed a century earlier (1723) by Maraldi,

who had not published his work.3,4

This paper proposes to complete Fresnel’s answer and to show how the energy flow lines

are (in the special case of a monochomatic wave in vacuum) the answer to the French

Academy’s question about diffraction phenomena:”deduce by mathematical induction, the

movements of the rays during their crossing near the bodies”. We study, by a numerical

simulation, the case of diffraction by a circular aperture as well as diffraction by a circular

opaque disc in order to find the spot of Poisson-Arago. In Section 2, we recall how to

calculate bright densities with wave theory. In Section 3, we show that the energy flow lines

correspond to Newton rays and are in good agreement with the experiment. Then in section

4, we discuss the interpretation of these energy flow lines.

II. INTENSITY DISTRIBUTIONS

Let us consider a monochromatic plane wave of light which is perpendicular to a circular

aperture (resp. an opaque disc) placed in the xy plane, and a detector in a parallel plane

at distance z. Set (xM , yM) the coordinates of a point M in the diffracting plane and (x, y)
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the coordinates of the observation point P on the detector.

First, if we neglect the polarisation of light and if we suppose that the incident wave is of

the form A0e
ikz on the aperture, the amplitude A(P ) for z > 0, which verifies the Helmholtz

equation, is given by the Rayleigh-Sommerfeld formula:5,6

A(P ) = −iA0

λ

∫

S

eikr

r
(1 − 1

ikr
) cos θdxMdyM (1)

where r =
√

(x − xM)2 + (y − yM)2 + z2, cos θ = z
r
, k = 2π

λ
and where the integration is

taken on the surface S of the aperture. Notice that the formula gives the exact solution, in

particular for very small distance of the aperture thanks to −1/ikr; see Gillen and Guha.7

A. Intensity distributions for a circular aperture

Figure 2 shows, in a plane (z,x) containing the optical axis, intensity behind a circular

aperture with a radius R = 5µm of a monochromatic plane wave of light with wavelength

λ = R
10

= 0.5µm.

FIG. 2: Calculated intensity distributions behind the circular aperture in the plane (z, x).

Far from the aperture, the classical Fraunhofer diffraction appears, and the emerging

beam has a well-defined angular dispersion, in the order of ∆θ ∼ λ
R
; this is the Airy disc.

Near the aperture, we get the Fresnel diffraction. We note a succession of bright and dark

areas on the axis.
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B. Intensity distributions for an circular opaque disk

Because the incident wave is a plane wave, the intensity value is calculated by the Babi-

net’s principle8,9 in taking the square of

A(P ) = A0(e
ikz +

i

λ

∫

S

eikr

r
(1 − 1

ikr
) cos θdxMdyM); (2)

numerical integration is taken on the surface of the opaque disc S.

Figure 3 represents the intensity behind an opaque disc of radius R = 5µm of a monochro-

matic wave of light with wavelength λ = R
10

= 0.5 µm.

FIG. 3: Calculated intensity distributions behind the circular opaque disk in the plane (z, x).

We see clearly the area corresponding to the geometric shade, but also the bright spot

of Poisson-Arago in the center of the shadow; with the choice of λ = R
10

, this bright spot

assumes a great importance.

Newton, who carried out the experiment of the opaque disk using a coin, does not report

the presence of fringes within the shadow in his Opticks.2 With λ = 0.5 µm and a coin

(R = 1 cm), it is difficult to see the bright spot of Arago on a detector placed at 5 m [see

Fig. 4]. The radius of the spot is 0.1 mm and just visible to the naked eye. This oversight

was to have an unfortunate consequence a century later!
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FIG. 4: Spot of Poisson-Arago: Intensity distribution behind a coin (R = 1 cm) on a detector

placed at 5m.

III. ENERGY FLOW LINES FOR A MONOCHROMATIC WAVE

Let us consider a monochromatic electromagnetic field {E(r, t), B(r, t)} which is the real

part of the complex monochromatic electromagnetic field {E(r, t) = E0(r)e
−iωt,B(r, t) =

B0(r)e
−iωt}.

The Poynting vector S = 1

µ0
E × B is the instantaneous rate of energy flow per unit

area at a point; u = 1

2
(ǫ0E

2 + 1

µ0
B2) is the instantaneous electromagnetic energy density.

Since the optical frequencies are very large (ω is of order 1015 s−1), one cannot observe the

instantaneous values of any of the rapidly oscillating quantities, but only their time average

taken over a time interval which is large compared to the fundamental period T = 2π
ω

.11,12

The energy flow, which is interpreted as the time-averaged Poynting vector,11,12 is deter-

mined from the real part of the complex Poynting vector S = 1

µ0
E ×B∗ and from the energy

density of the complex field U = 1

2
(ε0EE∗ + 1

µ0
BB∗). The time-averaged flux of energy and

the time-averaged energy density are given by

〈S〉 =
1

2µ0

Re[E0 × B∗
0], 〈u〉 =

1

4
(ε0E0E

∗
0 +

1

µ0

B0B
∗
0). (3)

The energy flow lines are obtained by the equation

dr

dt
=

〈S〉
〈u〉 . (4)

For diffraction problems, these energy flow lines have been discussed at length. In 1952,

they were calculated numerically for two-dimensional diffraction on a half-plane by Braun-

beck and Laukien10 and recalled in Born and Wolf’s textbook11 p.575-577. In 1976, Prosser13
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proposed an interpretation of diffraction and interference with electromagnetic fields in terms

of energy flow lines. These lines are recently demonstrated and discussed in distributions of

incoherent light for various two-dimensional situations by Wünscher et al.14 Their interpre-

tation will be discussed in the following section.

The circular aperture and opaque disc problems are invariant by rotation, and if the

incident light polarization is also invariant by rotation, the electromagnetic field (E0,B0) can

be written in cylindrical coordinates (ρ, ϕ, z) in the form E0 = {eρ, 0, ez} and B0 = {0, bϕ, 0},
where eρ, ez and bϕ are functions of (ρ, z).

From Maxwell equation rotB = ε0µ0
∂E
∂t

we deduce E0 = ic
k
[− ∂

∂z
bϕ, 0, ∂

∂ρ
bϕ] and

〈S〉 =
1

2µ0

cλ

2π
Im(b∗ϕ∇bϕ). (5)

From Faraday’s law rotE = −∂B
∂t

, we show that bϕ verifies the Helmholz equation

∆bϕ(ρ, z) + k2bϕ(ρ, z) = 0. (6)

Taking into account the time-averaged energy conservation law ∇ · 〈S〉 = 0, we deduce

ε0E0E
∗
0 = 1

µ0
B0B

∗
0 and then 〈u〉 = 1

2µ0
bϕb∗ϕ.

The energy flow lines are then only defined by the wave bϕ

dr

dt
=

cλ

2π

Im(b∗ϕ∇bϕ)

bϕb∗ϕ
(7)

and are perpendicular to equal phase surfaces; if bϕ = |bϕ| exp(iθ), ∇θ = Im(b∗ϕ∇bϕ)/bϕb∗ϕ.

A. Energy flow lines for a circular aperture

Figure 5 shows 40 energy flow lines where the initial positions are drawn at random in

the circular aperture.

0  5 R 10 R 15 R 20 R

− 2 R

− R

0   

R

2 R

FIG. 5: 40 energy flow lines behind the circular aperture.
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We notice that after a disturbance in the Fresnel zone, lines gradually become straight in

the Fraunhofer area, in agreement with the diffracted rays proposed by Newton in Figure 1

for a circular aperture.

B. Spot of Poisson-Arago and energy flow lines for a circular opaque disk

Figure 6 shows energy flow lines where the initial positions are drawn at random outside

the circular opaque disk.

0  10 R 20 R 30 R
− 3 R

− 2 R

− R

0

R

2 R

3 R

FIG. 6: Energy flow lines behind the circular opaque disk.

Using the presence of energy flow lines behind the opaque disc, we propose an explanation

of the bright spots of Poisson-Arago in the next section.

C. Energy flow lines for Young’s double slit experiment

Complete these numerical simulations by determining the energy flow lines for the Young’s

double slit experiment. Carried out in 1802 by Thomas Young, some years before Fresnel’s

theory, this well-know experiment is the first that clearly demonstrates the wave nature of

light.15

Let us consider a monochromatic plane wave of light (λ = 0.5 µm) perpendicular to two

slits placed in the xy plane, and a detector in a parallel plan at distance z. The slits have

a width d = 5 µm along x and infinity along z; 2 d is the distance between slits, center to

center.
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The electromagnetic field (E0,B0) is function of (x, z) and can be written B0 = [0, 0, bz],

E0 = ic
k
[ ∂
∂y

bz,− ∂
∂x

bz , 0]. The energy flow lines after the slits are then defined by

dr

dt
=

cλ

2π

Im(b∗z∇bz)

bzb∗z
. (8)

If the incident wave bz is of the form A0e
ikz on the slits, bz is, after the slits, given by the

Fresnel-Kirchhoff solution:

bz(P ) =
A0√
λz

e−i π

4 eikz

∫

S

e
ik(x−xM )2

2z dxM (9)

where the integration is taken on the length S of the two slits.

Figure 7 shows 20 energy flow lines where the initial position are drawn at random in the

two slits.

0 10d 20d 30d

0

d

d/2

3d/2

2d

3d

−3d

−2d

−d

−d/2

−3d/2

FIG. 7: 20 energy flow lines behind the two slits.

IV. INTERPRETATION OF MONOCHROMATIC ENERGY FLOW LINES

For monochromatic waves in the vacuum, these energy flow lines correspond to the

diffracted rays proposed by Newton in Principia16 (1687):”Moreover, the rays of light that

are in our air (as lately was discovered by Grimaldi, by the admission of light into a dark

room through a small hole, which I have also tried) in their passage near the angles of bodies,

whether transparent or opaque (such as the circular and rectangular edges of gold, silver and

brass coins, or of knives, or broken pieces of stone or glass), are bent or inflected round those

bodies as if they were attracted to them.”

Can these energy flow lines be interpreted as light rays, or even photon trajectories?

When light is incoherent, we must reject this interpretation as recalled by Wünscher

et al.14 Indeed, when the light is not monochromatic, it must be regarded as a mixture
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of monochromatic waves as Newton showed in his famous experiments of light decomposi-

tion.2 Each monochromatic wave of white light gives energy flow lines which depend on its

wavelength.

The answer is more complex for a monochromatic wave. These energy flow lines are a

generalization of the rays of the geometrical optics. Indeed, if we increase the frequency of

the light wave towards infinity, the energy flow lines converge towards the straight rays of

the geometrical optics. This is shown in Fig. 8 for Young’s double slit interference. Since in

geometrical optics we speak of the light rays, the energy flow lines for monochromatic waves

in vacuum could be called by analogy, the light rays of wave optics. These energy flow lines

correspond to the definition of rays of light given by Newton in the begining of his Opticks:

” By the Rays of Light I understand its least Parts, and those as well Successive in the same

Lines as Contemporary in several Lines.”
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FIG. 8: Evolution of the energy flow lines when the frequency increases: λ = 0.5 µm; λ = 50 nm;

λ = 5 nm.

Could these light rays could also be interpreted as photon trajectories? This is the

question recently posed by Davidovic et al.17

First, these chromatic lines can be considered as photon trajectories only if they cor-

respond to instantaneous energy flow lines, and not to average energy flow lines. It is

possible if the physical electromagnetic field is not the real field {E(r, t), B(r, t)}, as

it is supposed in all the classical electromagnetic textbooks,11,12 but the complex field

{E(r, t) = E0(r)e
−iωt,B(r, t) = B0(r)e

−iωt}.
While Re(S)/U = 〈S〉/〈u〉, the Eq. (7) of the average energy flow line of the real field is

also the equation of the instantaneous energy flow line of the complex field

dr

dt
=

Re(S)

U . (10)
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Thus for a monochromatic light in a vacuum, the calculations show that energy flow lines

correspond to photon trajectories. Although this hypothesis contradicts the common inter-

pretation, we will show that this hypothesis does not disagree with the basis of the light

quantization of quantum optics. To quantify the electric field E(r, t), Glauber18 decomposes

it on the one hand in monochromatic waves (it is the Newton decomposition), on the other

hand into its positive and negative frequency parts: E(r, t) = E{+}(r, t) + E{−}(r, t). In the

monochromatic case, we have E(r, t) = E
{+}
0 (r)e−iωt + E

{−}
0 (r)e+iωt with E

{+}
0 (r) = E0(r),

E
{−}
0 (r) = E∗

0(r). The quantization of E
{+}
0 (r) is then realized with a photon annihilation

operator, and the quantzation of E
{−}
0 (r) with a photon creation operator. Consequently,

the electric field operator Ê(r, t) is deduced by quantification of the complex field E(r, t)

(and its conjugate), and not of the real field E(r, t). It is consistent with the option of taking

the complex field as physics field. Light beams in the above examples do not correspond to

a stationary field as in the cavities, but are continually produced by a source and, after a

free propagation, continually destroyed by absorption on the detector.

These photon trajectories, if they exist, are defined by the Eqs. (7), (8) or (10) and by

adding positions to the monochromatic wave function. These photon trajectories are anal-

ogous with the trajectories of massive particles of the Broglie-Bohm interpretation.19,20,21,22

V. CONCLUSION

The energy flow lines concept is the simplest answer to the question of the French

Academy : ”deduce by mathematical induction, the movements of the rays during their

crossing near the bodies”. These lines correspond to the diffracted rays proposed by New-

ton, and by analogy to the geometrical optics, they can be also considered as the light rays of

wave optics. So the ”spot of Poisson-Arago” could be explained by the effect of these rays.

Finally, the mathematical and numerical developments of this paper show that Fresnel’s

wave theory may not be in contradiction with the corpuscular interpretation.
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19 L. de Broglie,” La mécanique ondulatoire et la structure atomique de la matière et du rayon-

nement,” J. de Phys. 8, 225–241 (1927); L. de Broglie, Une Tentative d’Interpretation Causale

et Non Lineaire de la Mecanique Ondulatoire (Gauthier-Villars, Paris, 1951).

20 D. Bohm, ”A suggested interpretation of the quantum theory in terms of ‘hidden’ variables,”

Phys. Rev. 85, 166–193 (1952).

21 For a presentation of the de Broglie-Bohm interpretation of quantum mechanics equations, see

D. Bohm and B. J. Hiley, The Undivided Universe (Routledge, London and New York, 1993);

P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, 1993); J. S.

Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, 1987);

S. Goldstein, ”Bohmian Mechanics” in (E. N. Zalta Ed., Stanford Encyclopedia of Philosophy,

2001). Published online http://plato.stanford.edu/entries/qm-bohm.

22 M. Gondran, and A. Gondran, ”Numerical simulation of the double-slit interference with ultra-

cold atoms”, Am. J. Phys. 73, 507-515 (2005).

13


