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Asymptotic near-efficiency of the “Gibbs-energy (GE) and

empirical-variance” estimating functions for fitting Matérn

models – II: Accounting for measurement errors via

“conditional GE mean” ∗

Didier A. Girard

CNRS and Grenoble-Alpes University, Lab. LJK, F-38000, Grenoble, France

Abstract

Consider one realization of a continuous-time Gaussian process Z which belongs to the
Matérn family with known “regularity” index ν > 0. For estimating the autocorrelation-
range and the variance of Z from n observations on a fine grid, we studied in Girard (2016)
the GE-EV method which simply retains the empirical variance (EV) and equates it to a
candidate “Gibbs energy (GE)”, i.e. the quadratic form z

TR−1
z/n where z is the vector of

observations and R is the autocorrelation matrix for z associated with a candidate range.
The present study considers the case where the observation is z plus a Gaussian white noise
whose variance is known. We propose to simply bias-correct EV and to replace GE by
its conditional mean given the observation. We show that the ratio of the large-n mean
squared error of the resulting CGEM-EV estimate of the range-parameter to the one of its
maximum likelihood estimate, and the analog ratio for the variance-parameter, have the
same behavior than in the no-noise case: they both converge, when the grid-step tends to 0,
toward a constant, only function of ν, surprisingly close to 1 provided ν is not too large. We
also obtain, for all ν, convergence to 1 of the analog ratio for the microergodic-parameter.

1 Introduction

We consider time-series of length n obtained by observing, at n equispaced times, a continuous-
time process Z which is Gaussian, has mean zero and an autocorrelation function which belongs
to the Matérn family with “regularity” index ν > 0. See the Introduction of Girard (2016) and
the references therein for comments on this popular family. We just recall, for notational com-
pleteness, that a Matérn processes on R can be specified by its spectral density over (−∞,+∞)
where θ designates the so-called “(inverse) range parameter”:

f∗
ν,b,θ(ω) = τ2 g∗ν,θ(ω), with g∗ν,θ(ω) :=

Cν θ
2ν

(θ2 + ω2)ν+
1
2

where Cν =
Γ
(

ν + 1
2

)

√
πΓ(ν)

. (1.1)

∗The previous version (version 2) considered both the case with measurement errors (also called “nugget-effect”
or simply “noise”) and the no-noise case. The no-noise case is now in Girard (2016) with more detailed proofs and
two additional (w.r.t. version 2) results: a consistency result is proved and the restriction ν ≥ 1/2 is eliminated.
This version 3 is devoted to the case with measurement errors, and also gives the analogs of these two additional
results.
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In this paper τ2 is the variance of Z(t) (it is easily checked that
∫∞

−∞ g∗ν,θ(ω)dω = 1).
As in Girard (2016), we are concerned here with “dense” grid for the observation times

(or “locations”) in the sense that the sampling period δ > 0 is “small” enough. Stein (1999,
Chapter 3) shows that a standard (i.e. fixed δ > 0) large-n asymptotic analysis followed by a
less standard small-δ analysis yields useful theoretical insights. This is precisely the asymptotic
framework we use here.

But, we assume now that there are Gaussian i.i.d. measurement errors, or, equivalently for
the parametric inference point of view we take here, there is a geostatistical “nugget effect”,
with known variance σ2

N. And we assume that ν is known. That is, given known ν > 0, δ > 0
and σN > 0, one observes only a vector of size n which, after scaling by σN, has a distribution
satisfying the model:

y

σN
∼ N(0, b0Rθ0 + In) where b0 =

τ20
σ2
N

(1.2)

with In denoting the identity matrix and Rθ the Toeplitz matrix of coefficients [Rθ]j,k =

Kν,θ(δ|j − k|), j, k = 1, · · · , n, with Kν,θ(t) =
∫∞

−∞ g∗ν,θ(ω)e
iωtdω (see e.g. Stein (1999, Sec-

tion 2.5) for expressions for these autocorrelation functions Kν,θ(·)). We can thus call b0 the true
signal-to-noise ratio (SNR). Notice that one may already expect that the results of our present
study for the particular case b0 ≫ 1 and, say, σ2

N = 1, will approximately coincide with those of
the “no-noise” situation of Girard (2016) (where b0 designated the true variance of Z).

The CGEM-EV method, introduced in the first arXiv version of Girard (2012) and that we
study here, is an extension of GE-EV (which was studied in Girard (2016)) to the case of noisy
observations (or nugget-effect) of known variance, that we consider as a “natural” extension.
Indeed, recalling that, firstly GE-EV reverses the roles played by the variance and the range-
parameter in the well known hybrid method of Zhang and Zimmerman (2007) (where a “rough”
estimate of the range is used) and uses the “rough” empirical variance, it seems natural to merely
correct this naive, yet near-efficient (in the sense stated by Girard, 2016), estimator of τ20 , by its
known bias. Thus we define

τ̂2EV|σN
:=

1

n
yTy − σ2

N and b̂EV|σN
:=

τ̂2EV|σN

σ2
N

. (1.3)

The second ingredient of CGEM-EV consists of replacing the maximization of the likelihood
(ML) w.r.t. θ by the following estimating equation in θ: denoting by Ab,θ the “signal extraction”
matrix (see Section 2)

Ab,θ := bRθ(In + bRθ)
−1

,

find, with b fixed at b̂EV|σN
a root θ of

CGEM(b, θ)− bσ2
N with CGEM(b, θ) :=

1

n
yTAb,θRθ

−1Ab,θy +

(

b

n
tr(In −Ab,θ)

)

σ2
N. (1.4)

Recall that, if the un-noisy discretely sampled process, say z, were observed, the second ingredient
of the GE-EV method (the equation which replaces (1.4)) would consist of finding the matching
between the variance τ2 and n−1zTRθ

−1z, a quantity we call the candidate “Gibbs energy” (GE,
in short) of z. On the other hand, by classic manipulations, one can check that CGEM(b, θ) is
the conditional mean of this GE given y, σN and the candidate (b, θ). Let us now combine a well
known result about the use of likelihood scores in case of incomplete data (e.g. Heyde, Section
7.4.1), and the remark recalled in Girard (2016) that n−1zTRθ

−1z−τ2 is, up to a strictly positive
deterministic factor, the derivative of the log-likelihood of z w.r.t. b. We thus deduce that the
proposal (1.4) is, in fact, (and still up to a (> 0) factor) the likelihood score w.r.t. b (and not θ !)
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when only y is observed. Thus the first heuristic justification in Girard (2016) could be repeated
here, except that the analog of the constrained ML b-estimator function (i.e., in the nototation

of Girard (2016), θ  b̂ML(θ); recall that the heuristic given there, was that adjusting θ so that
this function be matched to a rough estimate b1 for the variance is a useful idea, at least in the
infill framework) is no more explicit, and the score equation may be unsufficiant to define such a
function (note also that the theoretical result of Kaufman and Shaby (2013) only deals with the
no-noise case).

In the following, we denote by θ̂GEV|σN
this range-parameter estimate (in practice, for a

reason suggested at the third paragraph of Section 4, we chose the smallest root in case of
multiple roots).

Note that, b being fixed at b̂EV|σN
, computing CGEM(b, θ) at candidate θ does not require

to apply Rθ
−1 (since, obviously Ab,θRθ

−1Ab,θ = bRθ (In + bRθ)
−1

) and it is thus the condition
number of Rθ + b−1In, not of Rθ (as it was the case for GE-EV), which controls the numerical
stability of the computation. Numerical experiments by Lim et al. (2017) provide a detailed
analysis of this condition-number for the Matérn covariance. Thus, as it was already known from
experiments in kriging or ML computations, numerical instability can be alleviated by adding in
the model an, even small, nugget effect. That is, even for un-noisy observations, it may be useful
(and sometimes mandatory) to use CGEM-EV, instead of GE-EV, with a small a priori fixed
σ2
N (the impact of such a prior value is studied in the last experiment of Girard (2017)). Let

us add that in the latter paper, other comments are given (especially in its Secttion 2.3) about
computational aspects of CGEM-EV as an alternative to ML when σ2

N is known.
In this article, we shall provide an asymptotic justification for CGEM-EV, as compared to

ML, identical to that already obtained for GE-EV in the no-noise case, except we do not give
a precise meaning of the “small-ness” of δ which is sufficient for guaranteeing an asymptotic
consistency of θ̂GEV|σN

. Recall that the “ν not too-far from 1/2” condition is required to obtain
appealing near-efficiency results (more precisely, e.g., 0 < ν ≤ 3 implies a mean-squared-error
inefficiency less than 1.33 in the asymptotic framework we use). In practice, ν > 3 is rarely used,
see e.g. Stein (1999), Gaetan and Guyon (2010)).

We hope that the theoretical justification obtained here can be extended to more compu-
tationally complex settings. Indeed, this approach is clearly not limited to observations on a
one dimensional lattice, and is potentially not limited to regular grids (a weighted version, with
Riemann-sum type coefficients, of the empirical variance may then be useful). Successful exper-
iments with CGEM-EV and its Riemann-sum version, with various simulated two-dimensional
Matérn random fields, are described in Girard (2017). See also the Mathematica Demo (Girard
2014) we produced so that any one can easily assess CGEM-EV for the case ν = 1/2.

The rest of this article is structured exactly as Girard (2016), except that, in addition, the
infill framework is somewhat discussed at the end of Section 4.

2 Further notations and some properties of the spectral

densities for Matérn time-series

Let us recall that, as in Girard (2016), we choose the vocabulary here (i.e. “time” in place of
“space”) since we use in numerous places of the paper the now classical time-series theory. Set-up
(1.2) is equivalent to assuming that only a Gaussian time-series Zδ, defined by Zδ(i) := Z(δi),
perturbed by a Gaussian white noise, independant of Z, is observed at i = 1, 2, · · · , n. From the
well known aliasing formula (e.g. Section 3.6 of Stein (1999)), the spectral density on (−π, π] of
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the observed series is

f δ
ν,b,θ,σN

= σ2
N

(

b gδν,θ +
1

2π

)

with gδν,θ(·) :=
1

δ

∞
∑

k=−∞

g∗ν,θ

( ·+ 2kπ

δ

)

. (2.1)

Recall that, when ν−1/2 is an integer, then gδν,θ coincide with particular ARMA spectral densities
with a constrained vector of parameters.

In order to simplify the statement of the results here (and their proofs), it is convenient to
introduce the following weight function aδb,θ(·) over (−π, π], that we call the candidate filter for
given (b, θ)

aδb,θ(·) := gδν,θ(·)
/ (

gδν,θ(·) + (2πb)−1
)

. (2.2)

Indeed, as is well known from the signal extraction literature, aδb,θ is the frequency response of
the “optimal (if b, θ were the true parameters)” convolution of the perturbed series if it were
observed over Z; see e.g. Section 4.11 of Shumway and Stoffer 2006 for details, and Girard (2012)
also for related well known “best extracting” properties of applying the matrix Ab,θ.

A function which will play an important role in this article (as it was the case in Girard
(2016)) is the derivative of log(gδν,θ(·)) w.r.t. θ; we just recall that it has the following useful
expression:

hδ
ν,θ =

2ν

θ

(

1−
gδν+1,θ

gδν,θ

)

, where hδ
ν,θ := ∂ log(gδν,θ)/∂θ. (2.3)

For any f : [−π, π] → R, s.t.
∫ π

−πw(λ)f(λ)dλ 6= 0, where w(·) > 0 is a weight function (we,

in fact, only use w := [aδb,θ]
2) we define the weighted coefficient of variation of f by

Jw(f) :=























1
∫

w

∫

w

∣

∣

∣

∣

f − 1
∫

w

∫

wf

∣

∣

∣

∣

2























/

(

1
∫

w

∫

wf

)2

=

1∫
w

∫

wf2

(

1∫
w

∫

wf
)2 − 1 . (2.4)

Above and throughout this paper, “
∫

” will denote integrals over [−π, π]. Omitting the indexes
δ and ν, we will also use the notation g0 (resp. h0) for the function gδν,θ (resp. hδ

ν,θ) when θ = θ0.
B (resp. Θ) will denote any compact interval not containing 0 and such that b0 (resp. θ0) is in
the interior of B (resp. Θ) .

We now collect in the following lemmas (whose proof are postponed to an Appendix) small-δ
equivalences which will be used to prove the results of the following Sections; they might be of
interest also for other studies of the Matérn time-series plus white noise model:

Lemma 2.1. For any b > 0, θ > 0, ν > 0 and k ∈ {1, 2}, we have as δ ↓ 0:

∫

(

gδν,θ

aδb,θ

)2

∼
∫

(

gδν,θ
)2 ∼ c1,ν

δθ
,

∫

[aδb,θ]
2

(

gδν+1,θ

gδν,θ

)k

∼
∫

(

gδν+1,θ

gδν,θ

)k

∼ 2π c2,ν
k δθ

where the constants c1,ν , c2,ν are given in Lemma 2.1 of Girard (2016).

Lemma 2.2. For any b > 0, θ > 0, ν > 0, k ∈ {1, 2} and with Cν defined in (1.1), we have as
δ ↓ 0:
∫

[

aδb,θ(λ)
]k
dλ ∼ 2δ

2ν
2ν+1 (2πCνc)

1
2ν+1Γ

(

k − 1

2ν + 1

)

Γ

(

1 +
1

2ν + 1

)

where c = bθ2ν .
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Now from the fact that δ
2ν

2ν+1 dominates δ for any ν > 0, and the expression (2.3) of hδ
ν,θ,

the following corollary is easily obtained (by proving the third stated equivalence before the first
one):

Corollary 2.3. For any b > 0, θ > 0, ν > 0 and k ∈ {1, 2}, we have as δ ↓ 0, for the weight
function w = [aδb,θ]

2:

Jw
(

hδ
ν,θ

)

∼ 1
∫

[aδb,θ]
2

∫

(

gδν+1,θ

gδν,θ

)2

, Jw

(

gδν,θ

[aδb,θ]
2

)

∼
∫

[aδb,θ]
2

∫

(

gδν,θ
)2

and
∫

[aδb,θ]
2
(

hδ
ν,θ

)k ∼
(

2ν

θ

)k ∫

[aδb,θ]
2.

3 Consistency

Of course, at fixed δ, b̂EV|σN
is a consistent estimator of b0 (see also (4.1)). We first state

asymptotic properties of the (normalized) estimating equation CGEM(b, θ) − bσ2
N = 0 and its

partial derivatives, in particular for δ “small”, whose proof only requires classical techniques and
the third equivalence of Corollary 2.3 (see the comments below):

Theorem 3.1. 1) We have the following three convergences in probability, uniform over B×Θ,
as n → ∞ :

σ−2
N CGEM(b, θ)− b

(n−1trAb,θ) b
=

(

yTAb,θ(I −Ab,θ)y

σ2
NtrAb,θ

− 1

)

→ 1
∫ π

−πa
δ
b,θ(λ)

∫ π

−π

[aδb,θ(λ)]
2

(

b0g
δ
ν,θ0

(λ)

bgδν,θ(λ)
− 1

)

dλ =: φ(δ, b, θ, b0, θ0), say,

∂

∂b

(

CGEM(b, θ)

σ2
N

− b

)

→ −1

2π

(

∫ π

−π

[aδb,θ(λ)]
2dλ− 2

∫ π

−π

(

[aδb,θ(λ)]
2 − [aδb,θ(λ)]

3
)

(

b0g0(λ)

bgδν,θ(λ)
− 1

)

dλ

)

,

∂

∂θ

CGEM(b, θ)

σ2
N

→ −b

2π

(

∫ π

−π

[aδb,θ(λ)]
2hδ

ν,θ(λ)dλ+

∫ π

−π

(

2[aδb,θ(λ)]
3 − [aδb,θ(λ)]

2
)

hδ
ν,θ(λ)

(

b0g0(λ)

bgδν,θ(λ)
− 1

)

dλ

)

.

2) When δ ↓ 0, we have

φ(δ, b, θ, b0, θ0) → 2ν(2ν + 1)−1

(

b0θ
2ν
0

bθ2ν
− 1

)

.

3) There exists a strictly positive function δ̄(ν, b0, θ0) such that 0 < δ ≤ δ̄(ν, b0, θ0) implies that
the large-n limit in probability of ∂

∂θCGEM(b, θ) evaluated at (b0, θ0) is stricly negative.

As it was the case for Part 1 of Theorem 3.1 of Girard (2016), the first part here is in fact
not restricted to the Matérn family. Indeed, it only requires regularity conditions on gδν,θ(·), and
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its strict positivity, which are well fulfilled; and the three limits of 1) can directly be obtained,
albeit more tediously than in the no-noise case, from classical large-n theoretical results about
quadratic forms constructed from a product of powers, possibly negative, of Toeplitz matrices
(e.g. Azencott and Dacunha-Castelle (1986)).

The second part of Theorem 3.1 is, on the contrary, a consequence of specific properties of
the Matérn family, and, in fact, it can be proved by the same techniques as those used in Section
3 of Stein (1999). Let us comment this small–δ equivalent associated with the first p-limit of
1). Firstly, by examining the analog previous results in the no-noise case, we see that the first
of these previous results is well a “particular case” of the first limit above by setting aδb,θ to 1,

which is well in agreement with the guess that the no-noise case corresponds to aδb,θ = 1 (notice
that a similar remark can be made for the terms of the Jacobian given in Proof of Part 1 of
Theorem 4.1 of Girard (2016) which are seen as particular case of the second and third limits
above with aδb,θ set to 1). Secondly, always compared to the no-noise case, the small-δ limit of the

p-limit (after normalization) of the equation σ−2
N CGEM(b, θ) = b to be solved in θ, is unchanged

except for a constant factor (in fact this factor could have been eliminated if we had normalized
by (n−1trA2

b,θ)b in place of (n−1trAb,θ)b, but this is unimportant and it seems more natural
to choose trAb,θ since it yields a simple expression for the left-hand term of the first result in
Theorem 3.1 (expression given in parentheses)).

Let us thus recall that, if b is fixed at any value b1, then the unique root θ1 of this small-
δ-large-n equivalent equation will satisfy b1θ

2ν
1 = b0θ

2ν
0 . This indeed gives some support to the

extension to CGEM-EV of the first heuristic for GE-EV in Girard (2016), as is discussed in the
Introduction.

As to the third part of Theorem 3.1, the existence of such a function δ̄(ν, b0, θ0) is of course a
consequence of the third equivalence of Corollary 2.3 and the strict positivity of aδb,θ (consequence

of its definition), since, from the third result of Part 1, the limit in probability of ∂
∂θCGEM(b, θ)

evaluated at (b0, θ0) clearly reduces to −b0σ
2
N(2π)

−1
∫

a20h0 (indeed the second integral vanishes).

Remark 3.2. Since we do not give an explicit form for the upper-bound δ̄(ν, b0, θ0), this is not
a result as strong as the analog Part 3 in Girard (2016). Anyway, we believe that even the result
in the no-noise case could be improved and we conjecture that the “local well-posedness” of the
estimating-equation around θ0 (namely a garantee that this derivative at (b0, θ0) converges in
probability toward a non-zero value, as n → ∞) does not requires that δ be small.

A Cramer-type consistency can now be proved (as detailed in the Appendix) by using Kessler
et al. (2012) (where a survey of general asymptotic results for estimating equations is given, see
their Section 1.10); precisely:

Theorem 3.3. Assume that δ is not greater than δ̄(ν, b0, θ0), then there exists a sequence of

roots θ̂GEV|σN
of the CGEM-EV equation (i.e. (1.4) with b fixed at b̂EV|σN

), as n increases, which
converges in probability to θ0.

4 Mean squared error inefficiencies of CGEM-EV to ML

for the variance, range and microergodic parameters

As is common in classical (in the sense that the sampling period δ is fixed) time-series theory,
the term “asymptotic variance of an estimator”, denoted avar(·), will designate in this paper
the variance of the limiting distribution of

√
n times the error of this estimator; the large-n
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mean squared error (MSE) of this estimator will refer to n−1 times its asymptotic variance. As
noticed in Girard (2016), we could consider a size of ⌊n/δ⌋ for the n-th data set : this would only
multiply all the asymptotic variances by δ and the following near-efficiency statements would be
inchanged (see e.g. Brockwell et al. (2007)).

Consider first a simplified setting: the case where the microergodic parameter c0 = b0θ
2ν
0 is

assumed to be known. (Note that it might be more natural to call “microergodic parameter”
the product τ20 θ

2ν
0 since one may prefer that this parameter does not change with σN; however

since σN is assumed known, choosing between these two definitions will have no impact on the
properties of considered estimators, identical up a known factor).

This assumption of a known c0 is of course restrictive and the following Theorem 4.0 may be
thought of as one of weak practical interest. However it is known that “reasonably accurate”,
even if not fully efficient, estimates of c0 can be computed by less expensive approaches than
ML in numerous contexts, and one could thus condition the model with such a “reasonable”
value of c0 plugged-in. Recall that one of these possibly reasonable approaches is to fix θ at
a prior choice θ1, and to maximize the likelihood only with respect to b: in certain common
settings, this furnishes reasonable estimates of c0 provided the a priori chosen range (i.e. θ−1

1 )
is “fixed at something larger than the true value (θ−1

0 )”, as said in the Section 3.1 of Kaufman
and Shaby (2013) where an empirical study well demonstrates this, in the no-noise case; and it
is expected that this still hold under a noise of known variance, for which case this approach can
be straightfuly extended.

In this simplified setting, one can equivalently focus either on the estimation of b0 by the

nonparametric estimate b̂EV|σN
defined by (1.4), or that of θ0 by

(

c0/b̂EV|σN

)1/(2ν)

. Let us choose

the former since the asymptotic limiting law of b̂EV|σN
has a simple expression (see e.g. Azencott

and Dacunha-Castelle (1986)), for δ fixed :

n1/2
(

b̂EV|σN
− b0

)

D−→ N (0, 4πv1) as n → ∞, where v1 := b20

∫

a−2
0 g20 . (4.1)

Note that the variance v1 used in Girard (2016) does not designate the v1 used above, but this
previous v1 is clearly a “particular case” by substituting 1 for a0(·). In fact, the ratio of the
present v1 to the previous one, decreases to 1 as b0 → ∞, because, at each λ, the filter function
a0(λ) obviously increases toward its limit 1, as b0 → ∞.

Now, by considering the spectral density model f(b, θ) : λ  σN
2
(

bgδν,θ(λ) + (2π)−1
)

with

bθ2ν = c0, as a function of only b, easily establishing that ∂ log(f(c0/θ
2ν ,θ))

∂θ = aδb,θ(h
δ
ν,θ − 2νθ−1)

where b = c0/θ
2ν and using that ∂(c0/b)

1/(2ν)

∂b = (2ν)
−1

(θ/b) where θ = (c0/b)
1/(2ν), the asymp-

totic Fisher information w.r.t. b is deduced and is seen to be > 0 (from the expression (2.3)
of h0 and the fact aδb,θ > 0). Thus, by an application (similar, but easier here, to the way of
establishing (4.3) below) of now classical time-series theory (e.g. Azencott and Dacunha-Castelle

(1986)) one obtains for the ML maximizer over B under bθ2ν = c0, now denoted b̂ML|c0,σN
, as

n → ∞:
n1/2

(

b̂ML|c0,σN
− b0

)

D−→ N
(

0, avar(b̂ML|c0,σN
)
)

,

where

avar(b̂ML|c0,σN
) := 4πb20

(

2νθ−1
0

)2
(
∫

a20
(

h0 − 2νθ−1
0

)2
)−1

. (4.2)

Now by using, in (4.2), the expression (2.3) of h0, and the first and second equivalences of
Lemma 2.1, one obtains:
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Theorem 4.0. The large-n MSE inefficiency of b̂EV|σN
relative to the ML estimator of the SNR

b0, when c0 = b0θ
2ν
0 is known, i.e. I0δ,b0,θ0 := 4πv1/avar(b̂ML|c0,σN

), satisfies (with Cν defined in
(1.1)):

I0δ,b0,θ0 → Cν+1
2

C2ν+1/2C3/2
=

√
π

2

(

Γ (ν + 3/2)

Γ (ν + 1)

)2
/

Γ (2ν + 1)

Γ (2ν + 1/2)
=: ineff(ν) as δ ↓ 0.

It is important to notice that this definition of the constant ineff(ν) coincides with the one
used in Girard (2016) for the no-noise case. In the particular case ν = 1/2, then ineff(1/2) = 1.
(Note there was a typographical error in Girard (2016) in the second expression of ineff(ν):
precisely the big fraction slash was omitted; however Table 4.1 of Girard (2016) which displayed
numerical values of ineff(ν) for certain values of ν is exact.) The Table 4.1 of Girard (2016) is not
repeated here. We only wish to emphasize that the departure from 1 of ineff(ν) as ν increases,
is rather slow.

A second good news it that this inefficiency is not function of the true range θ0 or the SNR
b0. Since it could be expected that these small-δ-large-n-inefficiencies become close to those
obtained in the no-noise case only under b0 ≫ 1, the result that b0 has no impact on ineff(ν)
may be thought as rather surprising. Recall that the asymptotic inefficiencies in Girard (2016)
show the absence of any impact of θ0 in the no-noise case; this was less surprising because this
was already known in the case ν = 1/2 from the efficiency result of Kessler (1997) concerning
the naive empirical variance. Thus Theorem 4.0 is a neat extension of the efficiency result of
Kessler (1997) to the case of measurement noise (after natural bias-correction of this empirical
variance by subtracting σ2

N), and a “near-extension” when ν does not depart too much from 1/2
in the sense that ineff(ν) stays close to 1, whatever b0 may be.

Now let us return to the case b0 and θ0 unknown. Let (b̂ML|σN
, θ̂ML|σN

) be a maximizer of the
likelihood function over B×Θ when σN is known. One can use arguments similar to those used in
Girard (2016) where the asymptotic behavior of the ML estimator was described in the no-noise
case: the derivation of the asymptotic information matrix (see Theorem 4.3 of Chapter XIII of
Azencott and Dacunha-Castelle (1986)) is classic, albeit more tedious; and the final expressions
are relatively simple modifications, by merely adding in appropriate places the weight function
a20, precisely: (b̂ML|σN

, θ̂ML|σN
) is a.s. consistent and satisfies, as n → ∞:

n1/2

([

b̂ML|σN

θ̂ML|σN

]

−
[

b0
θ0

])

D−→ N

([

0
0

]

, 4π

[

σ2
1 σ12

σ12 σ2
2

])

,

with




σ2
1

σ12

σ2
2



 :=

∣

∣

∣

∣

∫

a20h0

∣

∣

∣

∣

−2

Ja2
0
(h0)

−1





b20
∫

a20h
2
0

−b0
∫

a20h0
∫

a20



 . (4.3)

Again note that the components of the vector (σ2
1 , σ12, σ

2
2) used in Girard (2016) and those

of (σ2
1 , σ12, σ

2
2) used above, are asymptotic equivalents as b0 → ∞, because in addition to a0 ≈ 1,

the functional Ja2
0
(·) also becomes close, for large SNR, to the simpler functional J(·) used in

Girard (2016).

Concerning CGEM-EV, we claim:

Theorem 4.1. Assuming δ < δ̄(ν, b0, θ0), let θ̂GEV|σN
be a consistent root of the CGEM-EV

equation (i.e. (1.4) with b fixed at b̂EV|σN
and σ2

N is the true noise variance).
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1) As n → ∞

n1/2
(

θ̂GEV|σN
− θ0

)

D−→ N (0, 4πv2) where v2 =

∣

∣

∣

∣

∫

a20h0

∣

∣

∣

∣

−2

Ja2
0
(g0/a

2
0)

∫

a20 .

2) The large-n MSE inefficiency of CGEM-EV to ML for b0 (resp. for θ0) being defined by
I1δ,b0,θ0 := v1/σ

2
1 (resp. I2δ,b0,θ0 := v2/σ

2
2 = Ja2

0
(g0/a

2
0)Ja2

0
(h0)), these two inefficiencies have the

following common limit (with ineff(·) as in Theorem 4.0):

Iiδ,b0,θ0 → ineff(ν) as δ ↓ 0, for i ∈ {1, 2}.

Proof: Part 1 is proved in the Appendix. The limit of both I1δ,b0,θ0 and I2δ,b0,θ0 is directly
deduced from the equivalences stated in Lemma 2.1 and Corollary 2.3.

Again, as noticed for σ2
2 above, the v2 used in Girard (2016) is the limit value of the v2

defined in Part 1 above as b0 → ∞ for fixed δ.
Thus, as in the case c0 known, the CGEM-EV estimates of b0 and θ0 are asymptotically

nearly efficient provided ν is not too large, asymptotic full-efficiency being reached for ν close to
1/2. Notice it is rather surprising that these small-δ large-n inefficiencies are not function of the
underlying θ0 or of the underlying b0.

The remark claimed in Girard (2016) that the knowledge of c0 does not improve (in terms
of small-δ-large-n MSE) the performance of ML estimation of θ0 or the performance of the
alternative to ML we have introduced, can be also claimed in the present setting of known error
variance (this extension is still also easily checked).

Let us now consider the estimation of the microergodic parameter c0. By the classical delta-
method, one directly infer from (4.3) that the asymptotic variance of ĉML|σN

:= b̂ML|σN
θ̂2νML|σN

is 4πc20
∣

∣

∫

a20h0

∣

∣

−2
Ja2

0
(h0)

−1
∫
∣

∣a0
(

h0 − 2νθ−1
0

)
∣

∣

2
(note that there was a typographical error in

Girard (2016) : “
∣

∣

∣

∫

” must be replaced by “
∫

∣

∣

∣
” for the related variance with a0 ≡ 1 there).

On the other hand, a similar derivation (albeit more tedious than in the no-noise case) can be
done for ĉGEV|σN

starting from the asymptotic covariance matrix (detailed in the Appendix) of

the vector (b̂EV|σN
, θ̂GEV|σN

) and this gives v3 below. Now one can easily deduce (still using the

expression (2.3) of hδ
ν,θ, Lemma 2.1 and Corollary 2.3) that, this time, full-efficiency holds for

any ν > 0, more precisely:

Theorem 4.2. Assuming δ < δ̄(ν, b0, θ0), let ĉGEV|σN
:= b̂EV|σN

θ̂2νGEV|σN
where b̂EV|σN

and

θ̂GEV|σN
are defined as in Theorem 4.1, we have, with c0 = b0θ

2ν
0 :

1) as n → ∞
n1/2

(

ĉGEV|σN
− c0

) D−→ N (0, 4πv3)

where

v3 =
c20

∫ a20 |∫ a20h0|2

(

Jb0,θ0(g0)

∣

∣

∣

∣

∫

a20
(

h0 − 2νθ−1
0

)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫

a20h0

∣

∣

∣

∣

2
)

.

2) The large-n MSE inefficiency of CGEM-EV to ML for c0 is I3δ,b0,θ0 := 4πv3/avar(ĉML|σN
) and

it holds that I3δ,b0,θ0 → 1 as δ ↓ 0; more precisely,

4πv3 ∼ avar(ĉML|σN
) ∼ 2c20

(2π)−1
∫

a20
∼ 2πc20(2πCνc0)

−1
2ν+1

Γ
(

2− 1
2ν+1

)

Γ
(

1 + 1
2ν+1

)δ
−2ν
2ν+1 as δ ↓ 0. (4.4)
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Again, the variance v3 used in Girard (2016) is clearly obtained from the v3 here by sub-
stituting 1 for a0(·). As we remarked for the no-noise case, this full-efficiency of CGEM-EV
concerning c0, even for large ν, may again be thought of as a less surprising result than Part 2
of Theorem 4.1. Indeed this full-efficiency is suggested by the infill-asymptotic efficiency, men-
tionned as a heuristical partial justification in the Introduction, of our “proposed” estimator of
c0/b1, with b fixed at “any” b1 (we use here quotation marks, only for reminding the sobering
fact that the strategy of using an arbitrarily fixed b1 may provide poor estimates in practice, and
thus we do not actually propose it).

Remark 4.3. One can make incidental remarks for the “case” δ = 1/n. For the particular case
ν = 1/2, notice that n−1 times the right-hand expression of this small-δ equivalent (4.4) is iden-
tical, by setting δ := 1/n, to 4

√
2c0

3/2n−1/2, that is, well coincides with the variance, established
in the infill asymptotic framework by Chen et al. (2000), of the normal approximation of the law
of the ML estimator of c0. See also Zhang and Zimmerman (2005) for a detailed rigorous study of
this “reconciliation” between the two asymptotic frameworks. Naturally one can thus conjecture
that a such coincidence still holds beyond the case ν = 1/2, namely, that n−1 times the right-hand
expression of (4.4), with 1/n substituted for δ, furnishes the infill asymptotic variance for both the
ML or the CGEM-EV estimator of c0 for any ν > 0. For instance, this would furnish a variance

of (16/3)c
7/4
0 n−1/4 for ν = 3/2. Notice that this latter variance also coincides with a related vari-

ance for the integrated Brownian motion plus white noise model, which could be deduced form the
Fisher information given by Theorem 2.3 of Kou (2004) (take r = 2, s = 0 using his notation and

use that Γ
(

2− (2ν + 1)
−1
)

Γ
(

1 + (2ν + 1)
−1
)

= (2ν + 1)B
(

r − (2ν + 1)
−1

, s+ (2ν + 1)
−1
)

where B(·, ·) is the Beta function, see e.g. Weisstein (2019)).

Remark 4.4. Since the framework of Zhang and Zimmerman (2005) actually does not imposes
that σN be known, their results compared with (4.4) (where σN is known) show that by estimating
σN (which is often more easy to estimate than c0; see Chen et al. (2000) for the meaning of such
a claim in the infill framework), by the ML principe, one adds no further error, at least in the
small-δ-large-n framework, to the ML estimator of c0. Is is naturally expected that this still holds
beyond the case ν = 1/2. An extension of CGEM-EV to the case σN unknown, is commented in
the following Discussion.

5 Discussion

CGEM-EV is thus a natural extension of GE-EV to the case with measurement errors of known
variance, via bias-correction of the naive empirical variance and replacement of the unobserved
GE function by the conditional GE mean function. We have proved here that identical near-
efficiency results still hold, not only in the particular case b0 ≫ 1 for which such a similarity could
be expected. One may be surprised by the fact that these efficiency results hold for any fixed
SNR b0, even small. However, one must keep in mind that these results deal only with large-n
asymptotics at δ fixed, always followed by a small-δ analysis: one may guess that for b0 too small,
very large n may be required to “see” the stated asymptotic behaviors, and even increasingly
large as δ decreases. Recall also that, even in the no-noise case, when δ decreases to 0, larger
data sizes are required to be able to accurately approximate the actual law of any one of these
estimates of θ0 (or b0) by its asymptotic form (indeed this is well known for ML estimates in the
case ν = 1/2 thoroughly studied by Zhang and Zimmerman 2005)). An asymptotic comparison
of CGEM-EV to ML deserves thus a futur study also in the finite-δ case.
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Concerning the problem of estimating multidimensional stationary Matérn fields observed
on a lattice under i.i.d. noise, as already noticed for GE-EV in Girard (2016) in the no-noise
case, the CGEM-EV approach is directly applicable, in theory, provided θ remains a scalar
parameter, e.g. for isotropic autocorrelations. We refer to Girard (2017) for a rather extensive
empirical comparison of CGEM-EV to ML in the two-dimensional case, with randomized-traces
used instead of the exact traces of (1.4). There, it is noticed, in particular, that difficulties appear
in case of “too small” SNRs and “too smooth” fields (for example ν ≥ 3/2) both for CGEM-EV
and ML. The application of CGEM-EV can be practical for very large lattice sizes, even with

missing data, as soon as computing analogues of
(

In + b̂EV|σN
Rθ

)−1

y for candidate Rθ, can be

done by fast iterative algorithms; indeed each iteration can be fast since applying Rθ to a vector
can reduce to three multidimensional discrete (inverse) Fourier transforms. Thus extensions of
the asymptotic results of this paper to such multidimensional fitting problems clearly deserves a
detailed study. And a comparison of CGEM-EV with the classical (tapered) Whittle-likelihood
maximization for such multidimensional fitting problems should be of interest.

CGEM-EV might be extended to the important case of unknown noise variance, via, at least,
two simple ways which are described and experimented in Girard (2018). One of these two ways
is to add, as a second simple estimating equation, the first derivative of the likelihood w.r.t.
σ2
N for given b and θ equated to zero. Simulations in Girard (2018) demonstrate rather good

performance of these two approaches, which thus warrants further exploration.
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APPENDIX

Let us prove Lemma 2.2 before Lemma 2.1. This can be done by substituting for aδb,θ an
“un-aliased” version defined below. So we first establish the following Lemma which states the
order of the differences between exact and un-aliased versions:

Lemma A.1. For any λ ∈ [−π, π], any (b, θ) ∈ B × Θ, assuming δ bounded, e.g. < 1, there
exists constants c1, c2 > 0, c̄1, c̄2 < ∞ only functions of ν, such that:
1)

c1 δ
2ν ≤ g∗ν,δθ(λ) ≤ gδν,θ(λ) ≤ g∗ν,δθ(λ) + c̄1δ

2ν ,

2)

c2 δ
2ν ≤ a∗b,δθ(λ) ≤ aδb,θ(λ) ≤ a∗b,δθ(λ) + c̄2δ

2ν , where a∗b,· :=
bg∗ν,·

bg∗ν,· + (2π)−1
.

Proof. Part 2 of Lemma A.1 is a direct consequence of its Part 1 (the second and the third
inequalities of Part 2 are immediate consequences after noticing that, for the function w : x  
1/
(

1 + x−1
)

, we have that 0 < x1 < x2 implies 0 < w(x2) − w(x1) < x2 − x1; in the same
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way, the inequality w(2πbc1 δ
2ν) ≤ a∗b,δθ(λ) is a consequence of the first inequality in Part 1; it

suffice then to use δ < 1 in w(2πbc1 δ
2ν) = 2πbc1 δ

2ν/
(

2πbc1 δ
2ν + 1

)

to obtain the lower bound
c2δ

2ν . So let us prove Part 1. The first inequality and the second one are easily checked. Let
us prove the third one. Letting α = δθ, by arguments identitcal to those used in a step of the
proof of Lemma 2.1 in Girard (2016), we can obtain that λ > −π implies that, for any k ≥ 1,
g∗ν,α(λ+2πk) ≤ g∗ν,α(2π(k−1/2)) ≤ (Cν/(2π)

2ν+1)α2ν/(k−1/2)2ν+1; and summing these terms
over k = 1, 2, · · · , thus gives a term O(δ2ν) (notice that O(δ2ν+1) was obtained in the mentioned
step since we considered there g∗ν,θ(·/δ) which can be easily checked to be δg∗ν,α(·)). This is shown
similarly (except we use λ < π) for the sum over k = −1,−2, · · · . Combining these two results
gives the claimed bound for gδν,θ(λ) − g∗ν,α(λ) =

∑

k 6=0 g
∗
ν,α(λ + 2πk).

Proof of Lemma 2.1 Note that the concise expression ck2,ν results from C3/2 = 2πC1/2
2. The

first equivalence of Lemma 2.1 is trivial by develloping
∫

[

gδν,θ/a
δ
b,θ

]2

= b−2
∫

[

bgδν,θ + 1/(2π)
]2

=

∫

[

gδν,θ

]2

+ 1/(πb)
∫

gδν,θ + 1/(2πb)2 and recalling that
∫

gδν,θ = 1. As to the second equivalence,

let us examine the Proof of Lemma 2.1 of Girard (2016). We make here the same change of
variable ω = λ/δ (note a typographical error: the fraction slash was omitted in Girard (2016)).
The integrand is now modified only by the factor aδb,θ(δω). Since this factor is < 1, the fact that
Lebesgue dominated convergence theorem is applicable has not to be re-proved, and:

δ−1

∫ π

−π

(

aδb,θ(λ)
gδν+1,θ(λ)

gδν,θ(λ)

)2

dλ =

∫ π/δ

−π/δ

[

aδb,θ(δω)
]2

(

∑∞
k=−∞ g∗ν+1,θ (ω + 2kπ/δ)

)2

(

∑∞
k=−∞ g∗ν,θ (ω + 2kπ/δ)

)2 dω

→
∫ ∞

−∞

(

g∗ν+1,θ (ω)

g∗ν,θ (ω)

)2

dω,

the limit being a consequence of aδb,θ(δω) → 1 (which can directly be seen from δgδν,θ(δω) −
g∗ν,θ (ω) → 0 as δ → 0, this difference being shown in fact O(δ2ν ) in the Proof of Lemma 2.1 of
Girard (2016)).

Proof of Lemma 2.2. By Lemma A.1, since

∣

∣

∣

∣

[

aδb,θ(λ)
]k

−
[

a∗b,δθ(λ)
]k
∣

∣

∣

∣

< k
∣

∣

∣
aδb,θ(λ)− a∗b,δθ(λ)

∣

∣

∣
=

O(δ2ν) one can replace, with an accuracy which will be sufficient since 2ν > 2ν
2ν+1 , the filter by its

un-aliased version in
∫

[

aδb,θ(λ)
]k

dλ. On the other hand, by the change of variable s = λ/(δθ)
2ν

2ν+1

and an application of the dominated convergence theorem, one can find that

(δθ)−
2ν

2ν+1

∫ 2π

0

[

a∗b,δθ(λ)
]k
dλ →

∫ ∞

0

(1 + (2πCνb)
−1s2ν+1)−kds = (2πCνb)

1
2ν+1

∫ ∞

0

(1 + s2ν+1)−kds.

The claimed equivalents are now obtained from a known expression, for k ∈ {1, 2}, of the latter
classic integral.

Proof of Theorem 3.3. It is convenient to apply Theorem 1.58 of Kessler et al. (2012) which is a
general asymptotic-consistency result for estimating equation. In fact, our Theorem 3.1 exactly
states that the conditions required to apply their Theorem 1.58 are well fulfilled for, in their
notations (except we set here θ := (b, θ)T ), the two-component estimating equation Gn

(

θ
)

:=
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(σ−2
N yTy/n− b− 1, σ−2

N CGEM(b, θ)− b)T . Precisely, in their notations, the required conditions
(i) and (ii) (resp. (iii)) are immediate consequence of Part 1 (resp. Part 3) of Theorem 3.1.

Proof of Part 1 of Theorem 4.1. We shall apply Theorem 1.60 of Kessler et al. (2012) to
the two-component equation Gn

(

θ
)

defined above. It is clear, form the high differientiabily reg-
ularity, already mentioned, of gδν,θ and its strict positivity, that Gn is continuously differentiable

over B × Θ. Denoting by ∂

∂θ
T Gn(b, θ) the Jacobian matrix, letting Mδ,b0,θ0(b, θ) :=





−1 0

−1
2π

(∫

{

[aδb,θ]
2 − 2

(

[aδb,θ]
2 − [aδb,θ]

3
)(

b0g0
bgδ

ν,θ

− 1
)}

)

−b
2π

(∫

{

[aδb,θ]
2 +

(

2[aδb,θ]
3 − [aδb,θ]

2
)(

b0g0
bgδ

ν,θ

− 1
)}

hδ
ν,θ

)



 ,

it is a consequence of Theorem 3.1 that ∂

∂θ
T Gn(b, θ) → Mδ,b0,θ0(b, θ), uniformly over B ×Θ and

Mδ,b0,θ0(b0, θ0) is invertible. Furthermore, n1/2Gn

(

θ0
) D−→ N

([

0
0

]

, 2b20

[

2π
∫

a−2
0 g20 1

1 1
2π

∫

a20

])

can be deduced from classic time-series results (e.g. in Azencott and Dacunha-Castelle (1986))
since the required regularity conditions are well fulfilled (as discussed in Section 3 and in Girard
(2016))). Then Theorem 1.60 of Kessler et al. (2012) is applicable and it gives (after direct, albeit

tedious, algebraic manipulations) that the asymptotic covariance matrix of (b̂EV|σN
, θ̂GEV|σN

) is

4π







b20
∫

a−2
0 g20 b0

1−(
∫
a2
0

∫
a−2
0 g2

0)∫
a2
0h0

b0
1−(

∫
a2
0

∫
a−2
0 g2

0)∫
a2
0h0

∫

a20
(
∫
a2
0

∫
a−2
0 g2

0)−1

|∫ a2
0h0|2






.
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