
HAL Id: hal-00415768
https://hal.science/hal-00415768

Submitted on 18 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Fully-fledged Reverse Inheritance in Eiffel
Markku Sakkinen, Philippe Lahire, Ciprian-Bogdan Chirila

To cite this version:
Markku Sakkinen, Philippe Lahire, Ciprian-Bogdan Chirila. Towards Fully-fledged Reverse Inheri-
tance in Eiffel. 11th Symposium on Programming Languages and Software Tools (SPLST’09), Aug
2009, Tampère, Finland. pp.1-16. �hal-00415768�

https://hal.science/hal-00415768
https://hal.archives-ouvertes.fr


Nordic Journal of Computing

TOWARDS FULLY-FLEDGED REVERSE

INHERITANCE IN EIFFEL

Markku Sakkinen
Department of Computer Science and Information Systems

University of Jyvskyl
sakkinen@cs.jyu.fi

Philippe Lahire
I3S Laboratory

University of Nice – Sophia Antipolis and CNRS
Philippe.Lahire@unice.fr

Ciprian-Bogdan Chirilă
Politehnica University of Timisoara

chirila@cs.upt.ro

Abstract. Generalization is common in object-oriented modelling. It would be
useful in many situations also as a language mechanism, reverse inheritance, but
there have been only few detailed proposals for that. This paper defines reverse
inheritance as a true inverse of ordinary inheritance, without changing anything
else in the language that is extended. Eiffel is perhaps the most suitable language
for that purpose because of its flexible inheritance principles. Moreover, there ex-
ists good previous work on Eiffel, on which we have built. We describe the most
important aspects of our extension, whose details proved to be more difficult than
we had assumed. It would be easier if some modifications were made to Eiffel’s
ordinary inheritance, or if one designed a new language.

ACM CCS Categories and Subject Descriptors: D.3.3 [Programming Lan-
guages]: Language Constructs and Features — inheritance; D.3.2 [Programming
Languages]: Language Classifications — object-oriented languages, Eiffel; D.2.3
[Software Engineering]: Coding Tools and Techniques — object-oriented program-
ming; D.2.2 [Software Engineering]: Design Tools and Techniques — object-oriented
design methods;

Key words: Eiffel, reverse inheritance, generalization, hierarchy evolution, refac-
toring

1. Introduction

Generalization is widely used in object-oriented (OO) modelling and design,
but it is not available on the programming level in any widely used language
or system. We propose to extend object-oriented languages with a new

Received November 9, 2009.



2 MARKKU SAKKINEN, PHILIPPE LAHIRE, CIPRIAN-BOGDAN CHIRILĂ

relationship, reverse inheritance (RI) or exheritance, which is an inverse of
ordinary inheritance (OI). Reverse inheritance allows non-destructive gener-
alization, just like ordinary inheritance allows non-destructive specialization.
This is not a completely new idea, but it has been very little treated in the
literature. Of course, we are building on applicable previous research (see
Section 2).

Clearly, if the source code can be modified, it is always possible to add a
direct superclass (parent in Eiffel terminology) to an existing class. This is
a common refactoring operation, but it may introduce many side effects and
affect the robustness of the existing classes. Further, it is very undesirable or
even impossible in many cases to modify existing classes, e.g. from standard
libraries. The situation is particularly difficult when one needs to combine
two or more large class hierarchies from different sources.

None of the previous proposals for reverse inheritance that we know has
been implemented. This time we wanted to allow RI to be tried out in prac-
tice, and therefore designed an extension to an existing industrial-strength
language, instead of a nice, formally defined toy language. Such an exercise
gives better possibilities to weigh the potential benefits of reverse inheritance
against its costs (added language complexity).

Eiffel is a particularly interesting and suitable language to extend with
RI, because of its well thought-out design principles. Most importantly,
its flexible and clean implementation of multiple inheritance with explicit
clauses for adaptation allows us to propose a solution that is both integrated
and expressive enough. Because no implementation of the new, significantly
changed version of Eiffel (Meyer [2006], ECMA International [2006]) existed
yet, we based our extensions on the stable old version often known as Eiffel
3 (Meyer [1992]). We use mostly the terminology of Eiffel literature, except
the term ‘method’ instead of ‘routine’. We’ll try to explain those Eiffel terms
and concepts that could be too alien to many readers, when using them the
first time.

To give a taste of RI, Figure 1 is a small example. Suppose that we have
two classes RECTANGLE and CIRCLE designed independently from each
other. It is noted later that some of their features can be factored into a
common parent class, which is named FIGURE. We do not explain all details
here, but the example should be understandable; the new keyword foster

denotes a class defined using RI. For reference purposes, we have added line
numbers, which are not part of the code. The keyword all specifies that
all features (the common superconcept of attribute and method in Eiffel)
with the same name and signature in both CIRCLE and RECTANGLE will
be exherited to FIGURE; this means location and draw. However, they
will become abstract (deferred in Eiffel) by default. For programmers using
these three classes, the example is fully equivalent to standard Eiffel code in
which FIGURE would be defined first and the others as its direct subclasses
(heirs in Eiffel).

We will present the main features of our approach in the rest of this paper.
Section 2 gives a brief overview of previous literature, whereas in Section



REVERSE INHERITANCE IN EIFFEL 3

01 class CIRCLE
02 feature

03 radius: REAL
04 location: POINT
05 draw is do ... end

06 end – class CIRCLE

07 class RECTANGLE
08 feature

09 height: REAL
10 width: REAL
11 location: POINT
12 draw is do ... end

13 end – class RECTANGLE

14 deferred foster class FIGURE

15 exherit

16 CIRCLE

17 RECTANGLE

18 all

19 end – class FIGURE

Fig. 1: Simple example of reverse inheritance

3 we address the main principles to be followed. We continue in Section 4
giving the fundamentals of our approach. Sections 5 and 6 illustrate the use
of RI in the two main situations: adding a superclass at the top level of the
hierarchy, and inserting a class between two or more classes in the hierarchy.
Finally we conclude and set a perspective for future research in Section 7.

We already have a quite comprehensive proof-of-concept implementation
of our RI extension for Eiffel, by a transformation to standard Eiffel. Space
does not permit us to describe it in this paper, but we refer interested read-
ers to the website https://nyx.unice.fr/projects/transformer .
Unfortunately, some of our adaptations cannot be done with such a transfor-
mation approach, but would need the Eiffel compiler itself to be modified.

2. Previous research

The earliest article we have found that discusses a concrete generalization
mechanism is Schrefl and Neuhold [1988], which uses the term ‘upward in-
heritance’. Its purpose is enabling the integration of different OO databases
into a multidatabase system, or building a homogeneous global view of het-
erogeneous systems. The paper Qutaishat et al. [1997] has a similar pur-
pose. Generalization is much more important in database integration than
in “ordinary” programming, because the homogenization of the underlying
databases is usually out of the question. It is also easier, because the gen-



4 MARKKU SAKKINEN, PHILIPPE LAHIRE, CIPRIAN-BOGDAN CHIRILĂ

eralization classes live on a different layer of the system than the actual
database classes. On the other hand, there is the additional problem that
one real-world object (instance) may well be represented in several databases.

Our goal is essentially different from the above, namely allowing classes
to be defined either by specialization (OI), generalization (RI), or a combi-
nation of both, within the same context. To our knowledge, the first paper
proposing such an approach and mechanism is Pedersen [1989]. We consider
it a seminal paper, although it is somewhat simplistic or even erroneous on
some points.

A significant step forward was made in the paper Lawson et al. [1994],
which presents a detailed proposal for adding reverse inheritance into Eiffel.
It also discusses many problems both on the conceptual level and in the
implementation. We have adopted the most important terms from there, in
particular ‘foster class’. However, we could not see a reason for speaking
about reverse type inheritance, because inheritance is always a relationship
between classes in Eiffel and most other OOPLs.

One surprisingly missing aspect in both Pedersen [1989] and Lawson et al.

[1994] is the possibility of a class being defined by a combination of simul-
taneous ordinary and reverse inheritance, i.e., inserted into the inheritance
hierarchy between a superclass (parent) and its subclasses (heirs). We would
expect that to be more common in practice than defining a foster class as a
root class.

The workshop paper Sakkinen [2002] was written unaware of Lawson et al.

[1994], so the new term ‘exheritance’ was coined there. It is quite optimistic
about RI and suggests several new ideas. All of those are not included in
our Eiffel extension, but could be relevant if we did not want to stay fully
downward compatible with standard Eiffel (see Rule 1 in Section 3).

The workshop paper Chirilă et al. [2004] discusses the application of RI to
Java, including implementation aspects. Adding RI to a single-inheritance
language had not been treated in earlier papers. It is both much simpler
and much less powerful than with multiple inheritance, but not trivial. Our
first example (Figure 1) did not need multiple ordinary inheritance.

Since 2005, we have cooperated and tried to combine our different view-
points on reverse inheritance. The current paper builds on the earlier work,
especially Lawson et al. [1994] and Sakkinen [2002], with essential improve-
ments on several points. Because we are also implementing our approach,
we needed to be more thorough than the earlier papers.

3. Main principles

Before going further in the description of reverse inheritance it is important
to state the main principles of our approach. The rules are presented in an
approximate order of importance. We do not claim them to be self-evident;
there can be approaches based on different principles.

Firstly, since we are designing an extension to an existing language, it is



REVERSE INHERITANCE IN EIFFEL 5

important that classes and programs which do not use the extension will
not be affected.

Rule 1: Genuine Extension

Eiffel classes and programs that do not exploit reverse inheritance must
not need any modifications, and their semantics must not change.

Secondly, it is very important that after a class has been defined using RI,
it can be used just as any ordinary class. Otherwise, foster classes would be
far less useful, and the additional language complexity caused by RI would
certainly not pay off.

Rule 2: Full Class Status

After a foster class has been defined, it must be usable in all respects
as if it were an ordinary class.

In particular, a foster class can be used as a parent in ordinary inheritance
and as an heir in further reverse inheritance,

Thirdly, in OI the semantics of a given class is not affected if a new class
is defined as its direct or indirect subclass (descendant in Eiffel), or if some
existing descendant is modified. In contrast, any modifications to a super-
class (ancestor in Eiffel) affect all its subclasses, and can even make some
existing descendants illegal unless their definitions are changed also. We
want RI to be a mirror image of OI in this respect, i.e., the dependencies
between classes to be the opposite of what they are in RI (see Lawson et al.

[1994]).

Rule 3: Invariant Class Structure and Behaviour

Introducing a foster class as a parent C of one or several classes C1,

. . . , Cn using reverse inheritance must not modify the structure and
behaviour of C1, . . . , Cn.

Fourthly, the reverse inheritance relationship is intended to be the exact
inverse of ordinary inheritance. This means that it should be as completely
interchangeable with ordinary inheritance as possible. In the new version of
Eiffel (ECMA International [2006]) this would imply also that conforming
and non-conforming reverse inheritance relationships must be distinguished.

Rule 4: Equivalence with Ordinary Inheritance

Declaring a reverse inheritance relationship from class A to class B

should be equivalent to declaring an ordinary inheritance relationship
from class B to class A.

Of course, this does not mean that the syntactic definitions of the two classes
would be the same in both cases.

As a consequence of this rule, it would be good if all adaptation capabilities
provided for RI had their counterparts in pure Eiffel language. However, we



6 MARKKU SAKKINEN, PHILIPPE LAHIRE, CIPRIAN-BOGDAN CHIRILĂ

actually wish to have some adaptations that cannot be exactly translated
to OI (see Section 4). On the other hand, we did not consider it worthwhile
to implement all possible complications of Eiffel OI also in RI; Rule 7 is an
example of that.

Fifthly, we want reverse inheritance to leave the existing inheritance hier-
archy as intact as possible.

Rule 5: Minimal Change of Inheritance Hierarchy

Introducing a foster class must neither delete direct inheritance rela-
tionships (parent-heir relationships) nor create any inheritance rela-
tionships (ancestor-descendant relationships) between previously ex-
isting classes.

Note that RI may well create new inheritance paths between existing classes,
but only for existing ancestor-descendant pairs (see Section 6).

The paper Sakkinen [2002] suggested that it could be possible to define
also new parent-heir relationships, and even equivalence relationships, be-
tween existing classes (if they are feasible). However, that would change the
semantics of many programs even if they do not use RI, because Eiffel has
language constructs whose effect depends on the dynamic type of a variable,
e.g., the assignment attempt.

Sixthly, we need to define which features are candidates to be exherited

in reverse inheritance. The following rule is essentially a consequence of the
previous rules and the adaptation possibilities of OI in Eiffel extended for
RI (as just mentioned).

Rule 6: Exheritable Features

The features f1, . . . , fn of the respective, different classes C1, . . . ,

Cn are exheritable together to a feature in a common foster class if
there exists a common signature to which the signatures of all of them
conform, possibly after some adaptations. Each of the features f1, . . . ,

fn can be either immediate or inherited.

In pure Eiffel these features could be similarly factored out to a common
parent, but any extended adaptations (see above) would require new or
modified methods in the heir classes.

Some common special cases are simpler than the general case: In single
RI, all features are trivially exheritable. In multiple RI, all fi may already
have the same signature, or one of them may have a signature to which all
others can be made to conform. We will explain the possible adaptations in
Section 4.

Lastly, we want to avoid the complexity of allowing one feature in a foster
class to correspond to several features in the same exherited class, although
this would be a direct equivalent of repeated inheritance with renaming.

Rule 7: No Repeated Exheritance

Two different features of the same class must not be exherited to the
same feature in a foster class.



REVERSE INHERITANCE IN EIFFEL 7

The definition of the semantics of reverse inheritance in the following sec-
tions, on both the conceptual level and the concrete language level, relies on
the above seven rules.

4. Basics of our approach

Where needed to avoid ambiguities, we will call the proposed extended lan-
guage ‘RI-Eiffel’ in distinction to pure Eiffel. Details in the concrete syntax
used in our code examples are not important, and the syntax may be slightly
modified in the future.

Following the paper Lawson et al. [1994], a class defined using a RI re-
lationship is called a foster class and is preceded by the keyword foster in
order to point out the special semantics of this class with respect to normal
Eiffel classes. In fact, a foster class also requires special implementation (see
Lawson et al. [1994]). In a new language with both OI and RI, the ‘foster’
keyword would be needed no more than a ‘heir’ or ‘subclass’ keyword.

A foster class may be effective (concrete) or marked as deferred (abstract)
like any other class. It is a fully-fledged class in all respects; in particular,
further classes can be derived from it by both OI and RI. Otherwise reverse
inheritance would hardly be useful and interesting.

In order to reverse-inherit or exherit from one or several classes we use a
clause exherit in a foster class, in the same way as we use a clause inherit

in order to reuse and to extend the behaviour of one or several classes. We
did not take the keyword adopt from Lawson et al. [1994], because we have
introduced adapt and adapted (see later), and wanted to avoid confusion.

The set of exheritable features is defined by Rule 6 in Section 3. Because
it is not always desired to exherit all of them, the set of really exherited

features can be further restricted by using some rather intuitive keywords.
The keyword all in Figure 1 is actually redundant, because we take it as the
default.

In ordinary inheritance, also the implementation of every feature is copied
to the heir class by default, but in Eiffel it is also possible to copy only its
signature, i.e., make it deferred, using the clause undefine. A reasonable
approach for exheritance is exactly the reverse: the default is that a feature is
deferred in the foster class. Therefore, the keyword undefine is not needed
in RI. When the implementation of a feature should be moved (or copied)
to the foster class, that is specified explicitly by the clause moveup. We
invented this keyword, because ‘move’ is probably a rather common identifier
in programs.

The strongest reason for the above default is that usually it is not even
possible to copy the body of a method from a heir class. That would require
all other features accessed by the method to be exherited also, but in multiple
RI they may not be even exheritable (Sakkinen [2002]). It seemed best to
us to have the same default also for attributes.

If an exherited feature is a method, a body can be written in the foster



8 MARKKU SAKKINEN, PHILIPPE LAHIRE, CIPRIAN-BOGDAN CHIRILĂ

class just as in an ordinary class. In that case, it seems consistent with OI
to require a redefine clause for each exherited class in which the feature is
effective (either as a method or as an attribute).

In Figure 1 the features of the exherited classes that should be unified in
the foster class have the same name. In general, it is very likely that some
corresponding features have different names, and in converse that some fea-
tures with the same name should not be unified. That has been recognized
in all previous papers, and was also taken into account in Rule 6 (Section
3). It is therefore necessary that we allow renaming in an exherit clause by
rename subclauses; this facility exists for OI in standard Eiffel. Examples
of that will appear in later sections.

We already mentioned above the use of redefine in Eiffel to announce
the reimplementation (overriding) of methods. The same keyword — a bit
unfortunately — is used also to announce the redefinition (redeclaration) of
method signatures and attribute types. We allow such redefinitions also in
RI, as might be deduced from Rule 6. Since type/signature redefinitions in
OI in Eiffel are covariant, they must be the inverse in RI. This means that
the type of an attribute, as well as the the type of a parameter and the
result of a method, in the foster class must be a common ancestor of the
types of the corresponding entities in the exherited classes.

In multiple RI, the type/signature of an exherited feature must be rede-
fined in most cases in the foster class. The exceptions are cases where the
signature is exactly the same in all exherited classes (ECs) and it is not
changed in the foster class. If the signatures in all other ECs conform to the
common signature in a subset of the ECs, we could take the latter as the
default for the foster class, but for the sake of clarity we require a redefine

clause for the other ECs. — Note that even a feature that is to be deferred
in the foster class needs a redefine clause if its signature is changed.

It is a speciality of Eiffel that a method which has no parameters and
returns a result can be redefined as an attribute in a descendant class. The
opposite is not allowed, because assignment to an attribute has no counter-
part with a method. This implies for RI that a feature from the exherited
classes can always be redefined as a method in the foster class, but it can
be redefined as an attribute only if it is an attribute in all exherited classes.

Because the exherited classes often have not been developed in the same
context, it is possible that even the number of parameters, their scales or the
scale of the result or an attribute is not the same for features that represent
the same thing (see Schrefl and Neuhold [1988] for more). It should be
possible to do some adaptations to take into account these aspects and then
unify the adapted features in RI. Such adaptations do not exist in Eiffel,
because they are not needed in OI.

Adapting a feature must not change the exherited class or its objects,
according to our Rule 3. Therefore, the conversion is made on the fly, when
the feature is accessed through a variable whose type is the foster class. This
is one special characteristic of foster classes: in standard Eiffel the type of
the referencing variable does not affect the behaviour of a feature, except



REVERSE INHERITANCE IN EIFFEL 9

that it may affect the dynamic binding if repeated inheritance is involved.
Note that adaptation makes sense independently of whether the feature is
deferred, moved or (re)defined in the foster class.

We introduce two new keywords for expressing adaptation. In the exherit

clause, for every exherited class the features to be adapted must be listed
after the keyword adapt. After all these clauses, for every feature that needs
adaptation from at least one heir class, the adaptations must be specified
after the keyword adapted. Each adaptation subclause must specify the
name(s) of the heir class(es) to which it applies, and then the adaptation
itself.

For methods, the adaptation must specify by expressions, first the actual
parameters to be submitted to the method of the heir class, and second the
result to be returned to the caller. Formal parameters of the foster class
method can be used in both expressions, and the result from the heir class
method in the latter one. Features of the foster class can also be used, at
their state before or after the invocation of the heir class method, respec-
tively. For attributes, the adaptation must specify two conversion expres-
sions, from the heir class representation to the foster class representation
and vice versa.

We omit describing the complete syntax for adaptation expressions here.
It is important to note that they must not cause side effects, as a corollary
of Rule 3.

5. Adding a root class as a parent

The simplest cases of RI are those where the foster class is on the top of
the hierarchy, i.e., it has no explicit parent. It will then implicitly have
the universal root class ANY (which corresponds to Object in many other
languages) as parent, but we can ignore it, except in the rare case that some
exherited class has renamed, redefined or undefined some feature inherited
from ANY. Therefore, there is no interference caused by the combined use of
OI and RI in the same class. In order to illustrate such an RI relationship,
but a non-trivial one, we enhance slightly the example of Figure 1 (Section
1). Figure 2 contains only the code of the foster class.

We assume only one change in the exherited classes from Figure 1: class
RECTANGLE has a method named display instead of draw. However, it
has the same meaning as draw in class CIRCLE, and thus these two features
should be exherited together. To achieve this, display is renamed as draw in
the exheritance. By default, the feature becomes deferred in class FIGURE,
and so the class itself has to be declared as deferred (line 01 ).

The attribute location is exherited automatically because it satisfies Rule 6
from Section 3. However, to keep it as an attribute and not a deferred feature
in the foster class, it must be either explicitly moved from one exherited
class or redefined. Here we choose the latter alternative (line 10 ): for some
reason, we want it to be of type GEN POINT, which must be an ancestor



10 MARKKU SAKKINEN, PHILIPPE LAHIRE, CIPRIAN-BOGDAN CHIRILĂ

01 deferred foster class FIGURE

02 exherit

03 CIRCLE

04 redefine location

05 adapt location

06 end

07 RECTANGLE

08 redefine location

09 rename display as draw

10 end

11 all – all exheritable features

12 feature

13 location: GEN POINT

14 adapted CIRCLE

15 to x := result.x/10, y := result.y/10

16 from x := result.x*10, y := result.y*10

17 end

18 end – class FIGURE

Fig. 2: Insertion of class FIGURE on top of two classes developed separately

of POINT (line 12 ).
Let us assume next that the class POINT has the attributes x and y of

type REAL. and that the scale of these attributes is in millimetres within
an object of type RECTANGLE, while in class CIRCLE it is in centimetres.
We decide to handle it in millimetres also in class FIGURE, and therefore
we need the adapt clause for CIRCLE. In the later adapted clause (lines
14 to 16 ), we present a tentative syntax for the adaptation of an attribute.
The to subclause specifies the conversion needed for writing (assigning to)
the attribute through a variable of type FIGURE, and the from subclause
the conversion needed for reading it.

Figure 3 is a class diagram of this situation. In this and later diagrams
we use “RI-UML”, where reverse inheritance is denoted by dashed lines and
downward pointing triangle arrowheads (upward might actually be a better
choice).

Renaming and redefinition in OI exist already in standard Eiffel, but adap-
tation in our sense has no counterpart in OI (see Section 4). The word ‘adap-
tation’ is used in a wider sense in Eiffel specifications: it includes renaming,
redefinition and undefinition. In this small example we have no adaptation
of methods; it would not even be relevant for draw, because it has neither a
result nor parameters.



REVERSE INHERITANCE IN EIFFEL 11

<<foster>>

FIGURE

+location: GEN_POINT

+draw()

CIRCLE

+radius: REAL

+location: POINT

+draw()

RECTANGLE

+height: REAL

+width: REAL

+location: POINT

+display()

Fig. 3: Class diagram for Figure 2

6. Adding a class with both reverse and ordinary inheritance

Here we study situations in which a foster class is defined “in the middle” of
an inheritance hierarchy, i.e., using both ordinary and reverse inheritance.
Because RI must not create new inheritance relationships between existing
classes (Rule 5, Section 3), every class that the new foster class inherits from
must already be a common ancestor of all classes being exherited. — Such
a foster class we will call ‘amphibious’, using a metaphor from biology: the
features of these classes come partly from above (“the land”) and partly
from below (“the water”) in the hierarchy. When needed, we call other
foster classes ‘non-amphibious’.

In the simplest case, the exherited classes have a common parent and the
foster class is inserted between the parent and its original heirs. We present a
slightly more complex case, which is a continuation of our previous example
(Fig. 3).

The classes CIRCLE and RECTANGLE have no method for moving
the objects. Suppose that they are kept as such, but the heir classes
MOVABLE CIRCLE and MOVABLE RECTANGLE that have a move

method are added. Later one wants to define MOVABLE FIGURE as their
common parent, which exherits at least the move method. It is quite natu-
ral that this new class is also an heir of FIGURE, and therefore inherits all
its features.

Figure 4 gives the code of the new foster class (the new heir classes are
trivial), and Figure 5 shows the augmented class diagram. To prevent some
possible confusions, we have changed the RI relationships of Figure 3 into
equivalent OI relationships; this is possible according to Rule 4 (Section 3).

The adaptation of the attribute location in class CIRCLE (Figure 2) makes
this example trickier. The implementation of that attribute is moved to the
amphibious class MOVABLE FIGURE from CIRCLE. Therefore no scale
conversion must be performed when location in a CIRCLE object is accessed
through a reference of type MOVABLE FIGURE. However, the inverse con-



12 MARKKU SAKKINEN, PHILIPPE LAHIRE, CIPRIAN-BOGDAN CHIRILĂ

01 deferred foster class MOVABLE FIGURE

02 inherit FIGURE

03 redefine location

07 end

04 exherit

05 MOVABLE CIRCLE

06 moveup location

07 end

08 MOVABLE RECTANGLE

09 rename display as draw

10 end

11 feature

12 end – class MOVABLE FIGURE

Fig. 4: Inserting a class between a class and its descendants

version must be performed when a MOVABLE RECTANGLE object is ac-
cessed through a reference of that type. The case would be different if the
implementation of location were moved from MOVABLE RECTANGLE or
simply inherited from FIGURE.

In Eiffel terminology, those features of a class that are not inherited from
its parent(s) are called immediate features. In contrast, a foster class can-
not have immediate features, because all its features are exherited from its
heir(s) (even those that are also inherited). Thus it makes sense to classify
them into amphibious (those that are both inherited and exherited) and
non-amphibious features. In the rest of this section, we discuss only the
amphibious ones, because the existence of a parent class is irrelevant to the
others.

In the sequel, we will use the abbreviation ‘PC’ for the existing parent
class(es). We assume for simplicity that there is only one PC. Thus, for each
amphibious feature in the FC, there exists a PC version, an FC version, and
a version in each EC. We must study what relationships are possible between
these versions, and what are sensible default relationships.

The type (or signature in the case of a method) of the FC version can
always be the same as that of the PC version, because all EC versions
already conform to it. Therefore, we choose this as the most natural default
type for the FC version. If all EC versions have the same type, that type is
likewise trivially possible also for the FC version. In general, the FC version
can have any type that conforms to the type in PC and to which the types
in all ECs conform. In particular, if the feature has retained its original type
in any EC, it cannot be changed in the FC either.

The possibilities for the implementation of the FC version are slightly
more complicated. While the implementation of a method is a body, here
we consider the implementation of an attribute to be simply the fact of being



REVERSE INHERITANCE IN EIFFEL 13

FIGURE

+location: GEN_POINT

+draw()

CIRCLE

+radius: REAL

+location: POINT

+draw()

RECTANGLE

+height: REAL

+width: REAL

+location: POINT

+display()

MOVABLE_CIRCLE

+move(to:POINT)

MOVABLE_RECTANGLE

+move(p:POINT)

<<foster>>

MOVABLE_FIGURE

+location: POINT

+move(to:POINT)

Fig. 5: Class diagram for Figure 4

an attribute (in contrast to deferred or a parameterless method), and the
implementation of a deferred (abstract) feature to be empty.

The implementation in the FC can be the same as in the PC, except if it
is a method body and the signature is redefined; then the body must also
be redefined, as required in standard Eiffel. If the feature is an attribute in
the PC, it must be an attribute also in all ECs and in the FC, again by the
rules of standard Eiffel. Otherwise, it can be an attribute in the FC only
if it is so also in all ECs, but it can always be an effective (implemented)
method or deferred. However, exheriting the body of a method from an EC
is usually impossible, as explained in Section 4. — All in all, it is most
natural that also the default implementation for the FC version is inherited
from the PC.

If an amphibious feature is effective in the PC and redefined (i.e., reim-
plemented) in the FC, a redefine clause is required in the inheritance by
standard Eiffel rules. For consistency, we require the clause likewise if the
feature is moved from an EC.

In Figure 4, the attribute location of the PC (FIGURE ) has retained
its name in the ECs, although its type has been redefined. Therefore, it
will by default retain that name also in the FC. The name of the inherited
method draw has been changed to display in MOVABLE RECTANGLE,
and therefore we require it to be explicitly renamed in the exheritance.
This is consistent with standard Eiffel and makes things clear, although
the correspondence between EC and FC features would, in this case, be
unambiguous even without explicit renaming.

In other situations, renaming in Eiffel can cause an inherited feature to
be replicated; this happens with repeated inheritance. For instance, if a
common heir of CIRCLE and RECTANGLE is defined without renaming,
it will have the two distinct methods draw and display.



14 MARKKU SAKKINEN, PHILIPPE LAHIRE, CIPRIAN-BOGDAN CHIRILĂ

Eiffel allows also the inverse of the previous situation, namely that two
features from the same parent class are unified into one feature in an heir
class. Likewise, two features from different parents can be unified in multiple
inheritance. We will not discuss these complications in this paper.

7. Conclusion and Perspectives

This paper proceeded from previous proposals to introduce a generaliza-
tion relationship, reverse inheritance (RI), to object-oriented programming,
in particular to the Eiffel language. Its main goal is to improve the non-
destructive reuse of classes by adding new abstraction levels in the middle
or on top of a class hierarchy, whereas ordinary inheritance (OI) is devoted
to extending the hierarchy at the bottom.

Reverse inheritance is an almost exact inverse of ordinary inheritance. In
the design of this new relationship we gave particular attention to its or-
thogonal integration with all other language constructs, and we also strove
to keep the traditional language flavour and code readability of Eiffel. We
gave preference to robustness and simplicity over expressiveness of the adap-
tation mechanism. In our work, we have covered virtually the whole Eiffel
language. Unfortunately, the paper length limitation forced us to omit here
even some very interesting aspects, such as pre- and postconditions and
genericity. We intend to cover those issues in forthcoming papers.

We think that RI can have several useful application possibilities besides
those already mentioned in Section 1. One example is interface inheritance,
which is often recommended in theoretical papers, but not offered by any
well-known language. In our approach, it can be achieved simply by exher-
iting all public features of a class as abstract (deferred). Another example
is bridging the gap between subobject-oriented (as in C++) and attribute-

oriented (as in Eiffel) multiple inheritance: any set of attributes of a class
can be made into a subobject by exheriting them into the same foster class.

Introducing and using RI in an object-oriented language can also have
negative effects. One is that it may decrease the readability of code: with OI

you don’t know the descendants of a class, and with RI you don’t know even

all its ancestors, as Peter Grogono remarked at the ECOOP 2002 Inheritance
Workshop (Black et al. [2002]). Also, the set of features that a parent class
inherits in RI is not as straightforward as the set of features that a child class
inherits in OI (see Section 3). Fortunately, such problems can be handled
quite well by modern programming environments.

Some people who have commented on our work have claimed that reverse
inheritance makes separate compilation impossible. That could indeed be a
drawback in adding RI to some other languages, but in Eiffel the separate
compilation of classes is not generally possible anyway.

Another negative effect is that RI makes a language larger and more com-
plex. That disadvantage can be minimised if a language is originally de-
signed with RI, or at least RI is designed to be as completely as possible a



REVERSE INHERITANCE IN EIFFEL 15

mirror image of OI. Because this paper proposes an extension to an existing
language, we have striven to achieve the latter goal (see Section 3).

In the design of RI it did not appear convenient to keep the syntax so
similar to that for OI as we had originally done. We could also not maintain
complete symmetry between OI and RI. That was because RI clearly requires
stronger adaptations between parents (superclasses) and heirs (subclasses)
than are offered for OI in Eiffel or other well-known languages.

Eiffel was a good target for introducing RI, but we intend to look also on
other languages and propose adapted solutions for reverse inheritance. That
should be rather simple but nevertheless interesting for single-inheritance
languages such as C# or Java. It would be very interesting for C++, but
probably too difficult because the language is already very complicated,
especially its mechanisms of multiple inheritance. A large part of the ad-
vantages of RI concern typing, and therefore it would be far less useful for
dynamically typed languages such as Smalltalk and CLOS.

Acknowledgments

We gratefully acknowledge Pierre Crescenzo and K. Chandra Sekharaiah
for their comments and feedback on previous versions of the paper, and
the anonymous reviewers of earlier versions for their useful observations.
A significant part of the work by the authors Sakkinen and Chirilă was
performed during their visits at the I3S Laboratory.

The implementation of RI-Eiffel by transformation to standard Eiffel is
based on an approach of Günter Kniesel and his valuable cooperation.
Mathieu Acher and Jean Ledesma significantly contributed to it.

References

Black, Andrew P., Ernst, Erik, Grogono, Peter, and Sakkinen, Markku, Edi-

tors. 2002. Proceedings of the Inheritance Workshop at ECOOP 2002, Number 12 in
Publications of Information Technology Research Institute. University of Jyväskylä.

Chirilă, Ciprian-Bogdan, Crescenzo, Pierre, and Lahire, Philippe. 2004. A Re-
verse Inheritance Relationship for Improving Reusability and Evolution: The Point
of View of Feature Factorization. Laboratoire I3S, Sophia-Antipolis, France, 9–14.

ECMA International. 2006. Standard ECMA-367 Eiffel: Analysis, Design and Pro-
gramming Language. http://www.ecma-international.org.

Lahire, Philippe et al., Editors. 2004. Proceedings of The 3rd International Workshop
on MechAnims for SPEcialization, Generalization and Inheritance – MASPEGHI’04.
Laboratoire I3S, Sophia-Antipolis, France.

Lawson, Ted, Hollinshead, Christine, and Qutaishat, Munib. 1994. The Potential
for Reverse Type Inheritance in Eiffel. In Technology of Object-Oriented Languages
and Systems (TOOLS Europe’94), 349–357.

Meyer, Bertrand. 1992. Eiffel: The Language. Prentice Hall.
Meyer, Bertrand. 2006. Eiffel: The Language.

http://se.inf.ethz.ch/ meyer/ongoing/etl/LANGUAGE.pdf.
Pedersen, C. H. 1989. Extending ordinary inheritance schemes to include generalization.

In Conference Proceedings on Object-Oriented Programming Systems, Languages
and Applications. ACM Press, 407–417.



16 MARKKU SAKKINEN, PHILIPPE LAHIRE, CIPRIAN-BOGDAN CHIRILĂ

Qutaishat, M.A., Fiddian, N.J., and Gray, W.A. 1997. Extending OMT to support
bottom-up design modelling in a heterogeneous distrubuted database environment.
Data & Knowledge Engineering 22, 191–205.

Sakkinen, Markku. 2002. Exheritance — Class Generalization Revived. Number 12 in
Publications of Information Technology Research Institute. University of Jyväskylä,
76–81.

Schrefl, Michael and Neuhold, Erich J. 1988. Object Class Definition by Gen-
eralization Using Upward Inheritance. In Proceedings of the Fourth International
Conference on Data Engineering, February 1-5, 1988, Los Angeles, California, USA.
IEEE Computer Society, 4–13.


