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Bumpless transfer for discrete-time switched systems

I. M ALLOCI , L. HETEL, J. DAAFOUZ, Member, IEEE, C. IUNG, Member, IEEE, and R. BONIDAL

Abstract— A bumpless transfer method for discrete-time
switched linear systems is presented. It is based on an additional
controller which is activated at the switching time for reducing
the control discontinuities. Dwell time conditions to guarantee
the stability of the closed-loop system are provided. Simulation
tests on the Eisenhüttenstadt hot strip mill of ArcelorMittal are
shown.

I. INTRODUCTION

In practical control problems, several linear controllersare
often used to control the same non-linear plant, one for each
operating point. This strategy avoids the non-linear control
design, certainly more complicated. Nevertheless, switching
among more controllers implies control discontinuities and
undesired transient behaviors. Moreover, industrial systems
are often characterized by saturations due to the actuators
limits and do not accept these discontinuities. Consequently,
the dynamics performance can be largely modified and the
stability may not be guaranteed anymore. Slope saturations
of the control signal are well-known for their destabilizing
effect. The solution of this problem is called bumpless
transfer.

A description of most popular strategies for the bumpless
transfer problem can been found in [8], [9], [10] and [13].
One of the first bumpless transfer schemes is proposed by
[11] for non-linear plants. The idea consists in pre-setting
the off-line controller state in order to reduce the transient
behavior at the switching time. In [18] and [19], results
of [11] are generalized for controllers which are not bi-
proper and have a minimum phase. A linear quadratic (LQ)
optimization method is introduced to minimize the distance
between the on-line and the off-line controller output. In [5],
the discontinuity of the controller output is reduced resetting
the fast dynamics of the controller at the switching time. In
[21], the desired transient behavior is obtained using theL2

anti-windup structure [17].
Although the bumpless transfer problem has been widely

studied in literature, only few articles address the switched
systems framework. In [1], a bumpless transfer solution for
continuous-time switched systems where the order of the
controller is smaller than the order of the plant is given. The
idea consists in forcing the output of the activated controller
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to be equal to the plant input at the switching time. An
analogous strategy is proposed in [7] for continuous-time
LPV systems. However, as pointed out in [20] and [21], a
constraint on the controller output does not guarantee better
performances of the plant output.

In this article, a bumpless transfer control design for
discrete-time switched systems is presented. We propose an
additional controller which is activated at each switching
time. The controller and the plant output are forced to follow
a desired profile for a given period of time. This minimizes
the control discontinuity guaranteeing the plant output per-
formances. The solution is based on the LQ optimization
theory, that has been introduced on the bumpless transfer
framework by [19]. Stability of the closed-loop system is
guaranteed by LMI conditions [2] using multiple Lyapunov
functions [3] and the dwell time approach [15].

The article is organized as follows. In the next section,
the problem is formulated. In section III, the optimization
criterion to design the bumpless transfer controller (BT
controller) is detailed. In section IV, stability conditions
for the closed-loop system are investigated. In section V,
simulation results of the Eisenhüttenstadt hot strip mill
(Germany) are presented. Finally, a conclusion is given.

II. PROBLEM FORMULATION

Consider the discrete-time switched system
{

xk+1 = Aσ(k)xk + Bσ(k)uk

yk = Cσ(k)xk

(1)

wherex ∈ R
n is the state,u ∈ R

r is the control signal,
y ∈ R

m is the output signal andσ(k) : N → Γ = {1, ..., N}
is the switching signal, which is assumed to be unknown a
priori but available in real time. The minimal interval of
time between two switchingsDj is assumed to be known.
Moreover, the pair(Aj , Bj) is supposed to be controllable
and the pair(Aj , Cj) observable,∀ j ∈ Γ. Furthermore, the
statex is supposed to be available for feedback and the plant
matrices (1) are assumed to be well-known. A state-feedback
control law

uk = Kσ(k)xk (2)

which stabilizes the closed-loop system (1)-(2) is given.
In order to reduce the amplitude of the control signal
discontinuities, different strategies are possible. Here, a BT
controller which is activated at the switching time for the
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period of timeτM
j < Dj is proposed, that is:

uk =

{

Kjxk + ubt
k if τj ≤ τM

j

Kjxk if τj > τM
j

(3)

whereubt ∈ R
r is the BT controller output andτj ∈ Ξ =

{1, ..., τM
j } the number of times between the present timek

and the last switching. For each modej ∈ Γ, the closed-loop
system (Fig. 1) can be written as

{

xk+1 = (Aj + BjKj)xk + Bju
bt
k

yk = Cjxk.
(4)

ũk

ũk

xk

xk

ubt
k

ubt
k

uk

uk

yk

Q1
k

Q2
k

K1

K2

C1

C2

plant1

plant2

enable1

enable2

supervisor

Fig. 1. Closed-loop system withΓ = {1, 2}

The BT controllerQj is designed in the next section. The
signal uk − ũ

j
k is minimized using a LQ criterion, where

ũj represents the desired profile of the control signal. For
simplicity reasons, a straight line is chosen as desired profile.
Let tj be the switching time from the subsystemi to the
subsystemj, ∀ (i, j) ∈ Γ × Γ. We can define

ũj
τj

= ũ0
j + pjτj (5)

where
ũ0

j = Kixtj−1 (6)

is the control signal value at the time before the switching
andpj determines the slope of the desired profile, i. e.

pj =
1

τM
j

(Kjxtj
− Kixtj−1). (7)

We obtain a value ofp which depends on the control signal
discontinuity (Fig. 2). In order to guarantee the performances
of the plant outputy, also the difference betweeny and the
desired plant output̃y is minimized.

III. BUMPLESS TRANSFER CONTROLLER
DESIGN

In this section, the method to design the BT controller
is presented. In order to follow the desired profilesũ and
ỹ, the problem is formulated as a classical LQ optimization
problem. In the bumpless transfer framework, this solution

u

ktj tj + τM
j

Kixtj−1

Kjxtj

pj

Fig. 2. u evolution with BT controller switched on (thick line) and switched
off (thin line)

has been proposed by [19], where the difference between
the on-line and the off-line controller output is minimized
before each switching. Moreover, the difference between
the on-line and the off-line controller input is minimized.
This strategy initializes the controller state and then reduces
the transient behavior on the plant output. Since the anti-
bumpless action consists in pre-setting the state of the off-
line controller before the switching, the method does not
address control systems without memory, such as state-
feedback control laws. Another problem concerns the sta-
bility of the closed-loop system, which is not guaranteed
when arbitrary switchings occur. To solve these problems, for
discrete-time switched systems we propose a BT controller
which is activated at each switching time. Stability conditions
for the closed-loop system are given in the next section. For
each modej ∈ Γ, the design of the BT controller is based
on the minimization of the following quadratic cost function:

Jj = φ
j

T
j

f

+
1

2

T
j

f
−1
∑

k=0

[zu′

k Wu
j zu

k + z
y′

k W
y
j z

y
k ], (8)

with
zu
k = uk − ũ

j
k (9)

z
y
k = yk − ỹ

j
k (10)

φ
j

T
j

f

=
1

2
zu′

T
j

f

P jzu

T
j

f

(11)

whereWu
j andW

y
j are positive definite weighting matrices

of appropriated dimensions.T j
f = τM

j + 1 is the terminal
time andP j is a positive semi-definite terminal weighting
matrix. For simplicity reasons, we considerỹj = 0. The next
theorem shows how to compute the signalubt. The proof,
which is based on the Pontryagin’s minimum principle [4],
is similar to the one given in [19].

Theorem 1: Given the system (4), the quadratic cost func-
tion (8) and the terminal timeT j

f , the BT controller which
minimizes the signalszu andzy is given by

ubt
k = Q

j
k





xk

ũ
j
k

g
j
k+1



 (12)
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with

Q
j
k =







(Ñ j
k+1Π

j
k+1Aj − Kj)

′

(I + Ñ
j
k+1Π

j
k+1Bj)

′

−Ñ
j′

k+1







′

(13)

and
Ñ

j
k+1 = −(Wu

j )−1B′
j(I − Πj

k+1B̃j)
−1,

∀ j ∈ Γ. The values ofΠj andgj are given by the equations

Πj
k = A′

j(I − Πj
k+1B̃j)

−1Πj
k+1Aj + C̃j (14)

and

g
j
k = A′

j(I − Πj
k+1B̃j)

−1(gj
k+1 − Πj

k+1Bj ũ
j
k) (15)

with
B̃j = −Bj(W

u
j )−1B′

j

C̃j = C
′

jW
y
j Cj .

The bound condition is

Πj

T
j

f

= 0

g
j

T
j

f

= 0.
(16)

Remark 1: In the finite horizon approach, the knowledge
of all the future values of̃u is required in order to solve
(15) backward in time. Then, in general this method cannot
be applied to solve practical problems, as discussed in [19].
Nevertheless, from (5), in our case all the values ofũ can
be computed in the finite horizonΞ. Only the knowledge
of xtj−1 and xtj

is needed. Since these informations are
available at each switching time, the method can always be
used.

IV. STABILITY ANALYSIS

In the previous sections, we assumed that the BT controller
is switched on forτM

j times. As the original controller (2)
has been designed without taking into account this fact, the
stability is not guaranteed anymore. Then, in this section,a
stability condition for the closed-loop system (4) is given.
For each modej ∈ Γ, the closed-loop system

xk+1 = (Aj + BjKj)xk + Bju
bt
k (17)

can be written in the equivalent form

vk+1 = Yj(τj)vk (18)

where

vk =









xk

xk−1

ũ0
k

pk









is the augmented state and the signalsũ0 andp are defined in
section II. The representation of a switched system with an
augmented state approach is justified in [12]. We distinguish
two phases on the interval between two switchings:

– The bumpless transfer phase: the BT controller is on.
We find

Yj(τj)|τj=1 =











H̄
j
τj+1 L̄

j
τj+1 0 0

I 0 0 0
0 Ki 0 0

Kj

τM
j

− Ki

τM
j

0 0











and

Yj(τj)|2≤τj≤τM
j

=









Ā
j
τj+1 0 Ū

j
τj+1 P̄

j
τj+1

I 0 0 0
0 0 I 0
0 0 0 I









.

In this case, the stability of (18) is not guaranteed. The
construction ofYj is detailed in the appendix I.

– The recuperation phase: the BT controller is off. We
have

Yj(τj)|τj>τM
j

= Y s
j =















Aj + BjKj 0 · · · 0
I 0 · · · 0
0 · · · 0
...

...
0 · · · 0.















,

whereY s
j is Schur and constant∀ j ∈ Γ.

Given the minimal interval of time between two switchings
Dj , the value ofτM

j can always be reduced in order to
make the system (18) stable. Let define the transition matrix
between two switching times

Zj(Dj , τ
M
j ) =

τM
j
∏

τj=1

Yj(τj)|τj≤τM
j

Y s
j

(Dj−τM
j −1)

. (19)

The following theorem checks the closed-loop system
stability.

Theorem 2: Given Dj , if there exist positive definite ma-
tricesPYj

= P ′
Yj

, PZj
= P ′

Zj
of appropriate dimensions and

scalarsτM
j such that the LMIs

Y s′

j PYj
Y s

j − PYj
≺ 0 (20)

Z ′
jPZj

Zj − PZj
≺ 0 (21)

Z ′
jPYj

Zj − PZj
≺ 0 (22)

Y s′

j PZi
Y s

j − PYj
≺ 0 (23)

are verified∀ (i, j) ∈ Γ × Γ, then the closed-loop system
(18) is asymptotically stable.

We give an idea of the proof. In the case of arbitrary
switching law, a necessary condition for the asymptotic
stability of the closed-loop system (18) is that each
subsystem is stable. Since for assumptionY s is Schur, from
(19) there exists a value ofτM

j such that also the subsystem
Zj is Schur,∀ j ∈ Γ. In Fig. 3, the system evolution is
shown forΓ = {1, 2}. For the closed-loop system stability,
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1
Z

2
Z
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Y

1

s
Y

2

Fig. 3. System evolution

TABLE I

BT CONTROLLER DATA

H
H

H
H

j
2 3 4

Dj 64 38 30

τM
j 30 15 6

W u
j I 100I 10I

W
y
j I I I

we also must check that switching among the subsystems
leads to a stable behavior. This is the meaning of the LMIs
(22) and (23). Thus, the conditions of Theorem 2 guarantee
a decreasing trajectory after switching. This is equivalent to
say that the closed-loop system (18) is stable [16].

V. SIMULATION RESULTS

In this section, the strategy proposed in the previous
sections is applied to the Eisenhüttenstadt hot strip mill
(HSM) of ArcelorMittal. The rolling process consists in
crushing a metal strip between two rolls in inverse rotation
for obtaining a strip with constant and desired thickness. A
HSM is the association of several stands in a line, where each
stand is constituted by a set of rolls. The lateral movement
of the strip, with reference to the mill axis, may induce
a decrease of the product quality and rolls damage. Then,
in order to improve the reliability and the process quality,
this displacement must be reduced [6]. At the end of the
treatment, the strip leaves the stands one after the others.
Each time the strip leaves a stand, the system dynamics
changes. The HSM is modeled as a switched system with
four subsystems and three switchings [14]. For each subsys-
tem j ∈ Γ, a different discrete-time state-feedback control
gain Kj has been designed. Given the weighting matrices
Wu, W y and the minimal dwell timeDj for a product of
the HSM database, the choice of theτM

j values summarized
in Table I allow to find a solution for the LMI conditions
of Theorem 2. This guarantees the stability of the closed-
loop system.I denotes an identity matrix of appropriate
dimension. Since the system never switches back to the first

1285 1290 1295 1300 1305 1310 1315

−0.4
−0.2

0
0.2

stand 3

k

u 

1350 1355 1360 1365 1370
−0.1

−0.05

0

stand 4

k

u 

1390 1395 1400 1405 1410 1415 1420
−0.02

0

0.02
stand 5

k

u 

Fig. 4. u

1280 1300 1320 1340 1360 1380 1400 1420

−10
0

10
20

stand 3

k

y 
(m

m
)

1280 1300 1320 1340 1360 1380 1400 1420
−20

0

20

stand 4

k

y 
(m

m
)

1280 1300 1320 1340 1360 1380 1400 1420

−40
−20

0
20

stand 5

k

y 
(m

m
)

Fig. 5. y

subsystem, no BT controller is designed forj = 1.
The signalubt is computed applying Theorem 1. Equations

(13) and (14) can be solved off-line. At the opposite, to
compute the equation (15) we need to know thextj−1 value,
wheretj is the switching time to the subsystemj. Then, it
can be computed only on-line, at the switching time. Since
the output signaly corresponds to the displacement that has
to be minimized, we choosẽy = 0. Each stand is controlled
by a different control signal. For the simulated product,
switchings occur at the instantsk = 1290, k = 1354 and
k = 1392. In Fig. 4 it is shown the controller outputu for
the last three stands. For each stand, we propose a zoom of
the zone corresponding to the biggest bumps onu. The bold
line shows theu evolution without BT control whereas the
thinnest line shows theu evolution when the BT controller
is on. The evolution of the strip displacementy is shown
in Fig. 5. As expected, performances are better when the
BT controller is on (thinnest line). In particular, the strip
displacement in the exit of the system (stand 5 in Fig. 5) is
reduced from40 to 8mm.

VI. CONCLUSION

In this article, a bumpless transfer method for discrete-
time switched systems has been proposed. The BT controller
has been designed using a LQ optimization method. The
idea consists in forcing the controller output and the plant
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output to follow a desired profile. This allows to avoid the
control signal discontinuities and to improve the system
performances. A LMI criterion guaranteeing the stability of
the closed-loop system is proposed. Simulation tests on the
Eisenhüttenstadt HSM of ArcelorMittal are provided.

APPENDIX I
CONSTRUCTION OFYj

Consider the switching from the subsystemi to the sub-
systemj. From Theorem 1, when the BT controller is on

ubt
k = Qj

τj





xk

ũj
τj

g
j
τj+1



 (24)

where
ũj

τj
= ũ0

j + pjτj (25)

with
ũ0

j = Kixtj−1 (26)

and

pj =
1

τM
j

(Kjxtj
− Kixtj−1). (27)

The evolution of the signalgj in (24) is given by (15),
which can be rewritten as

gj
τj

= Gj,u
τj

ũ0
j + Gj,p

τj
pj (28)

where

Gj,u
τj

= −

τM
j −τj
∑

η=0

(

τM
j +1−η
∏

ζ=τj+1

M
j
ζ

)

Πj
τj+1−ηBj ,

Gj,p
τj

= −

τM
j −τj
∑

η=0

(

τM
j +1−η
∏

ζ=τj+1

M
j
ζ

)

Πj
τj+1−ηBj(τM − η)

and
M j

τj
= A′

j(I − Πj
τj

B̃j)
−1.

The closed form (28) allows to express (15) as a function
of ũ0

j andpj . Then, the system (17) becomes

xk+1 =Ā
j
τj+1xk + (B̄j

τj+1 − BjÑ
j
τj+1G

j,u
τj+1)ũ

0
j+

(τjB̄
j
τj+1 − BjÑ

j
τj+1G

j,p
τj+1)pj

with
Āj

τj
= (I + BjÑ

j
τj

Πj
τj

)Aj

and
B̄j

τj
= Bj(I + Ñ j

τj
Πj

τj
Bj).

When τj = 1, tj = k. Then ũ0
j and pj can be initialized

as function ofxk andxk−1. Using (26) and (27), we find

Yj(τj)|τj=1 =











H̄
j
τj+1 L̄

j
τj+1 0 0

I 0 0 0
0 Ki 0 0

Kj

τM
j

− Ki

τM
j

0 0











with

H̄j
τj

= Āj
τj

+
1

τM
j

(B̄j
τj

− BjÑ
j
τj

Gj,p
τj

)Kj

and

L̄j
τj

= (B̄j
τj
−BjÑ

j
τj

Gj,u
τj

)Ki −
1

τM
j

(B̄j
τj
−BjÑ

j
τj

Gj,p
τj

)Ki.

When2 ≤ τj ≤ τM
j , ũ0

j andpj remains constant. We have

Yj(τj)|2≤τj≤τM
j

=









Ā
j
τj+1 0 Ū

j
τj+1 P̄

j
τj+1

I 0 0 0
0 0 I 0
0 0 0 I









with
Ū j

τj
= B̄j

τj
− BjÑ

j
τj

Gj,u
τj

and
P̄ j

τj
= τjB̄

j
τj

− BjÑ
j
τj

Gj,p
τj

.

When the BT controller is offubt
k = 0, then

Yj(τj)|τj>τM
j

= Y s
j =















Aj + BjKj 0 · · · 0
I 0 · · · 0
0 · · · 0
...

...
0 · · · 0















is constant∀ j ∈ Γ.
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