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Abstract Recursive partitioning methods are among the most popular techniques in

machine learning. It is the purpose of this paper to investigate how such an appealing

methodology may be adapted to the bipartite ranking problem, in order to elaborate a

global learning method. Following in the footsteps of the TreeRank approach devel-

oped in [1], we present tree-structured algorithms designed for learning to rank/order

instances based on classification data. Crucial questions concerning practical imple-

mentation of the TreeRank algorithm, those related to the splitting rule and the

choice of the ”right” size for the ranking tree namely, are tackled. From the angle

embraced in this paper, splitting is viewed as a cost-sensitive classification task with

data-dependent cost, so that, up to straightforward modifications, any classification

algorithm may serve as a splitting rule. As for classification, we propose to imple-

ment a cost-complexity pruning method after the growing stage, in order to produce

a ”right-sized” sub- ranking tree with large AUC. In particular, performance bounds

are established for pruning schemes inspired by recent work on nonparametric model

selection. It is also discussed how to interpret a ranking tree and various simulation

studies are eventually presented for illustration purpose.

1 Introduction

The goal of bipartite ranking procedures is to order/rank all possible values x ∈ X of a

random variable X, modeling the available observation for predicting a random binary

label Y ∈ {−1,+1} based on a data sample {(Xi, Yi) : 1 ≤ i ≤ n}. This generally

boils down to build a scoring function s : X → R and use the natural order on the real

line: one then expects that the higher the observed value s(X) is, the more likely the

event ”Y = +1” should be observed.

This problem arises in a large variety of applications, ranging from the design of

search engines in information retrieval to medical diagnosis through credit-risk screen-
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ing or anomaly detection in signal processing. However, until now, relatively few al-

gorithms have been specifically elaborated for building a performant scoring function

s(x) from training data, the vast majority of ranking methods relies on the plug-in

approach or consists of combining classifiers in an additive fashion (see [2]). The main

difficulty lies in the global nature of the ranking problem, whereas, in contradistinction,

popular classification rules, such as those obtained through recursive partitioning of

the input space X , are based on the concept of local learning (see [3]). Indeed, for such

classification procedures, the predicted label of a given instance x ∈ X depends on the

data lying in the subregion of the partition containing x solely, whereas, in contrast,

the notion of ranking/ordering would rather involve comparing the subregions to each

other, see [4] or [5].

In [1], a specific recursive partitioning method (RP), called TreeRank and producing

piecewise constant scoring functions, has been thoroughly investigated. In this simple

top-down approach, alike the RP, the related ordering is tree-structured, in a way that

the ranking may be ”read from the left to the right” at the bottom of the tree: instances

belonging to the same subregion of the RP being tied. In addition, partitioning of the

feature space has been related to approximation/estimation of the optimal ROC curve

by 2-d splines and it has been established that, under general assumptions, the resulting

piecewise linear ROC curve converges to the optimal one not only in the AUC sense

but also in sup-norm, mimicking the performance of a nonlinear approximation scheme,

which may be viewed as a finite element method (FEM) with implicit design. As a top-

down RP strategy, TreeRank has the same drawback as the popular CART method

(see [6]): it may be fooled by an XOR configuration, yielding inappropriate first splits

and compromising then the results of the tree growing procedure. Additionally, it is

enhanced here by the global nature of the ranking task, while in classification, given

the local aspect of the decision rule, a bad start may be nevertheless compensated by

growing the tree further at the cost of a certain amount of artificial complexity. In

some sense, ranking errors are stacked as one grows the tree and the performance of

the TreeRank algorithm is very sensitive to the splitting rule chosen.

It is the primary goal of this paper to propose pragmatic strategies for performing

the Optimization step of the TreeRank algorithm efficiently, i.e. for splitting the cells

in such a flexible manner that accurate approximants of bilevel sets of the regression

function may be obtained. Partition-based splitting rules, adaptive or not, are consid-

ered for this purpose. We also provide an interpretation of the Optimization step as a

cost-sensitive classification task with a data-dependent cost, equal to the rate of posi-

tive instances within the node to split. In this view, TreeRank appears as a recursive

implementation of a cost-sensitive version of CART.

The question of selecting the final size of the ranking tree thus produced is also

tackled from the perspective of model selection based on complexity penalization prun-

ing. In this respect, two approaches are considered. The cross validation-based selec-

tion method of the CART algorithm is first extended to the ranking setup. Expected

performance bounds are also established for ranking trees selected through direct min-

imization of a specific complexity penalized version of the AUC criterion, involving no

cross validation or resampling. In addition, some conditions under which such pruning

schemes may be shown consistent in the AUC sense are exhibited.

The paper is organized as follows. Notations are first set out in Section 2, while

briefly recalling crucial concepts of the bipartite ranking problem together with certain

key results of ROC analysis and important properties of scoring rules that are piecewise
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constant, as those produced by the algorithms presented in this paper. In Section 3

we examine how to implement the Optimization step of the TreeRank algorithm.

Issues related to the selection of the size of the ranking tree are tackled in Section 4,

while Section 5 deals with interpretation of tree-based ranking rules with perpendicular

splits. Eventually, simulation results are presented in Section 6 for illustration purpose.

Technical proofs are deferred to the Appendix.

2 Background and Preliminaries

We start off with a brief description of the bipartite ranking task and recall key concepts

related to this statistical learning problem. We also recall the principles underlying the

TreeRank algorithm and state preliminary results in order to give an insight into the

way we shall implement it.

2.1 The bipartite setup

The probabilistic framework is exactly the same as the one in standard binary classifica-

tion. We denote by (X,Y ) a pair of random variables where Y ∈ {−1,+1} is a binary la-

bel and X models some observation for predicting Y , taking its values in a feature space

X ⊂ Rq of high dimension. Here and throughout, L denotes (X,Y )’s joint distribution

and p = P{Y = +1}. The probability distribution L is entirely determined by the pair

(µ, η) where µ denotes X’s marginal distribution and η(x) = P{Y = +1 | X = x},
x ∈ X , the regression function. We also introduce G(dx) and H(dx), X’s conditional

distributions given Y = +1 and Y = −1 respectively. Through the article, these prob-

ability measures are assumed to be equivalent. Observe that, with these notations,

η(x) = pdG/dH(x)/(1 − p+ pdG(x)/dH(x)) and µ(dx) = pG(dx) + (1 − p)H(dx).

Although it involves the same probabilistic setting, the bipartite ranking problem

is less easy to state than the binary classification problem. Based on the observation of

i.i.d. examples Dn = {(Xi, Yi) : 1 ≤ i ≤ n}, the goal is here to learn how to order all

instances x ∈ X in a way that instances X such that Y = +1 with largest probability

appear on top in the list. Clearly, the simplest way of defining an order relationship

on X is to transport the natural order on the real line to the feature space through

a scoring rule s : X → R. The notion of ROC curve, which we recall below, provides

a functional criterion for evaluating the performance of the ordering induced by such

a function. Here and throughout, we denote by F−1(t) = inf{u ∈ R : F (u) ≥ t} the

pseudo-inverse of any cumulative distribution function F : R → R and by S the set

of all scoring functions, i.e. the space of real-valued measurable functions on X . The

indicator function of any event E is denoted by I{E} and the notation IC will also be

used for denoting the indicator function of any set C ⊂ X .

Definition 1 (ROC curve) Let s ∈ S. The ROC curve of the scoring function s(x)

is the PP-plot given by:

t 7→ (P{s(X) ≥ t | Y = −1},P{s(X) ≥ t | Y = +1}) , (1)

where, by convention, points corresponding to possible jumps of the conditional distri-

butions of s(X) given Y = +1 and given Y = −1 are continuously connected by line

segments. We denote by α ∈ (0, 1) 7→ ROC(s, α) the resulting curve.



4

Let Gs(dx) and Hs(dx) denote the conditional distributions of s(X) given Y = +1

and given Y = −1 respectively, for any s ∈ S. In the case where these probability

distributions are both continuous, s(x)’s ROC curve is nothing else than the graph of

the mapping:

α ∈ [0, 1] 7→ ROC(s, α) = 1 − Gs ◦ H−1
s (1 − α). (2)

Remark 1 (Alternative convention) With the convention mentioned above, it is

noteworthy that the curve ROC(s, .) is linear-by-parts as soon as s(X)’s conditional

distributions are discrete. Another usual convention consists in defining ROC(s, .) as

the graph of the mapping (2) in all cases. Equipped with this notation, when Gs or

Hs are discrete, s(x)’s ROC curve is piecewise constant.

Optimal ROC curve. It is a well-known result in ROC analysis that increasing trans-

forms of the regression function η(x) form the class S∗ of optimal scoring functions in

the sense that their ROC curve, namely ROC∗ = ROC(η, .), dominates the ROC curve

of any other scoring function s(x) everywhere:

∀α ∈ [0, 1[, ROC(s, α) ≤ ROC∗(α).

We refer to [7] for a rigorous proof based on a standard Neyman-Pearson’s argument

together with a detailed list of properties of the optimal ROC curve. It is noteworthy

that the curve ROC∗ is concave. More generally, for any scoring function s(x), ROC(s, .)

is a concave curve as soon as the likelihood ratio dGs/dHs(s(X)) is monotone.

For notational simplicity, we set H∗ = Hη and G∗ = Gη as well as Q∗(α) =

H∗−1(1 − α) for all α ∈ (0, 1). We recall that if Q∗(0) = limα→0Q
∗(α) < 1 (i.e.

η(X)’s essential supremum is strictly less than 1), H∗ and G∗ are differentiable and

H∗′ is bounded by below by a strictly positive constant on its support, then ROC∗

is twice differentiable on [0, 1] with bounded derivatives: ∀α ∈ [0, 1], ROC∗′(α) =

(1 − p)Q∗(α)/(p(1 − Q∗(α))) and ROC∗′′(α) = (1 − p)Q∗′(α)/(p(1 − Q∗(α))2). Refer

to Corollary 7 and Proposition 8 in [7] for further details.

The AUC criterion. In practice, the functional performance measure described above

is generally summarized by a scalar feature, the area under the ROC curve (AUC in

abbreviated form).

Definition 2 (The AUC criterion) Let s(x) be a scoring function. The area under

its ROC curve is given by

AUC(s) =

Z 1

α=0
ROC(s, α)dα.

Of course, S∗ corresponds to the set of scoring functions with maximum AUC. We set:

∀s ∈ S∗, AUC∗ = AUC(s).

The popularity of the AUC criterion mainly arises from the fact that it may be

interpreted in a probabilistic manner.

Proposition 1 For any scoring function s(x), we have:

AUC(s) = P{s(X) > s(X′) | (Y,Y′) = (+1,−1)}+1

2
P{s(X) = s(X′) | (Y,Y′) = (+1,−1)},

where (X ′, Y ′) denotes a copy of the pair (X,Y ), independent from the latter.
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Remark 2 (Optimal AUC) It has been shown in [8] that, when η(X)’s distribution

is continuous, the maximal AUC depends on the dispersion of η(X) through the rela-

tionship:

AUC∗ =
1

2
+

E[|η(X) − η(X′)|]
4p(1 − p)

,

where X ′ denotes an independent copy of the r.v. X. The quantity E[|η(X) − η(X ′)|]
is known as the Gini mean difference of η(X), a popular measure of dispersion in

statistics. Hence, the more concentrated η(X), the more difficult the ranking problem.

Remark 3 (Alternative convention (bis)) We point out that, with the other con-

vention for ROC curves mentioned in Remark 1, the area under the ROC curve of any

scoring function s reduces to the term P{s(X) > s(X ′) | (Y, Y ′) = (+1,−1)} solely.

2.2 Piecewise constant scoring functions

Here we focus on the simplest scoring functions, namely real-valued piecewise constant

functions on the feature space X . Any scoring function s(x) of this type, taking K ≥ 1

distinct values say, yields a ranking/ordering of all instances x ∈ X entirely character-

ized by a partition P counting K nonempty measurable subsets C1, . . . , CK , together

with a permutation σ in the symmetric group SK of {1, . . . , K}.

Definition 3 ((P, σ)-representation) The (P, σ)-representation of a piecewise con-

stant scoring function s(x) taking K distinct values λ1 > . . . > λK is given by:

s(x) =

KX

k=1

λk · I{x ∈ Cσ(k)}, (3)

where P = {Ck}1≤k≤K is a partition of X in K non empty cells and σ ∈ SK .

Reciprocally, a partition P = {C1, . . . , CK} including #P = K non empty cells com-

bined with a permutation σ ∈ SK defines a scoring function with (P, σ)-representation:

sP,σ(x) =

KX

k=1

(K − k + 1) · I{x ∈ Cσ(k)}.

The ordering induced by (3) is entirely characterized by the pair (P, σ), in the sense

that its ROC curve coincides with ROC(sP,σ, .).

Remark 4 (A global learning problem) In contrast to binary classification, where a

decision rule may be immediately derived from a partition P of the feature space alone,

through a majority-voting scheme, the bipartite ranking problem is of global nature.

The local properties of the regression function on a given cell alone is useless, nearest

neighbors rules are non sense for this problem and cells of P have to be compared to

each other somehow, by means of the permutation σ ∈ S#P in the setup described

above. For tree-structured partition however, unless otherwise specified, the ordering

will be implicit, resulting from the left-right orientation of the underlying tree, see

subsection 2.3.
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Here is a list of basic properties of piecewise constant scoring functions. In order

to formulate them rigorously, we introduce the following notations. We set

α(C) = P{X ∈ C | Y = −1},
β(C) = P{X ∈ C | Y = +1},

for any a measurable subset C ⊂ X . In the following result, the ROC curve of a

piecewise constant scoring function and the corresponding AUC are explicited.

Proposition 2 Let s(x) be a piecewise constant scoring function with (P, σ)-representation

s(x) =
PK

k=1 λk · I{x ∈ Cσ(k)}.
(i) The ROC curve of the scoring function s(x) is the broken line that connects the

knots {(αk(s), βk(s)) : 0 ≤ k ≤ K}, where: ∀k ∈ {1, . . . , K},

αk(s) =

kX

l=1

α(Cσ(l)) and βk(s) =

kX

l=1

β(Cσ(l)),

and α0(s) = β0(s) = 0 by convention.

(ii) The AUC of the scoring function s(x) is given by:

AUC(s) =
1

2

K−1X

k=0

(αk+1(s) − αk(s)) · (βk+1(s) + βk(s)) . (4)

Optimal permutations. The next result describes the best scoring function in the

AUC sense among all piecewise constant scoring functions that may be represented

by means of a given partition P. In order to state it precisely, further notation and

definitions are needed.

Definition 4 (Subpartition) Let P and P ′ be two partitions of X . One says that

P ′ is a subpartition of P, when any cell C′ ∈ P ′ may be written as the union of cells

C ∈ P. One then writes: P ′ ⊂ P.

We denote by SP the set of scoring functions with a (P, σ)-representation for some

σ ∈ S#P .

Theorem 1 (AUC optimality, [9]) Consider a partition of X with K ≥ 1 non empty

cells: P = {Ck}1≤k≤K . Let σ∗P ∈ SK such that

β(Cσ∗
P

(1))

α(Cσ∗
P

(1))
≥ . . . ≥

β(Cσ∗
P

(K))

α(Cσ∗
P

(K))
.

Then, s∗P (x) = sP,σ∗
P

(x) maximizes the AUC over
S

P′⊂P SP′ :

AUC(s∗P ) = max
s∈SP′ , P′⊂P

AUC(s).

In the case where the cells are equivalent with respect to the false positive rate, i.e.

∀k ∈ {1, . . . ,K}: α(Ck) = 1/K, we also have

∀α ∈ [0, 1], ROC(s, α) ≤ ROC(s∗P , α),

for all s ∈ SP′ , P ′ ⊂ P. The latter result also holds when cells are equivalent with

respect to the true positive rate.
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Before discussing practical methods for generating partitions of the feature space

in a data-driven fashion that are specifically tailored for the scoring problem, a few

remarks are in order.

Remark 5 (On concavity) It is noteworthy that σ∗P corresponds to permutations

σ ∈ SK making the piecewise linear curve ROC(sP,σ, .) concave, as ROC∗(.).

On plug-in ranking rules. To any partition P = {Ck}1≤k≤K of X also correspond

piecewise constant approximants of the regression function, which may serve as scor-

ing functions. For instance, ηP (x) =
PK

k=1 pβ(Ck)/µ(Ck) · I{x ∈ Ck} is the best

approximant among functions that are constant on the Ck’s in the L2(µ)-sense, i.e.

||ηP (X) − η(X)||2L2(µ) = mins∈SP
E[(s(X) − η(X))2]. It follows from the fact that

µ(Ck) = pα(Ck)+ (1− p)β(Ck) for all k that the plug-in scoring function ηP (x) yields

the same ranking as s∗P (x). Hence, as a scoring function, the approximant ηP (x) of the

regression function is optimal in the AUC sense among all scoring rules in
S

P′⊂P SP′ .

The next proposition relates the deficit of AUC for the scoring function s∗P (x) to

the L1(µ)-error of the corresponding plug-in estimator ηP (x) (see Corollary 9 in [9] for

a similar result with different notations).

Proposition 3 Assume that η(X) has a continuous distribution. Then, for any par-

tition P = {Ck}1≤k≤K of X with K ≥ 2 non empty cells, we have:

AUC∗ − AUC(s∗P ) ≤
||ηP (X) − η(X)||L1(µ)

p(p − 1)
+

1

4p(1 − p)

KX

k=1

G(Ck),

where, for all k ∈ {1, . . . ,K}, G(Ck) = E[|η(X)−η(X ′)| · I{(X,X ′) ∈ C2
k}] denotes the

Gini mean difference of η(X) with the expectation restricted to the domain {(X,X ′) ∈
Ck × Ck}.

Empirical ROC curve and AUC. From a practical perspective, the selection of a

scoring function s(x) is based on training data Dn = {(Xi, Yi); 1 ≤ i ≤ n}. The

relevance of a candidate s(x) is thus evaluated by plotting the empirical version of its

ROC curve.

We set: ∀i ∈ {1, . . . , n},

α̂i(s) =
1

n−

X

j/ Yj=−1

I{s(Xj) ≥ s(Xi)} ,

β̂i(s) =
1

n+

X

j/ Yj=+1

I{s(Xj) ≥ s(Xi)} ,

where n+ =
P

i≤n I{Yi = +1} = n− n−.

Let σ ∈ Sn be such that α̂σ(1) ≤ . . . ≤ α̂σ(n) and set α̂σ(0)(s) = β̂σ(0)(s) = 0 by

convention. The empirical ROC curve of s(x) is the piecewise linear function given by:

∀i ∈ {1, . . . , n}, ∀α ∈ [α̂σ(i−1)(s), α̂σ(i)(s)[,

R̂OC(s, α) =
β̂σ(i)(s) − β̂σ(i−1)(s)

α̂σ(i)(s) − α̂σ(i−1)(s)
· (α− α̂i−1(s)) + β̂i−1(s).
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By definition, the empirical AUC of s(x) is the area under its empirical ROC curve:

ÂUC(s) =

Z 1

α=0
R̂OC(s, α)dα =

1

n+n−

X

i/ Yi=+1

X

j/ Yj=−1

I{s(Xi) > s(Xj)}

+
1

2n+n−

X

i/ Yi=+1

X

j/ Yj=−1

I{s(Xi) = s(Xj)},

the latter expression being the empirical version of the identity stated in Proposition

1.

All results established when considering true ROC curves extend to their empirical

versions, replacing G, H and p by their counterparts calculated from the sample Dn.

In particular, given a partition P = {Ck}1≤k≤K of the feature space X , the ordering

of the cells with maximum empirical AUC corresponds to permutations bσ∗ such that,

bβ(Cbσ∗(1))

bα(Cbσ∗(1))
≥ . . . ≥

bβ(Cbσ∗(K))

bα(Cbσ∗(K))
,

where for all measurable subset C ⊂ X :

bα(C) =
1

n−

nX

i=1

I{Xi ∈ C, Yi = −1},

bβ(C) =
1

n+

nX

i=1

I{Xi ∈ C, Yi = +1},

which correspond respectively to the empirical false positive rate and the empirical

true positive rate of a classifier predicting +1 on the set C.

It renders the empirical ROC curve concave and corresponds to the same ranking

induced by the estimator of the regression function

bηP (x) =

KX

k=1

n+
bβ(Ck)

n−bα(Ck) + n+
bβ(Ck)

· I{x ∈ Ck},

meaning that bηP = arg maxs∈SP
ÂUC(s).

Tree-structured ranking rules. This article focuses on a specific family of piecewise

constant scoring rules, those defined by binary ranking trees namely. Consider first a

complete, left-right oriented, rooted binary tree TD, with finite depth D ≥ 1. Every

nonterminal node (d, k) of TD, with d ∈ {0, . . . , D − 1} and k ∈ {0, . . . , 2d − 1},
corresponds to a subset Cd,k ⊂ X and has two descendants: a left sibling corresponding

to a subset Cd+1,2k ⊂ Cd,k and a right sibling associated to Cd+1,2k+1 = Cd,k \
Cd+1,2k+1, with C0,0 = X for the root node by convention. In the sequel, we call such

a (complete) ranking tree a master ranking tree.

This way, any subtree T ⊂ TD acts as a ranking rule, by scanning its outer leaves

from left to right. In particular, the resulting order corresponds to the one induced by

the scoring function:

sT (x) =
X

(d,k): terminal nodes of T

(2D − 2D−dk) · I{x ∈ Cd,k}.
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The score sT (x) may be computed in a top-down fashion, through a sequence of binary

rules. At the root node, the score is initially set to 2D and at each subsequent internal

node (d, k) of T , the current score remains unchanged if x moves to the left child, while

one substracts 2D−(d+1) to it if x moves to the right child.

Fig. 1 A tree-structured ranking rule. A score is assigned to each cell. The restriction of these
values to the outer leaves of any subtree of the master ranking tree produces a scoring rule
which order the corresponding cells according to the left-right orientation.

2.3 The TreeRank approach

We now recall the specific method proposed in [1] for adaptively generating a tree-

structured partition of the feature space X in ordered cells. Precisely, the piecewise

constant scoring rule it outputs is described by a master ranking tree, each of whose

terminal leaves corresponds to a unique cell of the partition, ordering of the cells being

simply obtained by perusing the terminal leaves from the left to the right at the bottom

of the tree.
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Assume that a training data set Dn = {(X1, Y1), . . . , (Xn, Yn)} of n independent

copies of the pair (X,Y ) is available. For notational convenience, we set αd,0 = βd,0 = 0

and αd,2d = βd,2d = 1 for all d ≥ 0. We suppose that we are given a class C of subsets

of X , on which attainable partitions are based. Let D ≥ 1 be fixed.

TreeRank Algorithm

1. Initialization. Set C0,0 = X .

2. Iterations. For d = 0, . . . , D − 1 and k = 0, . . . , 2d − 1:

(a) (Optimization step.) Set the entropic measure:

bΛd,k+1(C) = (αd,k+1 − αd,k)β̂(C) − (βd,k+1 − βd,k)α̂(C) .

Find the best subset Cd+1,2k of rectangle Cd,k in the AUC sense:

Cd+1,2k = arg max
C∈C, C⊂Cd,k

bΛd,k+1(C) .

Then, set Cd+1,2k+1 = Cd,k \ Cd+1,2k.

(b) (Update.) Set

αd+1,2k+1 = αd,k + bα(Cd+1,2k)

βd+1,2k+1 = βd,k + bβ(Cd+1,2k)

and

αd+1,2k+2 = αd,k+1

βd+1,2k+2 = βd,k+1 .

3. Output. After D iterations, get the piecewise constant scoring function:

sD(x) =

2D−1
X

k=0

(2D − k) I{x ∈ CD,k},

together with an estimate of the curve ROC(sD, .), namely the broken line

R̂OC(sD, .) that connects the knots {(αD,k, βD,k) : k = 0, . . . , 2D}, and the
following estimate of AUC(sD):

ÂUC(sD) =

Z 1

α=0
R̂OC(sD, α)dα =

1

2
+

1

2

2D−1−1
X

k=0

bΛD−1,k+1(CD,2k).

Remark 6 (On stopping rules.) One may consider continuing to split the nodes until

either the number of data points within a cell has reached a minimum number specified

a priori, or else splitting yields no improvement in the empirical AUC sense. From a

practical perspective, in both cases one then set Cd+1,2k = Cd,k and Cd+1,2k+1 = ∅.
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Remark 7 (On concavity (bis).) We point out that, unless the collection C of sub-

set candidates is union stable (i.e. ∀(C,C′) ∈ C2, C ∪ C′ ∈ C), the empirical curve

R̂OC(sD, .) output by TreeRank is not necessarily concave, see Proposition 21 in

[7]. If it is not, one should notice that the rankings induced by sD(x) and the plug-in

estimator bηPD
(x) based on the partition PD = {CD,k : 0 ≤ k ≤ 2D − 1} are not the

same, cf Remark 5. If the Cd,k’s are built by aggregating elementary subsets, such as

cubes of a grid partition of the feature space X say (see subsection 3.2), concavity is of

course guaranteed. However, this property is not satisfied in general, when candidates

are produced recursively, by applying a simple cutting rule at each step to the current

node, see Section 3.

The TreeRank algorithm produces an empirical ROC curve that mimics the piece-

wise linear approximant of the optimal ROC curve obtained through an adaptive non-

linear partitioning scheme of the unit interval. The latter may be described as follows,

one may refer to Section D in [7] for further details.

Adaptive piecewise linear approximation of ROC∗. As initial approximant, we

start with the main diagonal β = α of the ROC space corresponding the subdivision

α∗
0,0 = 0 < α∗

(0,1) = 1 . At the next step, the approximation is refined by adding a

point α∗
1,1 between α∗

1,0 = α∗
0,1 and α∗

1,2 = α∗
0,1 in the meshgrid, in order to produce a

broken line, connecting the knots {(α∗
1,k,ROC∗(α∗

1,k)) : k ∈ {0, 1, 2}} with minimum

L1-distance to the target curve ROC∗, or, equivalently, with maximum AUC. We point

out that this is also the best interpolant with two linear pieces in terms of sup-norm, see

Proposition 20 in [7] and additionally that the point (α∗
1,1,ROC∗(α∗

1,1)) added to the

meshgrid corresponds to the point of ROC∗ at which the tangent has the same slope

as the straight line passing through (α∗
0,0,ROC∗(α∗

0,0)) and (α∗
0,1,ROC∗(α∗

0,1)). The

procedure is then iterated: one adds a point α∗
2,1 between α∗

2,0 = α∗
1,0 and α∗

2,2 = α∗
1,1

and another one, α∗
2,3, between α∗

2,2 = α∗
1,1 and α∗

2,4 = α∗
1,2 in order to maximize

the AUC of the interpolant thus obtained. At step D, a tree-structured subdivision

α∗
D,0 = 0 < α∗

D,1 < . . . < α∗
D,2D = 1 of the unit interval has then been produced,

yielding a linear-by-parts interpolant with 2D + 1 pieces. The resulting curve may be

viewed as the ROC curve of a scoring function, namely the piecewise constant function:

s∗D(x) =

2D−1X

k=0

(2D − k) · I{x ∈ C∗
D,k},

where the C∗
d,k’s are the specific bilevel sets of the regression function defined recur-

sively by: C∗
0,0 = X and ∀d ≥ 0, ∆∗

d,0 = 0, ∆∗
d,2d = 1 and ∀k ∈ {0, . . . , 2d},

C∗
d,k = {x ∈ X : ∆∗

d,k+1 ≤ η(x) < ∆∗
d,k},

where

∆∗
d+1,2k+1 =

pβ(C∗
d,k)

µ(C∗
d,k)

and ∆∗
d+1,2k = ∆∗

d,k.

With the notations previously set out, we have s∗D(x) = s∗P∗
D

(x) where P∗
D is the

partition of the feature space given by:

P∗
D = {C∗

D,k : k = 0, . . . , 2D − 1}.
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Like the subdivision {α∗
D,k : k = 0, . . . , 2D} of the unit interval, this partition is

obtained recursively through the procedure described above and is thus related to a

tree-structure as well: ∀d ≥ 0, ∀k ∈ {0, . . . , 2d}, C∗
d,k splits into C∗

d,2k and C∗
d+1,2k+1.

Hence, the TreeRank algorithm may be viewed as a statistical version of this recursive

partitioning scheme, which adaptively search for a collection of η(x)’s bilevel sets in

order to optimize the ROC curve. However, the Optimization step, which consists in

splitting in a nearly optimal fashion each cell of the current partition based on labeled

data lying in it, is not described in a specific manner. Indeed, the convergence rate

analysis of TreeRank in [7] has been carried out under the assumption that the class

C of cell candidates includes all the C∗
d,k’s. Therefore, it is very unlikely that simple

rules, such as the one which consists in searching for the best perpendicular split at

each step in the spirit of the original CART methodology, can produce cells close to the

bilevel sets C∗
d,k, except in very specific cases (refer to Section VI of [7] for illustrative

examples). It is the main goal of the subsequent analysis to specify possible flexible

strategies for splitting regions of the feature space, in order to generate partitions

PD = {CD,k : k = 0, . . . , 2D − 1} close to the ideal partition P∗
D.

3 Splitting for Ranking

In this section, we focus on practical implementation of the Optimization step of the

TreeRank algorithm. In a preliminary fashion, we precisely set the goals of the split-

ting rule from the perspective of AUC maximization and underline the difference with

the standard classification task. Eventually, the ranking splitting rule is interpreted as

a cost-sensitive classification splitting rule with a data-dependent cost.

3.1 Binary scoring rule vs. classification rule

In the classification setup, partitioning techniques aim at splitting the feature space

into two halves, ideally as {x ∈ X : η(x) ≥ 1/2}S{x ∈ X : η(x) < 1/2}, by means of a

majority voting scheme in each cell of the partition. It is noteworthy that, as a binary

scoring function, the Bayes classifier x ∈ X 7→ 2 · I{η(x) ≥ 1/2} − 1 is suboptimal

regarding the AUC criterion, except in very specific cases, as revealed by the next

result.

Lemma 1 (Optimal binary scoring functions) Let p = P(Y = +1) and consider

the (binary) scoring function s∗1(x) = 2 · I{x ∈ C∗}+ I{x ∈ X \C∗} with C∗ = {η(x) ≥
p}. Let C ⊂ X be an arbitrary measurable subset and set s = 2 · IC + IX\C . We then

have:

AUC(s) =
1

2
+

1

2
(β(C) − α(C)) ≤ AUC(s∗1). (5)

More precisely, the following identity holds:

AUC(s∗1) − AUC(s) =
1

2p(1 − p)
· E[|η(X) − p| · I{X ∈ C∗∆C}], (6)

where ∆ denotes the symmetric difference between sets.

In addition, we have

AUC(s∗1) =
1

2p(1 − p)
E [max{(1 − p)η(X), p(1 − η(X))}] . (7)
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This result shows that, unless the two sets {η ≥ 1/2} and {η ≥ p} coincide up to

a µ-negligible set, the AUC of the Bayes classifier is strictly smaller than AUC(s∗1).

In addition, when the optimal ROC curve is differentiable and strictly concave (see

subsection 2.1 above), the ROC curve of the Bayes classifier is determined by the knot

(α,ROC∗(α)), where ROC∗ has a tangent with slope (1 − p)/p, whereas ROC(s∗1) is

the broken line defined by the point of ROC∗ where the tangent has a slope equal

to 1, see Fig. 2. We point out that, under the set of assumptions listed in subsection

2.1, (1 − p)/p always belongs to [ROC∗′(1),ROC∗′(0)], since this condition amounts

to suppose that p lies between the essential infimum and supremum of η(X) and we

have E[η(X)] = p. Refer to Remark 5 of Section C in [7] for further details.

Fig. 2 ROC curves: optimal binary scoring function (solid broken line) vs. Bayes classifier
(dotted broken line) in a situation where p > 1/2.

Bipartite ranking as a collection of imbricated binary scoring problems. In

the following we propose data-driven procedures for constructing a binary scoring func-

tion with AUC close to AUC(s∗1). In a ”fractal manner”, when running the TreeRank

algorithm, such a procedure will be iteratively applied to the subsample lying in each

cell C of the current tree-structured partition. Indeed, it suffices to observe that, con-

ditioned upon the event X ∈ C, the AUC of the scoring function s = 2 · IC′ + IC\C′

where C′ ⊂ C is given by:

AUC(s | C) =
1

2
+

1

2

„
β(C′)

β(C)
− α(C′)

α(C)

«
=

1

2

„
1 +

α(C)β(C′) − β(C)α(C′)

α(C)β(C)

«
.
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Equipped with this notation, we have indeed: ∀j ≥ 0, ∀k ∈ {0, . . . , 2j − 1},

C∗
j+1,2k = arg max

C⊂C∗
j,k

AUC(2 · IC + IC∗
j,k\C

| C∗
j,k).

We underline that, within the TreeRank approach, bipartite ranking boils down

to solve a collection of ”nested” binary scoring problems, in contrast to the Rankboost

method developped by [2], that consists of combining binary scoring rules in an additive

fashion.

3.2 Partition-based splitting rule

We now describe a simple strategy for building a nearly optimal binary scoring function

based on a partition of the feature space specified a priori.

Partition-based splitting rule

1. (Input.) Data Dn = {(Xi, Yi) : 1 ≤ i ≤ n} in the region X , partition
{C1, . . . , CK} of X with K ≥ 1.

2. (”Concavification” step.) Compute σ ∈ SK such that:

bβ(Cσ(1))

bα(Cσ(1))
≥ . . . ≥

bβ(Cσ(K))

bα(Cσ(K))
,

where bα(.) and bβ(.) denote the empirical false and true positive rates based on
the sample Dn.

3. (Merging step.) ∀k ∈ {1, . . . , K}, set Lk =
S

l≤k Cσ(l) and compute the entropic

measure bΛ(k) = bβ(Lk) − bα(Lk). Let

k∗ = arg max
1≤k≤K

n

bβ(Lk) − bα(Lk)
o

.

4. (Output.) Form the leaves:

L = Lk∗ and R = L \ X .

As shown by the next result, the algorithm below determines the binary scoring

function, constant on each cell of the initial partition P = {Ck}1≤k≤K , that has

maximum empirical AUC.

Proposition 4 Let P = {Ck}1≤k≤K be a partition of the space X and denote by

bs∗(x) = 2 · I{x ∈ L}+ I{x ∈ R} the scoring function determined by the partition-based

splitting rule based on P and the sampling data Dn. Then, for any subset C ⊂ X
formed by the union of some cells in P, we have:

ÂUC(s) ≤ ÂUC(bs∗),

where s = 2 · IC + IX\C .
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This simply results from Theorem 1 applied to the empirical distribution of the (Xi, Yi)’s,

details are omitted. We point out that, although there are 2K −2 different binary scor-

ing functions that may be built from P, this result shows that the empirical optimum

may be attained in O(K logK) operations by means of an efficient sorting algorithm.

Uniform partitions. Rather than translating and/or rescaling the input vector X,

we suppose, for simplicity, that X = [0, 1]q in the subsequent analysis and consider

subpartitions of the partition P(j) made of dyadic cubes of side length 2−j , i.e. of

subsets of the form
Qq

l=1[kl/2
j , (kl + 1)/2j [ where 0 ≤ kl < 2j for all l ∈ {1, . . . , q}.

Note that the partition has cardinality #P(j) = 2jq. We denote by bLj the subregion L

output when implementing the partition-based splitting rule from P(j) and by bs∗j (x) =

2 · I{x ∈ bLj} + I{x ∈ bRj} the related binary scoring function. Provided it is regular

enough, it is reasonable to expect that the level set {x ∈ X : η(x) ≥ p} may be

accurately estimated from a collection of such cubes when the latter is sufficiently

smooth and the sidelength 2−j is chosen small enough. This is formalized by the next

result.

Theorem 2 (Dyadic splitting rule) For all j ≥ 1, denote by P2,j the collection

of partitions of X made of two non empty sets, obtained by union of dyadic cubes of

side length 2−j . Suppose that p ∈ [p, p̄] with 0 < p < p̄ < 1. There exists a constant

c < ∞ such that for all δ ∈ (0, 1), we have with probability at least 1 − δ: for n ≥ 1

large enough and for all j ≥ 1,

AUC(s∗1) − AUC(bs∗j(n)) ≤ c · 2jq

√
n

+

(
AUC(s∗1) − max

s∈SP2,j

AUC(s)

)
. (8)

Remark 8 (Bias, smoothness assumptions and model selection) Classically, un-

der smoothness assumptions on the level set {x ∈ X : η(x) ≥ p}, it is possible to

control the bias term. Indeed, in the case where µ has a bounded density with respect

to Lebesgue measure λ on Rd, by virtue of Lemma 1, we have:

AUC(s∗1) − AUC(s) ≤ ||dµ/dx||∞
2p(1 − p)

· λ(C∗∆C),

for any s = 2 · IC + IX\C with C ∈ P2,j . When the boundary ∂C∗ is of finite perimeter

per(∂C∗) < ∞ (which is the case if η(x) is of bounded variation, the boundary being

then ∂C∗ = {x ∈ X : η(x) = p} by virtue of η’s continuity), the bias term is bounded

by minC∈P2,j
λ(C∗∆C) ≤ c · per(∂C∗)2−jq, for some constant c <∞, see Proposition

9.7 in [10]. Then, choosing the level of resolution j = j(n) so that 2j(n) ∼ n1/(4q) as

n → ∞ yields a rate bound of order n−1/4 in (8). Faster generalization bounds may

be established under more restrictive assumptions involving a regularity parameter

θ of ∂C∗, such as its box dimension. Although the optimal choice for j would then

depend on θ, a standard fashion of nearly achieving the optimal rate of convergence

is to perform model selection, adding an adequate penalty term to the empirical AUC

criterion, see [9].

Remark 9 (On faster rates of convergence) Neglecting the bias component,

which boils down to assume that C∗ belongs to the collection of subset candidates

C, faster rates of convergence may be attained, as in the classification setting, except

that, here, it is the behavior of η(x) in the vicinity of p that describes the complexity
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of the problem. Under the following extension of Massart’s noise condition, stipulating

that there exists some constant c > 0 such that

|η(X) − p| ≥ c a.s. ,

a rate bound of order O(n−1) can be obtained using concentration results involving the

variance of the AUC deficit in a similar manner as for classification. We point out that

this condition is incompatible with the regularity conditions for the curve ROC∗ listed

in subsection 2.1, insofar as it entails that G∗ and H∗ both jump at p. It is possible to

weaken it by considering a modified version of Tsybakov noise condition:

P {|η(X) − p| ≤ t} ≤M · t
a

1−a

for some a ∈ [0, 1]. Following line by line the argument in [11], this leads to a rate of

order n1/(2−a). Observe that this condition may be rewritten as:

F ∗(p+ t) − F ∗(p− t) ≤M · t
a

1−a ,

where F ∗ = pG∗+(1−p)H∗ denotes η(X) cumulative df. Therefore, if it is assumed that

G∗ and H∗ are differentiable with bounded derivatives and H∗′ > 0, one necessarily

has a = 1/2 and get a rate bound of order n−2/3.

Remark 10 (A union stable collection of candidates.) By construction, the col-

lection P2,j is union stable. Hence, in the case where the Optimization step is imple-

mented by means of the partition-based splitting rule from the P2,j , the empirical ROC

curve R̂OC(sD, .) output by TreeRank is concave and sD yields the same ranking of

the CD,k’s as the plug-in scoring rule bηPD
, see Remark 7.

C* 

Fig. 3 Approximating a regression level set in 2 − d using a uniform grid: the thick broken
line delineates the collection of hypercubes that intersect the target subset.
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The LeafRank algorithm. As soon as the dimension q of the feature space X is

large, one faces significant computational problems when using uniform partitions. In

this case, the partition on which the split is based should be naturally chosen depending

on the data. A possible strategy could consist of implementing the rule described above

from the partition adaptively generated by TreeRank based on a simple splitting

criterion.

LeafRank Algorithm

1. (Input.) Data {(Xi, Yi) : 1 ≤ i ≤ n} in the region X , depth d ≥ 1.

2. (Growing step.) Run TreeRank with a naive splitting rule at depth d, yielding
a ranking tree with terminal leaves:

Cd,k, k = 0, . . . , 2d − 1.

3. (Partition-based splitting rule.) Apply the partition-based splitting rule from
the partition Pd = {Cd,k : 0 ≤ k < 2d}.

Even though the implementation of TreeRank is implemented from a naive split-

ting rule such as the one based on perpendicular splits, one may expect that the

partition produced is sufficiently rich to form a good approximant of the set {x ∈ X :

η(x) ≥ p} by the union of certain cells, if the depth d is chosen large enough. Alike

the resolution level j for dyadic partitions, the parameter d rules the complexity of

the splitting rule. The subsequent analysis provides a remarkable interpretation of this

procedure.

3.3 A cost-sensitive classification problem with data-dependent cost

Here we show that the Optimization step of the TreeRank algorithm may be inter-

preted as a ’weighted’ or ’cost-sensitive’ classification problem, where the cost depends

on the data lying in the node to split, through the local empirical rate of positive

instances.

Following in the footsteps of [12], the level set {η(x) ≥ p} may be viewed as the

solution of a weighted classification problem. Define the weighted classification error:

Lω(C) = 2p(1 − ω) (1 − β(C)) + 2(1 − p)ω α(C) ,

with ω ∈ (0, 1) being the asymmetry factor. Its empirical counterpart is given by:

bLω(C) =
2ω

n

nX

i=1

I{Yi = −1, Xi ∈ C} +
2(1 − ω)

n

nX

i=1

I{Yi = +1, Xi /∈ C} .

Proposition 5 ([12]) The optimal set for this error measure is C∗
ω = {x : η(x) > ω}.

We have indeed, for all C ⊂ X :

Lω(C∗
ω) ≤ Lω(C) .
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More precisely, the excess risk for an arbitrary set C can be written:

Lω(C) − Lω(C∗
ω) = 2E

ˆ
| η(X) − ω | ·I{X ∈ C∆C∗

ω}
˜
.

The optimal error is given by:

Lω(C∗
ω) = 2E[min{ω(1 − η(X)), (1 − ω)η(X)}] .

As shown by the Proposition above, when choosing ω = p, the optimal set is given

by C∗ = {x ∈ X : η(x) ≥ p}. In addition, we point out that, in this case, the weighted

classification error may be expressed as:

Lp(C) = 4p(1 − p) {1 − AUC(s)} , (9)

where s(x) = 2 · I{x ∈ C} + I{x ∈ X \ C}.
As the theoretical proportion of positive instances within the sample is unknown,

an empirical counterpart of the weighted classification error Lp(C) can be obtained by

replacing p by p̂ = n+/n:

bLp̂(C) = 4p̂(1 − p̂)
n

1 − ÂUC(s)
o
.

This leads to consider the weighted empirical risk minimizer over a class C of

candidate sets, or equivalently the empirical AUC maximizer over the corresponding

set of binary scoring functions {2 · IC + IX\C : C ∈ C}.

Weighted ERM Algorithm

1. (Input.) Data {(Xi, Yi) : 1 ≤ i ≤ n} lying in the region X , class C of subset
candidates.

2. (Asymmetry factor.) Compute the number of positive instances lying in the
region X : n+ =

Pn
i=1 I{Yi = +1}. Take ω = n+/n as asymmetry factor.

3. (Weighted ERM.) Compute the weighted empirical risk minimizer :

L = arg min
C∈C

bLω(C)

and set R = X \ L.

The interpretation of the splitting issue for the purpose of AUC maximization as

a cost-sensitive classification problem sheds some light on possible ways of performing

the Optimization step. Indeed, from any binary classification algorithm a practical

splitting rule for empirical AUC maximization may be straightforwardly derived. In

particular, when using the LeafRank routine with perpendicular splits for performing

the Optimization step, the TreeRank algorithm may be then viewed as a recursive

implementation of the weighted CART growing procedure, in which the weight is

locally updated at each iteration, chosen as the rate of positive instances within the

cell to split. Figure 4 below illustrates this view. This AUC splitting procedure could

be refined by applying a pruning procedure to the classification tree obtained, see [6]

or [13] for instance. SVM or recent procedures like Bagging or Boosting can also be

considered in order to improve efficiency of the Optimization step.
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L  R 

Ranking tree output by TreeRank 

Node split produced by LeafRank 

Fig. 4 Schematic of the TreeRank algorithm, where each split is obtained through the
LeafRank procedure: a naive TreeRank implementation, followed by concavification and
merging steps. The final ranking is read at the bottom of the tree from the left to the right.

4 Merging the Cells - How to Prune a Ranking Tree

Based on a training dataset Dn, the TreeRank procedure with fixed depth D allows

for growing a master ranking tree T = Tn with 2D+1 − 1 nodes, i.e. a binary tree,

left-right oriented and whose terminal leaves correspond to the cells of a partition

P(Tn) of the feature space X , ordered according to Tn’s orientation. The complexity

of the resulting ranking rule may be naturally described by the number of cells of

the partition P(T ), 2D namely. If the depth D is chosen too small, the ROC curve

associated to the ranking tree produced will not permit to mimic ROC∗’s variability,

while if it is too large, the ranking tree produced may clearly overfit the data. It is the

purpose of this section to investigate possible ways of optimally choosing the size of

the ranking tree. From a practical perspective, the design of the ranking tree is done

in two steps, as for binary classification [13]. One first grows a large ranking tree T
in a ”greedy” fashion, and then, using a cost-complexity pruning scheme, one selects

a certain (tree-structured) ordered subpartition of P(T ) = {CD,k, 0 ≤ k < 2D} by

means of a ’bottom-up’ search strategy through the tree-structure T on which the

Cd,k’s are aligned. One naturally hopes that the expected AUC of the resulting scoring

function is larger than the one of sD(x).
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In the following subsections, we propose two approaches for pruning a ranking tree.

In order to describe them precisely, we introduce further definitions and notations. For

0 ≤ d ≤ D and 0 ≤ k < 2D, to each cell Cd,k, one assigns a scalar weight ω(Cd,k) in a

way that the following constraints are both satisfied.

(i) (Keep-or-kill) For all d ∈ {0, . . . , D} and k ∈ {0, . . . , 2D −1}, the weight ω(Cd,k)

belongs to {0, 1}.
(ii) (Heredity) If ω(Cd,k) = 1, then for each cell Cd′,k′ such that Cd,k ⊂ Cd′,k′ , we

have ω(Cd′,k′) = 1.

Any collection of weights ω obeying these two constraints will be said admissible

and determines the nodes of a subtree T (ω) of the original tree T . A cell Cd,k is said

terminal when ω(Cd,k) = 1 and ω(Cd′,k′) = 0 for any cell Cd′,k′ ⊂ Cd,k. Terminal

cells correspond to the outer leaves of the tree T (ω) and form a partition P(T (ω)) of

the feature space X . Given two admissible sequences of weights ω1 and ω2, P(T (ω1))

is a subpartition of P(T (ω2)), see Definition 4, if and only if {Cd,k : ω1(Cd,k) = 0} ⊂
{Cd,k : ω2(Cd,k) = 0}, one will then write T (ω1) ⊆ T (ω2). The pruning stage consists

of selecting those terminal leaves, i.e. an admissible collection of weights ω, and of

building the scoring function (cf subsection 2.2)

SP(T (ω))(x) =
X

Cd,k∈P(T (ω))

(2D − 2D−dk) · I{x ∈ Cd,k}. (10)

Indeed one may check that the ordering defined by SP(T (ω)) coincides with the one

determined by the tree T (ω) when left-right oriented, see Fig. 5. In the ideal case where

the class distributions G and H are known, the best sub- ranking tree in the AUC sense

is described by

ω∗ = arg max
ω

AUC(SP(T (ω))), (11)

where the maximum is taken over all admissible collections of weights ω. Of course, the

class distributions are not available in practice and one must replace AUC(SP(T (ω)))

by an estimate

ÂUC
′
(SP(T (ω))) =

1

n′+n
′
−

X

i: Yi=+1

X

j: Yj=−1

I{SP(T (ω))(Xi) > SP(T (ω))(Xj)}

+
1

2

1

n′+n
′
−

X

i: Yi=+1

X

j: Yj=−1

I{SP(T (ω))(Xi) = SP(T (ω))(Xj)}, (12)

based on a dataset D′
n′ = {(X ′

1, Y
′
1), . . . , (X ′

n′ , Y ′
n′)} formed of i.i.d. copies of the pair

(X,Y ), where n′+ =
Pn

i=1 I{Y ′
i = +1} = n′ − n−. Ideally, D′

n′ should be chosen

independent from the training dataset Dn used for growing the ranking tree T . If one

takes the same dataset for both the growing and pruning procedures, the estimator

(12) will then naturally tend to overestimate the ranking performance of the largest

ranking trees and it is very likely that one will obtain T (ω∗) = T . However, in many

applications, there is insufficient data to split them into two large enough separate

subsets and all available data are used in the training stage. We next propose two

approaches for model selection in this situation.
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Fig. 5 A pruned ranking tree: terminal nodes are colored red, top ranked cells are closest to
the bottom left corner of the tree.

4.1 A cross-validation based procedure

We start off by adapting the pruning method proposed by [6] for the original CART

algorithm in the classification setup in order to prune ranking trees. The idea is to add

to the optimistic training performance estimate ÂUC(SP(T (ω))) a linear complexity

term that penalizes large ranking trees. Thus, with

ĈPAUC(SP(T (ω)), λ) = ÂUC(SP(T (ω))) − λ · #P(T (ω)), (13)

where λ ≥ 0 is a tuning parameter governing the trade-off between training perfor-

mance vs. model complexity, one seeks the subtree achieving the maximal complexity-

penalized empirical AUC:

ω∗
λ = arg max

ω
ĈPAUC(SP(T (ω)), λ).

It remains to choose λ, which issue we now discuss. The next theorem first shows that

there exists a finite nested sequence of sub- ranking trees of the original ranking tree

T containing all T (ω∗
λ), λ ≥ 0.

Theorem 3 For a given ranking tree T , there exists a finite increasing sequence of

constants 0 = λ0 < λ1 < . . . < λm = ∞ such that

root = T (ω∗
λm

) ⊆ . . . ⊆ T (ω∗
λ1

) ⊆ T (ω∗
λ0

) = T ,

and: ∀j ∈ {1, . . . ,m}, ∀λ ∈ [λj−1, λj [,

T (ω∗
λ) = T (ω∗

λj
).

The proof is omitted since it is entirely similar to the one of Theorem 3.10 in [6], see

also [14].

In order to compute the T (ω∗
λ)’s, it suffices to successively collapse the internal

node that produces the smallest per-node decrease in terms of empirical AUC and

continue until the root is obtained. Estimation of λ ∈ {λj}0≤j≤m is achieved by N -

fold cross validation: one picks the value bλ that maximizes the cross-validated AUC.

The selected ranking tree is then T (ω∗
bλ
).
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4.2 Complexity regularization - Structural AUC maximization

Nonparametric model selection procedures have been successfully developed in the

statistical learning setup for binary classification, see [15], [13] or [16]. In addition to

the pruning method described in the preceding subsection, we also propose a similar

strategy for selecting a sub- ranking tree T (ω) in a data-driven fashion and with largest

possible AUC. Here the pruning scheme consists of maximizing:

C̃PAUC(SP(T (ω))) = ÂUC(SP(T (ω))) − pen (#P(T (ω)), n) ,

where pen (K,n) is a fixed and explicit penalty term, so that no resampling or cross-

validation is required by the selection procedure. We set eS∗
n = SP(T (eω∗

n)) with

eω∗
n = arg max

ω admissible
C̃PAUC(SP(T (ω))).

Classically, the key to an adequate choice for the penalty term lies in establishing

a distribution-free bound for the quantity:

E

"
sup

ω: #P(T (ω))=K
|ÂUC(SP(T (ω))) − AUC(SP(T (ω)))|

#
,

with K ∈ {1, . . . , 2D}, see Proposition 6 in subsection 8.5. As shown in [8] (see also

[17]), bounds for the uniform deviation between the AUC and its empirical counterpart

over a collection of scoring functions can be proved by noticing that the empirical AUC

may be expressed as a U -statistic (up to a multiplicative factor) and applying results

of the theory of U -processes.

In the subsequent analysis, we consider two situations, corresponding to distinct

ways of performing the Optimization step in the growing stage among those mentioned

in Section 3 and yielding different, nonlinear this time, penalties for model selection.

O1: Splits are obtained through the LeafRank procedure with at most k perpendicular

cuts, k ≥ 1.

O2: The feature space is X = [0, 1]q and splits are obtained through the partition-based

rule from the collection of dyadic cubes
Qq

m=1[km2−j , (km +1)2−j) with 0 ≤ km < 2j

for all m ∈ {1, . . . , q}.

The following proposition describes the performance of the scoring rule eS∗
n based

on structural AUC maximization in each of these situations.

Proposition 6 (Oracle inequalities) Suppose that the proportion p belongs to an

interval [p, p̄] with 0 < p < p̄ < 1 and for all K ∈ {1, . . . , 2D} and n ≥ 1 the penalty

term is picked as follows, depending on the strategy chosen for performing the Opti-

mization step.

(i) If splits are optimized using the O1 rule, then set: ∀(K, k) ∈ N∗2,

pen(K,n) =
1

p(1 − p̄)

s

32
log
`
16((n+ 1)q)2Kk

´
+K

n
.
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(ii) If splits are optimized using the O2 rule, then set: ∀(K, j) ∈ N∗2,

pen(K,n) =
1

p(1 − p̄)

r
log (4K2jq) +K

2n
.

Then, the expected deficit of AUC of the ranking sub-tree maximizing the complexity-

penalized area under the ROC curve is bounded as follows:

AUC∗ − E[AUC(SP(T (eω∗
n)))] ≤ inf

1≤K≤2D
B(K, n), (14)

where

B(K,n) = cst · pen(K,n) +

(
AUC∗ − sup

s∈ST(K)
AUC(s)

)
.

On AUC consistency of sub- ranking trees. The next results are immediate corol-

laries of Proposition 6, they reveal that under mild assumptions, AUC-consistent sub-

ranking trees do exist.

Corollary 1 (Consistency) Suppose that assumptions of Proposition 6 are fulfilled

and that there exists a sequence Tn(ωn) of subtrees of the master ranking trees Tn

produced by TreeRank such that E[AUC(STn(ωn))] → AUC∗, as n → ∞. Assume in

addition that:

(i) if Tn is grown through the O1 splitting rule with k = k(n) axis-parallel splits, then

k(n) · E [#P(Tn(ωn))] = o(n/ log n) as n→ ∞,

(ii) if Tn is grown through the O2 splitting rule based on dyadic hypercubes of side

length 2−j with j = j(n), then

E [#P(Tn(ωn))] = o(n) and j(n) = o(n/ log n) as n→ ∞.

Then, the scoring rule based on structural AUC maximization is AUC consistent:

lim
n→∞

E
h
AUC

“
eS∗n
”i

= AUC∗.

In the O2 case, it follows from Proposition 3 that, under additional constraints on the

size of the cells of the master ranking tree output by TreeRank, AUC consistency of

the pruning procedure can be proved by means of classical approximation results.

Proposition 7 Suppose that assumptions of Proposition 6 are satisfied and that the

master ranking tree Tn is grown through the TreeRank algorithm with the O2 split-

ting rule based on dyadic hypercubes of side length 2−j , j = j(n) ≥ 1, and depth

Dn. If in addition, as n → ∞, j(n) → ∞ and the sizes of the cells {C(n)
k : k =

0, . . . , 2Dn+1 − 1} of the related partition P(Tn) uniformly shrink to zero in the sense

that max0≤k<2Dn+1 µ(C
(n)
k ) → 0, then the pruned ranking trees Tn(eω∗

n) obtained from

Tn are AUC consistent.
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Remark 11 (Extensions to more general splits.) Here, we have studied structural

AUC maximization in two situations, corresponding to simple ways of performing the

growing stage: in the O2 case, selection occurs over a finite number of models so that

complexity is simply described by the cardinality of the collection considered, whereas,

in the O1 case, the final scoring rule is selected among a collection of models of which

complexity is described by shattering coefficients in a combinatorial fashion. More

sophisticated splitting rules could be naturally considered, leading to more complex

collections of scoring functions. We point out that, in some cases, explicit penalties,

involving (conditional) Rademacher averages, could be deduced from the very general

bounds for the supremum of U -processes established in [8].

Remark 12 (Alternative pruning schemes.) When data are not that expensive, one

may consider using a different dataset for the pruning stage. In such a case, bounds

on the expected AUC performance of complexity-based pruning schemes for ranking

trees can be established via similar arguments. Owing to space limitations, details are

omitted here.

5 Interpreting a Ranking Tree

Beyond the fact that they permit to handle missing data in a straightforward manner

(by assigning to a partially observed instance x the empirical mean of each unobserved

component within the cell where it currently lies) in the training stage or for prediction,

a crucial advantage of decision trees concerns interpretability. Indeed, a ranking tree

may be easily visualized in two dimensions, see Fig. 4 and the related scoring function

may be described through a chain of simple rules. In various applications, such as

medical diagnosis or credit-risk screening for instance, it is essential to interpret the

”rank/score” s(x) and determine which attributes contribute the most to its variation

(provided an adequate measure of variability of the rank is given, see the discussion

below). In the case where the ranking tree is obtained through axis-parallel splits, here

we propose some monitoring tools for interpreting ranking trees.

5.1 Variable relative importance

When using the LeafRank procedure with perpendicular splits for performing the

Optimization step in the growing stage, each internal node N of the resulting ranking

tree T is split according to a sub-tree tN with perpendicular cuts providing a binary

scoring rule stN (x).

Following in the footsteps of the heuristics proposed in [6] for tree-based clas-

sification, a measure of relevance in predicting the ”cost-sensitive” classifier st(x)

corresponding to such a sub-tree t can be proposed for each component of the in-

put vector X = (X(1), . . . , X(d)). For each node m of the sub-tree, denote by v(m)

the index of the component serving as split variable and by ∆ÂUC(m) the gain

in terms of empirical AUC induced by this particular split. In this respect, recall

that, if the cell C ⊂ X corresponding to node m has left child C′, one may write

∆ÂUC(m) = {bα(C)bβ(C′) − bβ(C)bα(C′)}/2. We set: ∀j ∈ {1, . . . , d},

Ij(t) =
X

m: internal nodes of t

“
∆ÂUC(m)

”2
· I{v(m) = j}.
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At the level of the global ranking tree, the squared relative importance of component

X(j) is obtained by summing over all T ’s internal nodes:

Ij =
X

N : internal nodes of T

Ij(tN ).

We point out that the computation of relative importance indicators is straightforward,

since it only involves quantities that are computed when fitting the ranking tree.

5.2 Partial dependence plots

After sorting the attributes X(1), . . . , X(q) according to their relevance, the next step

to take is to quantify the dependence of the scoring model on each of them.

Consider a subvector XI0 of the input vector X = (X(1), . . . , X(q)) corresponding

to a given subset of indexes I0 ⊂ {1, . . . , q}. Denote by I1 = {1, . . . , q} \ I0 the com-

plement set. Rather than renumbering the components, suppose that X = (XI0 , XI1).

In order to gain insight into the way the ranking defined by the stepwise scoring func-

tion s(x) depends on the set of components XI0, one may investigate the variability

of the partial dependence function s(xI0 | I1) = E[s(xI0 , XI1)], through its statistical

counterpart

xI0 7→ bs(xI0 | I1) =
1

n

nX

i=1

s(xI0 , XI1
i ),

which can be visualized when #I0 = 2. One may refer to subsection 8.2 in [18] for a

discussion on the relevance of partial dependence plots and further details on compu-

tational aspects in the case of a tree-structured piecewise-constant function.

6 Numerical experiments

In order to illustrate some of the ideas developed throughout the article, we now present

a few simulation results. In this respect, two bi-dimensional toy models have been con-

sidered. The first one involves mixtures of uniform distributions, so that the target

curve ROC∗ has exactly the same form as the estimate produced by TreeRank (i.e.

linear-by-parts), while conditional gaussian distributions with different covariance ma-

trices are considered in the second one, yielding level sets with quadratic frontiers.

In both examples, we take p = 1/2. From an empirical perspective, the impact of the

order of magnitude of the proportion of positive instances among the pooled sample will

be investigated in a forthcoming paper, entirely devoted to a systematic comparison

of various ranking methods over a number of datasets. Here, in each example, the

artificial data simulated are split into a training sample, used for the growing and

pruning stages both at the same time, and a test sample, used for plotting the ”test

ROC curve”. The master ranking tree is grown by means of the LeafRank procedure

with perpendicular splits (each split is built from less than 5 terminal nodes) and

next pruned via the N -fold cross-validation procedure described in subsection 4.1 with

N = 10.
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6.1 First example - Mixtures of uniform distributions

The artificial data sample represented in Fig. 6a has been generated as follows. We

have split the unit square X = [0, 1]2 into four quarters: X1 = [0, 1/2]2, X2 =

[1/2, 1] × [0, 1/2], X3 = [1/2, 1]2 and X4 = [0, 1/2] × [1/2, 1]. Denoting by UC the

uniform distribution on a measurable set C ⊂ X , the class distributions are given by

H(dx) = 0.2 · UX1
+ 0.1 · UX2

+ 0.3 · UX3
+ 0.4 · UX4

,

G(dx) = 0.4 · UX1
+ 0.3 · UX2

+ 0.2 · UX3
+ 0.1 · UX4

.

In this setup, optimal scoring functions are piecewise constant, like the regression

function

η = 0.7 · IX1
+ 0.75 · IX2

+ 0.4 · IX3
+ 0.2 · IX4

,

leading to a linear-by-parts optimal ROC curve.

Results produced by the TreeRank algorithm, followed by a cross-validation based

pruning procedure are displayed in Fig. 6. In the growing stage, splits have been ob-

tained through the LeafRank method by constraining the number of terminal nodes

to be less than 5.

a. Pooled sample (positive instances in red,
negative ones in blue).

b. Bi-level sets of the regression function.

c. Bi-level sets of the scoring function learnt
from the training dataset.

d. Optimal (blue) and test (black) ROC curves.

Fig. 6 First example - Mixtures of uniform distributions

In spite of the simplicity of this first example, it is comforting to observe that the

four bi-level sets of η are almost perfectly retrieved by the algorithm, so that the test

ROC curve and the optimal one can hardly be distinguished.
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6.2 Second example - conditional Gaussian distributions

Considering a q-dimensional Gaussian random vector Z, drawn as N (m,Γ ), and a

borelian set C ⊂ Rq weighted by N (m,Γ ), we denote by NC(m,Γ ) the conditional

distribution of Z given Z ∈ C. Equipped with this notation, the class distributions

used in this example can be written as:

H(dx) = N[0,1]2

„„
2

0.5

«
,

„
1 0.25

0.25 1.15

««
, G(dx) = N[0,1]2

„„−1

0.5

«
,

„
1 0.15

0.15 1.25

««
.

When p = 1/2, the regression function is then given by:

η(x) =
1.02 · exp(0.02x2

1 + 0.05x2
2 − 3.08x1 + 0.53x2 − 0.11x1x2 + 1.32)

1 + 1.02 · exp(0.02x2
1 + 0.05x2

2 − 3.08x1 + 0.53x2 − 0.11x1x2 + 1.32)

The simulated dataset is plotted in Fig. 7a, while the level sets of the regression

function related to the approximation scheme mimicked by TreeRank are represented

in Fig. 7b. For comparison purpose, the level sets of the piecewise scoring function

output by the learning method are displayed in Fig. 7c and its test ROC curve is

plotted in Fig. 7d, together with the optimal one.

a. Pooled sample: positive instances in red,
negative ones in blue.

b. Ideal ordered partition.

c. Ordered partition learnt from the training
dataset.

d. Optimal (blue) and test (black) ROC curves.

Fig. 7 Second example - Mixture of conditional Gaussian distributions.

Although the frontiers of the target level sets of η are quadratic, they look almost

linear, due to the scale effect caused by the large distance between the centers of the
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two normal distributions. However, this does not suffice for explaining the performance

of the scoring function in terms of ROC curve. Indeed, as shown by the example

represented in Fig. 7, results are still satisfactory when taking Gaussian with closer

centers.

a. Level sets of the true regression function η.
b. Level sets of the estimated regression

function η.

c. True (blue) and Estimated (black) Roc
Curve.

Fig. 8 Results on the tougher gaussian mixture model

7 Conclusion

Summarize what we achieved in this paper and enhance limitations due to the hierar-

chical structure and the pileup of errors. Announcement for further simulation studies,

”ranking pursuit” in order to overcome the error pileup phenomenon, the bagging of

ranking trees for guaranteeing more stability.

8 Technical Proofs

8.1 Proof of Theorem 1

The proof is based on the next lemma.
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Lemma 2 Let P = {Ck}1≤k≤K be a partition with K ≥ 2 non empty cells. Consider

σ ∈ SK , fix k ∈ {1, . . . , K − 1} and let τk ∈ SK be the transposition exchanging k

and k + 1.Then, if (σ(k) − σ(k + 1)) · (σ∗P (k) − σ∗P (k + 1)) > 0, we have

AUC(sP,σ) ≥ AUC(sP,σ◦τk
).

Proof Without any restrictions, one may suppose that σ(k) − σ(k + 1) and σ∗P (k) −
σ∗P (k + 1) are both nonnegative. It follows from the expression of the AUC stated in

Proposition 2 that

AUC(sP,σ) − AUC(sP,σ◦τk
) =

1

2

n
β(Cσ(k+1))α(Cσ(k)) − β(Cσ(k))α(Cσ(k+1))

o
,

and the latter quantity is negative by definition of σ∗P . �

Observing that any permutation σ may be decomposed as σ∗P◦τ , where τ is a compound

of a finite number of transpositions τk, k ∈ {1, . . .K − 1}, the proof of the first part

of the theorem immediately follows from the lemma stated above. The second part

straightforwardly results from Eq. (4) in Proposition 2.

8.2 Proof of Proposition 3

We first establish the following preliminary result.

Lemma 3 Suppose that the r.v. η(X) has a continuous distribution. Then, for any

partition P = {Ck}1≤k≤K with K ≥ 2 non empty cells, we have: ∀s ∈ SP ,

AUC∗ − AUC(s) =
E[|η(X) − η(X′)|]I{(X,X′) ∈ Γs}

2p(1 − p)
+

1

4p(1 − p)

KX

k=1

G(Ck),

where Γs = {(x, x′) ∈ X 2 : (η(x) − η(x′)) · (s(x) − s(x′)) < 0}.
Proof Notice first that, for all scoring function s:

AUC(s) = P{s(X) > s(X ′) | (Y, Y ′) = (+1,−1)} +
1

2
P{s(X) = s(X ′) | (Y, Y ′) = (+1,−1)}

= −1

2
P{s(X) = s(X ′) | (Y, Y ′) = (1,−1)} + 1 − L(s)

2p(1 − p)
, (15)

where L(s) = P{(s(X) − s(X ′)) · (Y − Y ′) < 0}. As L(s) may be expressed as the

expectation of η(X)(1 − η(X ′))I{s(X) < s(X ′)} + (1 − η(X))η(X ′)I{s(X) > s(X ′)}
and η(X) has a continuous distribution, one may check that

L(s)−L(η) = E
ˆ
|η(X) − η(X ′)|I{(X,X ′) ∈ Γs}

˜
+

1

2
E[I{s(X) = s(X ′)}|η(X)−η(X ′)|]

− P{s(X) = s(X ′), (Y, Y ′) = (1,−1)}.
Observe in addition that, when s(x) admits a (P, σ)-representation, one may write

the second term on the right hand side of the equation above as 1
2

P
C∈P E(|η(X) −

η(X ′)|I{(X,X ′) ∈ C2}), which eventually concludes the proof. �

Now, observe that: if (X,X ′) ∈ Γs, then

|η(X) − η(X ′)| ≤ |η(X) − bη(X)| + |η(X ′) − bη(X ′)|.
Combined to Lemma 3, this establishes the desired bound.
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8.3 Proof of Lemma 1

Observe first that:

p(1 − p){2AUC(s) − 1} = p(1 − p){β(C) − α(C)}
= E[(1 − p)η(X) · I{X ∈ C} + p(1 − η(X)) · I{X /∈ C}] − p(1 − p).

Now the lemma results from the fact that:

2p(1 − p){AUC(s∗1) − AUC(s)} = E[(1 − p)η(X) · (I{X ∈ C∗} − I{X ∈ C})]
+ E[p(1 − η(X)) · (I{X /∈ C∗} − I{X /∈ C})]
= E[|η(X) − p| · I{X ∈ C∆C∗}].

8.4 Proof of Theorem 2

For any j ≥ 1, define Cj the collection of (non empty) subsets of X that may be formed

from the 2jq dyadic cubes of side length 2−j , except X = [0, 1]q itself. Denote also by

P2,j the set partitions of X formed of two (non empty) elements of Cj . We set: ∀j ≥ 1,

eL∗
j = arg max

C∈Cj

{β(C) − α(C)}

as well as
bL∗

j = arg max
C∈Cj

{β( bCj) − α( bCj)}.

We denote the related binary scoring functions by:

es∗j (x) = 2 · I{x ∈ eL∗
j} − 1 and bs∗j (x) = 2 · I{x ∈ bL∗

j} − 1.

Classically, we bound the deficit of AUC by the sum of a bias component and a variance

term:

AUC(s∗1) − AUC(bs∗j ) = {AUC(s∗1) − AUC(es∗j )} + {AUC(es∗j ) − ÂUC(es∗j )}
+ {ÂUC(es∗j ) − ÂUC(bs∗j )} + {ÂUC(bs∗j ) − AUC(bs∗j )}
≤ AUC(s∗1) − AUC(es∗j ) + 2 sup

s∈SP2,j

|ÂUC(s) − AUC(s)|.

Considering the variance term, we first express the empirical ÂUC(s) as:

ÂUC(s) =
n(n− 1)

2n+n−
bUn(s) ,

where
bUn(s) =

2

n(n− 1)

X

1≤i<j≤n

hs((Xi, Yi), (Xj , Yj))

is a U -statistic of order 2 with bounded symmetric kernel

hs((x1, y1), (x2, y2)) = I{(y1 − y2)(s(x1) − s(x2)) > 0} +
1

2
I{s(x1) = s(x2), y1 6= y2}
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and expectation U(s) = 2p(1−p)AUC(s). By applying the version of Hoeffding’s expo-

nential inequality for U -statistics stated in Theorem A of section 5.6 of [19]) combined

with the union bound, one gets that, for all δ ∈ (0, 1), with probability larger than

1 − δ: ∀n ≥ 1,

sup
s∈SP2,j

˛̨
˛ bUn(s) − U(s)

˛̨
˛ ≤

r
log(δ/(2#P2,j))

2n
.

The desired bound then follows by noticing that

˛̨
˛ÂUC(s) − AUC(s)

˛̨
˛ ≤ 1

2p(1 − p̄)

˛̨
˛ bUn(s) − U(s)

˛̨
˛+ 1

2

˛̨
˛̨1
p
− n

n+

˛̨
˛̨+
˛̨
˛̨ 1

1 − p
− n

n− n+

˛̨
˛̨
ff

and applying the standard Hoeffding probability inequality in order to control the

fluctuations of n+/n around p ∈ [p, p̄].

8.5 Proof of Proposition 6

In order to prove the desired oracle inequality, we first establish the lemma below.

Let K ≥ 1, we denote by PT (K) the collection of all tree-structured partitions of the

feature space X ⊂ Rq with K ≥ 1 non empty cells and by ST (K) =
S

P∈PT (K) SP

the set of piecewise constant scoring functions associated to such partitions. We also

introduce the empirical AUC maximizer over ST (K):

bS∗
n,K = arg max

s∈ST (K)
ÂUC(s).

Lemma 4 Assume that the hypotheses of Proposition 6 are fulfilled.

(i)If splits are optimized using the O1 rule and the penalization is chosen accordingly,

then: ∀(K, k) ∈ N∗2,

P

(
sup

s∈ST (K)
AUC(s) − AUC(eS∗n) ≥ ǫ

)
≤ 16 ((n+ 1)q)2Kk e−np2(1−p̄)2ǫ2/512

+ e−np2(1−p̄)2ǫ2/128.

(ii) If splits are optimized using the O2 rule and the penalization is chosen accordingly,

then: ∀(K, j) ∈ N∗2,

P

(
sup

s∈ST (K)
AUC(s) − AUC(eS∗n) ≥ ǫ

)
≤ 4K2jq

e−np2(1−p̄)2ǫ2/8+e−np2(1−p̄)2ǫ2/2.
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Proof We follow the argument of [20], see also Section 18.1 in [21]. Write: ∀ǫ > 0,

∀K ≥ 1,

P

(
sup

s∈ST (K)
AUC(s) − AUC(eS∗n) ≥ ǫ

)
≤

P

(
sup
l≥1

C̃PAUC(bS∗
n,l) − AUC(eS∗n) ≥ ǫ

2

)
+

P

(
sup

s∈ST (K)
AUC(s) − sup

l≥1
C̃PAUC(bS∗n,l) ≥

ǫ

2

)
.

Therefore, the first term on the right hand side of the inequality above may be rewritten

and bounded as follows:

P
n

C̃PAUC(eS∗
n) − AUC(eS∗n) ≥ ǫ

2

o

≤ P


inf
l≥1

n
C̃PAUC(bS∗

n,l) − AUC(bS∗n,l)
o
≥ ǫ

2

ff

≤
X

l≥1

P
n˛̨
˛AUC(bS∗n,l) − ÂUC(bS∗n,l)

˛̨
˛ ≥ ǫ

2
+ pen(l, n)

o

≤
X

l≥1

P

(
sup

s∈ST (K)

˛̨
˛AUC(s) − ÂUC(s)

˛̨
˛ ≥ ǫ

2
+ pen(l, n)

)
. (16)

Turning to the second term, observe that

P

(
sup

s∈ST (K)
AUC(s) − sup

l≥1
C̃PAUC(bS∗n,l) ≥

ǫ

2

)
≤

P

(
sup

s∈ST (K)
AUC(s) − C̃PAUC(bS∗n,K) ≥ ǫ

2

)

≤ P

(
sup

s∈ST (K)
AUC(s) − ÂUC(bS∗n,K) ≥ ǫ

4

)

≤ P

(
sup

s∈ST (K)

˛̨
˛ÂUC(s) − AUC(s)

˛̨
˛ ≥ ǫ

4

)
, (17)

since we assumed pen(K,n) ≤ ǫ/4.

In both cases, we are thus lead to establish a sharp bound for the tail probability

of sups∈ST (K)

˛̨
˛ÂUC(s) − AUC(s)

˛̨
˛.

• We first place ourselves in the situation O1, where Optimization steps are performed

using at most k perpendicular splits. We follow the approach developed in [8] in the

context of empirical ”ranking risk” minimization. We recall the following lemma, based

on Hoeffding’s representation of U -statistics (see Lemma A1 in [8]).

Lemma 5 ([8]) Let qτ : X × X → R be real-valued functions indexed by τ ∈ T where

T is some set. If X1, . . . , Xn are i.i.d. then for any convex nondecreasing function ψ,

E

2
4ψ

0
@sup

τ∈T

1

n(n− 1)

X

i 6=j

qτ (Xi, Xj)

1
A
3
5 ≤ E

2
4ψ

0
@sup

τ∈T

1

⌊n/2⌋

⌊n/2⌋X

i=1

qτ (Xi, X⌊n/2⌋ + i)

1
A
3
5 ,
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assuming the suprema are measurable and the expected values exist.

The n-th VC shattering coefficient of the class A =
S

P∈PT (K){A×B : (A,P ) ∈ P2}
of subsets of X × X is thus bounded as follows:

S(A, n) ≤ ((n+ 1)q)2Kk .

Combined with Vapnik-Chervonenkis inequality and the lemma above applied to the

collection of kernels {hs − U(s)}s∈ST (K), this yields: ∀ǫ, ∀n ≥ 1,

P

(
sup

s∈ST (K)
|bUn(s) − U(s)| ≥ ǫ

)
≤ 8 ((n+ 1)q)2Kk e−nǫ2/32.

Thus, for n large enough, we have

P

(
sup

s∈ST (K)
|ÂUC(s) − AUC(s)| ≥ ǫ

)
≤ 16 ((n+ 1)q)2Kk e−np2(1−p̄)2ǫ2/32, (18)

the extra multiplicative factor in the AUC bound above accounting for the fluctua-

tions of the empirical rate of positive instances among the pooled sample around the

proportion p for n large enough. Combined with (16), we get

P
n

C̃PAUC(eS∗
n) − AUC(eS∗n) ≥ ǫ

2

o
≤

2DX

l=1

16 ((n+ 1)q)2Kk e−np2(1−p̄)2( ǫ
2+pen(K,n))2/32 ≤

e−np2(1−p̄)2ǫ2/128
2DX

l=1

16 ((n+ 1)q)2Kk e−np2(1−p̄)2pen(K,n)2/32 ≤

e−np2(1−p̄)2ǫ2/128
X

l≥1

e−K ≤ e−np2(1−p̄)2ǫ2/128,

by replacing pen(K,n) by its explicit expression. Combining (18) with (17), we obtain

P

(
sup

s∈ST (K)
AUC(s) − sup

l≥1
C̃PAUC(bS∗n,l) ≥

ǫ

2

)
≤ 16 ((n+ 1)q)2Kk e−np2(1−p̄)2ǫ2/512.

The first assertion of the lemma is thus proved.

• Suppose now that X = [0, 1]q and cells are obtained as unions of dyadic cubes of

side lenght 2−j , j ∈ N. In the situation O2, it suffices to observe that a version of

Hoeffding’s inequality for U -statistics (see Theorem A in section 5.6 of [19]) combined

with the union bound and the fact that #{hs : s ∈ ST (K)} ≤ K2jq

gives us: ∀ǫ,
∀n ≥ 1,

P

(
sup

s∈ST (K)

˛̨
˛ bUn(s) − U(s)

˛̨
˛ ≥ ǫ

)
≤ 2K2jq

e−2nǫ2 ,

and for n large enough:

P

(
sup

s∈ST (K)

˛̨
˛ÂUC(s) − AUC(s)

˛̨
˛ ≥ ǫ

)
≤ 4K2jq

e−2np2(1−p̄)2ǫ2 .

The remainder of the argument is omitted, since it is completely similar to the one in

the O1 situation. �



34

We have

AUC∗ − E
h
AUC(eS∗n)

i
= inf

K≥1
{(AUC∗ − sup

s∈ST(K)
AUC(s))

+ ( sup
s∈ST (K)

AUC(s) − E[AUC(eS∗n)])}.

Therefore,

 
sup

s∈ST (K)
AUC(s) − E[AUC(eS∗n)]

!2

≤ u

+

Z ∞

t=u
P

8
<
:

 
sup

s∈ST (K)
AUC(s) − AUC(eS∗n)

!2

> t

9
=
; dt.

Now, the oracle inequalities for the expected deficit of AUC follow by integrating the

tail bounds stated in Lemma 4, taking u = cst · (pen(K,n))2.

8.6 Proof of Proposition 7

We place ourselves in the O2 case. Given Corollary 1, it suffices to show that

lim
n→∞

sup
s∈STn

AUC(s) = AUC∗.

Let {CDn,k}0≤k<2Dn be the cells of the partition PDn
corresponding to the master

ranking tree Tn output by TreeRank and sDn
the related scoring function. Recall

that, in the O2 situation, sDn
and bηPDn

produce the same ranking, cf Remark 10. By

virtue of Proposition 3, we thus have:

AUC∗ − sup
s∈ST(K)

AUC(s) ≤
E
ˆ˛̨
η(X) − bηPDn

(X)
˛̨˜

2p(1 − p)
+

1

4p(1 − p)

DnX

k=1

G(Cn,k), (19)

where G(Cn,k) = E
h
|η(X) − η(X ′)| · I{(X,X ′) ∈ C2

n,k}
i
. Observe that

Dn−1X

k=0

G(Cn,k) ≤
Dn−1X

k=0

µ(Cn,k)2 ≤ max
0≤k<Dn

µ(Cn,k).

It follows from the stipulated assumptions and the bound above that the term on the

right hand side of Eq. (19) vanishes as n → ∞. As Theorem 6.1’s argument in [21]

ensures that the term on the left hand side also goes to 0 as n→ ∞, the result is then

proved.
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