Axisymmetric formulation for boundary integral equation methods in scalar potential problems
Laurent Krähenbühl, Alain Nicolas

To cite this version:

HAL Id: hal-00414086
https://hal.archives-ouvertes.fr/hal-00414086
Submitted on 8 Sep 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
AXISYMMETRIC FORMULATION FOR BOUNDARY INTEGRAL EQUATION METHODS IN SCALAR POTENTIAL PROBLEMS

by L. KRAHENBUL and A. NICOLAS

Abstract: Axisymmetric geometries often appear in electromagnetic device studies. The authors present an original formulation for Boundary Integral Equation methods in scalar potential problems. This technique requires only 2D boundary in the r-z plane and evaluation of the equations only on those boundaries.

INTRODUCTION

Scalar potential problems are described by Laplace's equation:

$$\nabla^2 \psi = 0$$ (1)

in the general 3D space.

When the geometry is an axisymmetric there are two possibilities:
- use cylindrical coordinates, express equation (1) in this set of coordinates and note that each quantity is invariant in the azimuthal direction

$$\frac{\delta^2 \psi}{\delta r^2} + \frac{1}{r} \frac{\delta \psi}{\delta r} + \frac{1}{r^2} \frac{\delta^2 \psi}{\delta \theta^2} = 0$$ (2)

Boundary Integral Equations have to developed with operator:

$$\frac{\delta^3}{\delta r^2} + \frac{1}{r} \frac{\delta}{\delta r} + \frac{1}{r^2} \frac{\delta\psi}{\delta\theta}$$

This gives complicated expressions.

- the second method we propose to develop is to express the BIE in 3D space and to integrate all the invariant quantities analytically before solving the equations.

AXISYMMETRIC FORMULATION

In a 3D space Laplace equation is transformed into BIE equation:

$$c.\psi = \int_{\partial \Omega} \left(\frac{\partial \psi}{\partial n} v - \frac{\partial v}{\partial n} \psi \right) \cdot ds - \int_{\partial \Omega} H_\psi G_\psi \cdot ds \quad (3)$$

as shown in previous publications [1].

When \(\psi \), \(v \) and \(H_\psi \) are constant along one part of the boundary \(\partial \Omega \), partial integration of functions \(G \) and \(\partial G/\partial n \) along that direction can be made. As an example it can be shown that partial integration of 3D Green's function

$$G = \frac{1}{4\pi r}$$ (4)

over a straight line gives 2D Green's function:

$$G_{2D} = - \frac{1}{2\pi} \log r$$ (5)

In axisymmetric geometry physical quantities have to be integrated on circles.

By this way a 2D Boundary Integral Equation can be generated in the r-z plane, similar to those in x-y plane [6].

$$c.\psi = \int_{\partial \Omega} \left(\frac{\partial \psi}{\partial n} v - \frac{\partial v}{\partial n} \psi \right) \cdot ds - \int_{\partial \Omega} \frac{\partial \psi}{\partial n} \frac{\partial \psi}{\partial n} \cdot ds \quad (6)$$

It can be noticed that \(G_{ax} \) gives the potential of a uniform charge distribution on a circle. Classical development [2] can be applied to obtain function \(G_{ax} \):

$$G_{ax} = \frac{1}{4\pi} \int_{\partial \Omega} \sqrt{r^2 - R^2 \cos^2 \theta} \ d\alpha \quad (7)$$

where:

- \(K \): complete elliptic integral of the first kind
- \(\rho \), \(R \), \(D \): as shown on Fig. 1

Function \(G'_{ax} \) is obtained by a similar development:

$$G'_{ax} = \frac{1}{2\pi} \int_{\partial \Omega} \left(\frac{\partial G_{ax}}{\partial n} \right) \cdot ds$$ (9)

$$= - \frac{\cos^2 \theta}{2\pi D} \cdot K(k') + \frac{1}{2\pi D^2} \cdot [D \cdot \cos \phi - 2R \cdot \cos(\phi - \gamma)] \cdot E(k')$$

with

- \(E \): complete elliptic integral of the second kind.
- \(\alpha, \beta, \gamma \): as shown on Fig. 1

The authors are with

Deparment d'Electrotechnique - ERA 918
Ecole Centrale de Lyon - BP 163
69131 Ecully CEDEX - FRANCE
FLUX DENSITY CALCULATION

The induced magnetic field in a point P of the region R:

$$H_i = -\nabla \phi$$

(10)

can be computed directly by integration of ϕ and ϕ on the boundary ∂R:

$$\vec{H}_i = -\int_{\partial R} [\phi \nabla G_m - (\frac{\partial \phi}{\partial n} + H_{on}) \nabla G_m] \cdot d\vec{l}$$

(11)

with

$$\frac{dG_m}{d\rho} = \frac{R}{\pi D} \frac{1}{\rho - \rho - R} \frac{dK}{dk} \frac{dk}{d\rho}$$

(12)

$$\frac{dG_m}{dz} = \frac{R}{\pi D} \frac{1}{z - \rho - R} \frac{dK}{dk} \frac{dk}{dz}$$

(13)

$$\frac{dG_m}{d\rho} = \frac{\cos \sigma}{2 \pi R} \frac{dG_m}{d\rho}$$

(14)

$$\frac{dG_m}{dz} = \frac{\cos \sigma}{2 \pi R} \frac{dG_m}{dz}$$

(15)

$$\frac{dK}{dk} = \frac{1}{k} \left(\frac{E}{1 - \rho} - K \right)$$

(16)

$$\frac{dE}{dk} = \frac{1}{k} \left(E - K \right)$$

(17)

$$\frac{dk}{dz} = -\frac{z \cdot k^2}{4 \pi \cdot R \cdot \rho}$$

(18)

$$\frac{dk}{d\rho} = \frac{k}{2 \pi \cdot R \cdot \rho} - \frac{\rho + \rho}{R \cdot \rho}$$

(19)

It must be noticed that these expressions depend on the same functions K and E as G_m and G_m'. When the point P is on the boundary, a more simple expression can be used:

$$\vec{H}_i = -(e \frac{\partial \phi}{\partial n} + H_{on}) \hat{n} - \frac{\partial \phi}{\partial n} \hat{t}$$

(20)

an equivalent result is obtained in this way. However computing time is less important in this case.

NUMERICAL DEVELOPMENT

Numerical calculation of integrals K and E can be done in several ways:

- numerical integration;
- asymptotic development [3];
- tabulation and interpolation.

As these integrals have to be computed a large number of times, the third solution appears to be the most convenient.

Function E is always regular, but K becomes singular when $r_{pq} = 0$. This singularity is similar to Log(r) singularity, and Gaussian quadrature formulae with weight function Log(t) are well matched for evaluation of the integral (6) of function K.

This development is now applied in PHIAx program, using classical techniques [11, 4].

NUMERICAL RESULT

The analytical solution is known for a ferromagnetic sphere in a constant field [5]. We have chosen this example to test the method.

The sphere is discretised into 4 finite elements of second order (fig. 2). The accuracy of the solution on the boundary is better than 0.4 % on the potential and 1. % on the normal flux density (fig. 3).

![Fig. 2: Finite element discretisation of the sphere.](image)

<table>
<thead>
<tr>
<th>Point</th>
<th>Potential Phiat Analit. value</th>
<th>Flux density Phiat Analit. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.8808</td>
<td>3.8823</td>
</tr>
<tr>
<td>2</td>
<td>3.5859</td>
<td>3.5868</td>
</tr>
<tr>
<td>3</td>
<td>2.7441</td>
<td>2.7452</td>
</tr>
<tr>
<td>4</td>
<td>1.4853</td>
<td>1.4857</td>
</tr>
<tr>
<td>5</td>
<td>1E-04</td>
<td>0.04%</td>
</tr>
</tbody>
</table>

Fig. 3: Solution on the boundary.
The values of potential and flux density for 6 external points are also presented with comparison to analytical values (fig. 4). The points 6 and 7 are very near the boundary and the integration errors increase.

The same integrals give the angular factor "C" ([4]; eq. (6)). So this coefficient becomes a "goodness factor" of the method and allows the definition of a forbidden area around the boundary where potential and magnetic field cannot be computed.

![Potential and Flux Density Table]

<table>
<thead>
<tr>
<th>Point</th>
<th>Potential</th>
<th>Flux</th>
<th>Analit.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phiax progr.</td>
<td>Analit.</td>
<td>value</td>
</tr>
<tr>
<td>3</td>
<td>2.7441</td>
<td>2.9118</td>
<td>2.9118</td>
</tr>
<tr>
<td>6</td>
<td>2.5948</td>
<td>2.6114</td>
<td>2.6114</td>
</tr>
<tr>
<td>7</td>
<td>2.4736</td>
<td>2.4402</td>
<td>2.4402</td>
</tr>
<tr>
<td>8</td>
<td>2.1434</td>
<td>2.1447</td>
<td>2.1447</td>
</tr>
<tr>
<td>9</td>
<td>1.8999</td>
<td>1.8998</td>
<td>1.8998</td>
</tr>
<tr>
<td>10</td>
<td>1.6938</td>
<td>1.6946</td>
<td>1.6946</td>
</tr>
<tr>
<td>11</td>
<td>1.3715</td>
<td>1.3726</td>
<td>1.3726</td>
</tr>
</tbody>
</table>

Fig. 4: Potential and flux density on the straight line γ. X points in the forbidden area.

CONCLUSION

The method we developed and exposed is the complementary to the BIE programs already existing in 2D and 3D. It solves a large set of problems at a low computing cost and needs a very short geometry description time. With PHI2D, PHI3D and now this PHIAX packages it is possible to solve with the BIE method all magnetostatic or electrostatic problems.

REFERENCES

