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Abstract

In this work, we analyze diffusion and viscous flow through the aperture field of
a contact between rough surfaces pressed against each other. The purpose of our
study is to validate the use of synthesized rough surfaces instead of real ones for sur-
faces exhibiting fractal properties. Models for mechanical deformation of asperities
as well as for transport resulting from a pressure gradient or a species concentration
gradient are presented. At the macroscopic scale, viscous and diffusive transports
only depend on transmissivity K and diffusivity D respectively. Both tensors K

and D are intrinsic, which means they can be entirely determined from the aper-
ture field. Two kinds of surfaces obtained from two different machining processes -
lapping and sand-blasting - are considered. The dependence of the global contact
area, distribution of local contact areas, K and D upon the average contact pressure
is compared for real surfaces and their analogue synthesized surfaces. The compar-
ison over a wide range of contact pressures leads to the conclusion that a fractal
representation is a robust representation for the contact mechanics as well as for
transport properties for this class of surfaces. This validates the overall procedure
described in this work.
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1 Introduction

Solid surfaces, whatever the machining process, contain irregularities or devi-
ations from the ideal geometrical form [1]-[2]. Moreover, irregularities occur
at many scales, varying from body dimensions to interatomic distances. No
machining method, however precise, can produce an ideally smooth and flat
surface. Hence, when two surfaces are pressed against each other, contact is
not complete but occurs at very localized spots. Determination of transport
properties of this connected aperture field, i.e. parameters relating the fluid
flux to the driving force, is of great importance in many industrial applica-
tions. Amongst others, we can cite sealing in mechanical industry and more
particularly in the design and safety of nuclear power plants or cryotechnic
rocket engines, where the sealing of some units is performed by direct contact
between metallic surfaces [3].

In this paper, we present a deterministic approach to estimate the transport
properties of a rough contact from initial roughnesses. When surfaces are
pressed against each other, roughnesses deform under the action of the applied
load. As a consequence, transport properties of a rough contact are expected
to strongly depend on the aperture field modified by surface flattening. To
estimate these transport properties, we propose a three step-procedure which
consists in: i) starting from an initial measured or synthetic surface roughness,
ii) computing surface deformations and iii) computing flow through the rough
contact. Here, this procedure is restricted to small scale defaults, which means
that only microroughness is considered, eliminating form errors and waviness
appearing at larger scales. Computations are thus performed on small surfaces,
large enough, however, to be representative of microroughness. These surface
elements are thus considered as the periodic unit cell of an infinite surface.
Moreover, we assume that the two contacting surfaces remain parallel and
that a uniform load is applied so that only normal stresses are considered.

Our analysis is focused on rough surfaces, whose texture exhibits fractal prop-
erties. As shown in many references in the literature [4–8], several machining
processes lead to surfaces having this kind of properties. In particular, Majum-
dar and Bhushan [7] reported that processes producing deterministic texture
do not yield self-affine fractal surfaces, whereas those producing random tex-
ture do. Self-affine surfaces can theoretically be characterized and synthesized
using only two scale-independent parameters extracted from surface topology
and referred to as the fractal dimension Df and scale constant C [4]. Within
this context, the objective of the present work is to validate the use of synthetic
self-affine surfaces as the initial step i) of the above mentioned procedure to
estimate transport properties of the contact. This would avoid using real sur-
faces that require machining and detailed roughness measurement. In fact, the
use of synthetic surfaces represent a major advantage if the aim is to perform
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a parametric analysis of the behavior of self-affine surfaces in a contact in
order to aid to their design. To achieve this validation, a thorough comparison
of contact areas as well as viscous and diffusive transport properties obtained
from the above mentioned computational procedure is performed between two
real surfaces and their analogue synthesized ones. This is performed for an ap-
parent contact pressure ranging from 7 to 600 MPa. The two real surfaces
under consideration are obtained by lapping and sand-blasting respectively.
Lapping is a machining operation that consists in rubbing two surfaces with an
abrasive in between, while sand-blasting consists in projecting at high speeds
a stream of solid particles on the surface.

In section 2 of this paper, we present an approach to determine fractal proper-
ties of isotropic surfaces. This approach is applied to a real lapped surface and
to a real sand-blasted surface. Finally, equivalent self-affine fractal surfaces
are synthesized using a Fourier filtering method [9].

In section 3, we first present an elasto-plastic deformation model which allows
the determination of surface deflections caused by tightening. In a second
step, we describe fluid flow models through a rough contact due to viscous
and diffusive effects. The macroscopic viscous flow model introduces a trans-
missivity tensor K which linearly relates the viscous flow rate per unit width
of the contact to the macroscopic pressure gradient in the fluid. Similarly, the
macroscopic diffusive model introduces a diffusivity tensor D which linearly
relates the diffusive flow rate per unit width of the contact to the macroscopic
species gradient. We show that the two tensors K and D are intrinsic, i.e. they
only depend on the aperture field h.

Section 4 is dedicated to the results. To simplify, although models presented
in section 3 allow the treatment of a contact between two rough surfaces, the
contact between a rough surface pressed against a perfectly rigid and smooth
plane is considered. Results obtained from real surfaces are compared to those
obtained from equivalent synthesized surfaces. This comparison is performed
on the distributions of contact spots on the one hand, and on the transport
properties of the rough contact on the other.

2 Analysis and simulation of isotropic self-affine fractal surfaces

Self-similarity refers to fractal objects that are equally magnified in all di-
rections. However, many objects in nature, like machined surface, are rather
self-affine, which means that they have unequal scaling magnification in dif-
ferent directions [10]. The power spectral density P (ωx, ωy) of an isotropic
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self-affine surface z (x, y) follows a power law behavior given by [9]:

P (ωx, ωy) = lim
Lx,Ly→∞

1

LxLy

∣∣∣∣∣∣∣

Lx∫

0

Ly∫

0

z (x, y) e−i(xωx+yωy)dxdy

∣∣∣∣∣∣∣

2

=
C2Df−4

ω
8−2Df
eq

(1)

where

ωeq =
√

ω2
x + ω2

y (2)

For a surface, Df must verify:

2 ≤ Df ≤ 3 (3)

Equation (1) is equivalent to:

|z̃ (ωx, ωy)| ∝
CDf−2

ω
4−Df
eq

(4)

where z̃ (ωx, ωy) are the Fourier coefficients of z (x, y):

z̃ (ωx, ωy) =

+∞∫

−∞

+∞∫

−∞

z (x, y) e−i(x.ωx+y.ωy)dxdy (5)

From equations (1) or (4), it is clear that a self-affine fractal surface can
be characterized by only two parameters: the fractal dimension Df , which
can be estimated from the slope of log P = f (log ωeq), and a scale factor C
which can be determined from the intercept point on the same graph. The
dimension of C is length. On the one hand, Df is related to the relative power
of the frequency content and is an indicator of the degree of irregularity of
the surface such that the larger Df is, the more irregular the surface. On the
other hand, C is related to the amplitude of all frequencies. This means that
C is connected to roughness amplitude parameters such as Ra, the arithmetic
mean of the absolute values of z, or the root mean square (rms) of z. These two
parameters Df and C are theoretically scale-independent. However, for real
surfaces, it appears that when changing the lateral resolution of the measuring
instrument, a lateral shift is observed in the power function plots, whereas their
slopes remain constant [4]. This indicates that in practice, if Df is unique and
scale-independent, C is not. In the following, we therefore chose to characterize
a self-affine fractal surface by its fractal dimension Df , and for completeness,
the roughness amplitude parameter Ra, which also depends on the size of the
surface, is used instead of C. This choice is motivated by the fact that it is
a more physical parameter, directly accessible from measurement and widely
used for engineering purposes.

In this section, the fractal nature of a lapped surface and of a sand-blasted
surface is investigated. The lapped surface was finished with abrasive particles
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of about 1 µm size while the sand-blasted surface was machined by streams
of microbeads of 70 − 110 µm size. The roughnesses of these surfaces were
measured by white light interferometry on machined parts. Measurement pa-
rameters (surface dimensions, number of points, sampling intervals) are given
in table 1. Surface dimensions Lx, Ly are assumed to be large enough and sam-
pling intervals ∆x = Lx/nx, ∆y = Ly/ny small enough to be representative
of the microroughness. First, fractal properties of these textures are analyzed
and then equivalent self-affine fractal surfaces are synthesized.

Table 1
Surface parameters -

Surface
Dimensions

Lx x Ly

Sampling

nx x ny

Ra Df

lapped

sand-blasted
462 x 607 µm 480 x 736 pts

0.4 µm

1.0 µm

2.50

2.51

In figure 1a, we have represented the power spectral density P of the real
lapped surface versus the equivalent angular frequency ωeq. Whereas some
dispersion is observed, it appears that this surface exhibits fractal properties
for ωeq larger than a cut-off frequency ωmin, i.e. for wavelengths lower than
2π

ωmin

= 20 µm. For ωeq < ωmin, it will be assumed that P is constant (see [11]).
The theoretical profile of P is fitted in the least squares sense, allowing the
identification of Df and ωmin. Similarly, the graph in figure 2a indicates that
the real sand-blasted surface has a fractal trend for all frequencies investigated.
These two surfaces have almost the same fractal dimension Df (see table 1),
but since they have been machined with particles of different sizes, they are
not fractal at the same scales. They also exhibit significant different roughness
amplitudes as indicated by Ra values.

The approach to synthesize a self-affine fractal surface is based on the ”Fourier
filtering method” [9] which enables to generate a correlated random pattern.
This method consists in generating a Gaussian white noise amn (1 ≤ m ≤ nx

and 1 ≤ n ≤ ny) in the physical space. Defining ãkl as the discrete Fourier
transform of amn, Fourier coefficients z̃kl can then be deduced by introducing
a correlation among ãkl such that the modulus of z̃kl follows a power law as
in equation (4). This transformation is given by:

z̃00 = 0 (6)

z̃kl =
ãkl

(ωkl)
4−Df

, ∀k ∈
[
0,

nx

2

]
, ∀l ∈

[
0,

ny

2

]
(7)
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Fig. 1. Power spectral densities (PSD) of a) a real lapped surface and b) its equiv-
alent synthesized surface -

 

Fig. 2. Power spectral densities (PSD) of a) a real sand-blasted surface and b) its
equivalent synthesized surface -

z̃kl =
ãkl

(ωnx−k,l)
4−Df

, ∀k ∈
[
nx

2
+ 1, nx − 1

]

, ∀l ∈
[
1,

ny

2
− 1

]
(8)

where ωkl = 2π

√(
k

Lx

)2
+

(
l

Ly

)2
(in rad/mm), Lx and Ly being the surface

dimensions in two orthogonal x and y directions respectively. Equation (6)
ensures a zero mean of z.
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Since z̃ is a Fourier transform of a real sequence z, the remaining coefficients
z̃kl are deduced as follows:





z̃0,l = conj
(
z̃0,ny−l

)

z̃nx/2,l = conj
(
z̃nx/2,ny−l

) , ∀l ∈
[
ny

2
+ 1, ny − 1

]
(9)





z̃k,0 = conj (z̃nx−k,0)

z̃k,ny/2 = conj
(
z̃nx−k,ny/2

) , ∀k ∈
[
nx

2
+ 1, nx − 1

]
(10)

z̃kl = conj
(
z̃nx−k,ny−l

)
, ∀k ∈

[
nx

2
+ 1, nx − 1

]
, ∀l ∈

[
ny

2
+ 1, ny − 1

]
(11)

z̃kl = conj
(
z̃nx−k,ny−l

)
, ∀k ∈

[
1,

nx

2
− 1

]
, ∀l ∈

[
ny

2
+ 1, ny − 1

]
(12)

where conj(ϕ) is the complex conjugate of ϕ.

The self-affine fractal surface zmn is then obtained by a discrete inverse Fourier
transform of z̃kl:

zmn =
1

nxny

nx−1∑

k=0

ny−1∑

l=0

z̃kle

(
ik 2mπ

nx
+il 2nπ

ny

)

(13)

and rescaled to obtain the desired roughness amplitude parameter Ra:

z̄mn =
Ra

1
nxny

nx∑
m=1

ny∑
n=1

|zmn|
zmn (14)

With this method, self-affine fractal surfaces were synthesized with the same
parameters as those of real surfaces (see table 1). Power spectral densities
of these synthesized surfaces were then computed and are reported in figures
1b and 2b. To synthesize the equivalent lapped surface, the cut-off angular
frequency ωmin was also considered in addition to the two parameters Df and
Ra. Textures of the real and synthesized lapped surfaces are represented in
figure 3, while those of the sand-blasted surfaces are reported in figure 4. It
appears that the textures of the lapped surfaces are more regular than those
of the sand-blasted surfaces. This can be explained simply by the existence of
a cut-off frequency ωmin in the power spectral density of the lapped surface
(see figures 1a and 1b). This cut-off fades away long wavelength roughnesses
leading to a texture smoother than those of the sand-blasted surfaces.
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- Real lapped surface - - Synthesized lapped surface -

Fig. 3. Textures of the lapped surfaces -

- Real sand-blasted surface - - Synthesized sand-blasted surface -

Fig. 4. Textures of the sand-blasted surfaces -

3 Deformation and transport models

3.1 Elasto-plastic deformation model

When two rough surfaces are brought in contact, effective contact only oc-
curs on the top of asperities, which deform under the action of the applied
load. During the past decades, the problem of the contact of rough surfaces
has concentrated significant research efforts and a review of the main theories
developed can be found in [1]. The major difficulty in modeling this problem
lies in the adequate and precise enough description of the complete geometry
of the rough contact, which, if a deterministic approach is chosen, may re-
quire a tremendous amount of data. Historically, stochastic models have been
preferred to reduce computational times. The most widely used model is the
model proposed by Greenwood and Williamson [12]. In this model, estimation
of the true contact area and maximal contact pressure of a rough contact relies
on the assumption that the rough surface is composed of spherical asperities
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having identical radii of curvature and heights following a Gaussian distri-
bution about a mean plane. Many authors improved this model to include
for instance, plastic deformations [13]-[14], anisotropic surfaces [15], asperi-
ties having elliptical paraboloid shapes [16]. However, the adequacy of these
models is questionable since assumptions made on asperities are most of the
time unrealistic and since statistical roughness parameters are not unique but
strongly dependent on the resolution of the measuring instrument. With the
expansion of computer capabilities, deterministic models have been developed.
In that case, computations are directly performed on digitized surfaces, with
no assumption on height distribution. In the present work, we adopted an
elasto-plastic deformation model allowing us to take full account of interac-
tions between all contact points and to predict contact geometry of rough sur-
faces under load. The problem is treated while supposing normal effects only. If
the contact area is small compared to body dimensions and if slopes of asperi-
ties are small everywhere, solids in contact can be considered as semi-infinite.
For the two real surfaces under consideration and with sampling parameters
reported in table 1, the average local slope of asperities is roughly 10◦ with a
standard deviation slightly smaller than 10◦. This remains acceptable for such
an approximation. In that case, deflections of one of the surfaces are linked to
the contact pressures by the relation [17]-[18]:

u (x) =
∫

S

U (x, ξ) pc (ξ) dS (15)

Here, u (x) is the surface deflection at point x (x, y) of the surface, U (x, ξ) is
the deflection at x of the surface due to a unit load at ξ (ξx, ξy) while pc (ξ)
designates the contact pressure at ξ and S the apparent contact surface.

When solids are elastic and homogeneous, the influence coefficient U (x, ξ) can
be expressed by the method of potentials proposed by Boussinesq [19]:

U (x, ξ) =
1 − ν2

πE

1
√

(x − ξx)
2 + (y − ξy)

2
(16)

where E is the Young’s modulus and ν the Poisson’s ratio of the surface under
consideration.

Contact pressures must also verify:

1

S

∫

S

pc (x) dS = Pca (17)

where Pca is the average applied contact pressure.

From equation (15), we can notice that only surfaces have to be discretized.
Computational time is therefore drastically reduced in comparison with clas-
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sical methods like finite element methods, which require the discretization of
the entire volume.

If each rough surface is discretized by (nx, ny) identical cells of dimensions
(∆x, ∆y), the resolution of the elastic deformation problem consist in solving
the following system:

uij =
nx−1∑

k=0

ny−1∑

l=0

Ui−k,j−lp
c
kl, (0 ≤ i ≤ nx, 0 ≤ j ≤ ny) (18a)

1

nxny

nx−1∑

i=0

ny−1∑

j=0

pc
ij = Pca (18b)

uij = δ0 − hij, (i, j) ∈ Ωc (18c)

pc
ij > 0, (i, j) ∈ Ωc (18d)

uij ≥ δ0 − hij, (i, j) /∈ Ωc (18e)

pc
ij = 0, (i, j) /∈ Ωc (18f)

where uij is the surface deflection at node (i, j), pc
ij is the uniform contact

pressure acting on the cell centered at node (i, j), Ui−k,j−l are the influence
coefficients, Ωc is the set of grid nodes that are in contact, δ0 is the rigid body
displacement of the two solids and hij is the aperture at node (i, j) between
undeformed surfaces.

The problem is solved with an iterative scheme based on a conjugate gradient
technique [20]. The numerical cost of the discrete convolution of equation (18a)
is high due to the multi-summation. If a Fourier transform is performed on
this equation, the convolution product is replaced by a multiplication:

ũij = −Ũij p̃
c
ij, (0 ≤ i ≤ nx, 0 ≤ j ≤ ny) (19)

where ã stand for the Fourier transform of a. The use of a fast Fourier trans-
form allows to reduce the number of operation and thus computational times.

The solution also takes into account plastic deformations. The elasto-plastic
model is directly applied to contact pressures. If the local pressure is higher
than a limit pressure, a plastic criterion is applied. In this work, materials are
assumed to follow a pure plastic behavior so that, local pressures are bounded
by the hardness H of the softer material.

3.2 Transport models

3.2.1 Microscopic viscous flow

Assuming the flow to be isothermal, stationary, incompressible and at small
Reynolds number (creeping flow), the viscous flow through the contact, at the
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scale of the roughness, can be described by the Stokes model:

−∇p + µ∇2v = 0 (20a)

∇.v = 0 (20b)

v.n = 0, at the solid wall (20c)

v being the fluid velocity, p the fluid pressure and µ its dynamic viscosity.

If we assume that the aperture field h (x, y) is varying slowly (i.e. that the
slopes α of asperities are small), the momentum equation (20a) can be reduced
to the simpler Reynolds equation [21]. This can be shown by introducing the
dimensionless quantities x∗ = x

l0
, y∗ = y

l0
, z∗ = z

h0 , v∗

x,y = vx,y

u0 and v∗

z = vz

w0 ,
where l0 and h0 are characteristic lengths in (x, y)- and z-directions respec-
tively (see fig. 5), while u0 and w0 are characteristic magnitudes of velocity in
(x, y)- and z-directions respectively. With such scales, the mass conservation
equation (eq. (20b)) can be rewritten as:

∂v∗

x

∂x∗
+

∂v∗

y

∂y∗
+

l0w0

h0u0

∂v∗

z

∂z∗
= 0 (21)

To ensure that the last term has the same order of magnitude as the two first
terms, we assume that:

w0 =
h0

l0
u0 (22)

If we consider that slopes of asperities are small, i.e. h0 << l0, the dimension-
less form of equation (20a) can be reduced to:

−
∂p∗

∂λ∗
+

∂2v∗

λ

∂z∗2
= 0, λ∗ = (x∗, y∗) (23a)

−
∂p∗

∂z∗
≈ 0 (23b)

where we define p∗ as p∗ =
(h0)

2

µl0u0 p in order to keep all terms of the same order

of magnitude in the momemtum equation. Equation (23b) means that p is
z-independent. Thus, the momentum equation (20a) can be reduced to the
2D form (v (vx, vy)):

∇p (x, y) = µ
∂2v

∂z2
(24)

leading to a local Poiseuille flow in the x- and y-directions. If λ and χ are two
orthogonal directions (λ, χ = x, y), integrating this parabolic velocity profile
on a section of height h(x, y) and width dχ yields the viscous flow rate dQvλ
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in the λ-direction. The viscous flow rate dqvλ per unit length dχ is given by:

qvλ =
dQvλ(x, y)

dχ
= −

h3 (x, y)

12µ

∂p (x, y)

∂λ
, (λ, χ) = (x, y) and λ 6= χ (25)

v ,  p

x

y
z

a

h  
0

l  0

Fig. 5. Rough contact -

Equation (25) is known as the Reynolds equation. Integrating the continuity
equation (20b) over z and using the no-slip condition, we show that the viscous
flux qv (qvx, qvy) is a divergence free vector. Under these circumstances, if β
designates the fluid phase and σ the solid phase (i.e. the contact areas) in the
x-y plane (see fig. 6), the viscous flow problem, now reduced from 3D to 2D,
can be expressed as:

qv = −
h3

12µ
∇p in β (26a)

∇.qv = 0 in β (26b)

qv.n = 0 on C βσ (26c)

n being the unit normal vector to the contours C βσ of the contact areas.

S

s

b

C b s

n

Fig. 6. Two-phase medium -

3.2.2 Diffusion at the micro-scale

With the assumptions of a stationary and isothermal mass transfer, the 3D
diffusive process can be described by the classical Fick’s law:

j = −D∇c (27a)
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∇.j = 0 (27b)

∇c.n = 0 at the solid wall (27c)

where j is the diffusive flux, c the species concentration which diffuses through
the contact and D the molecular diffusion coefficient. As for viscous effects,
using dimensionless variables j∗x,y = jx,y

j0

1

, j∗z = jz

j0

2

, where j0
1 and j0

2 are charac-

teristic magnitudes of flux (see fig. 5) in (x, y)- and z-directions respectively,
it can be assumed from equation (27b) that:

j0
2 =

h0

l0
j0
1 (28)

Considering again the hypothesis h0 << l0, the Fick’s law (27a) can be reduced
to:

j∗λ = −
∂c∗

∂λ∗
, λ∗ = (x∗, y∗) (29a)

∂c∗

∂z∗
≈ 0 (29b)

where c∗ is defined by c∗ = D

j0

1
l0

c. Equation (29b) means that c is z-independent.

The diffusive problem is also made two-dimensional and Fick’s law becomes:

j = −D∇c (x, y) (30)

As previously, by integrating equation (30) in a section of height h(x, y) and
width dy (or dx), we obtain the local diffusive flow rate dQdx (or dQdy) and
the equivalent lineic flow rate qdx (or qdy):

qdλ =
dQdλ(x, y)

dχ
= −Dh (x, y)

∂c (x, y)

∂λ
, (λ, χ) = (x, y) and λ 6= χ (31)

Integrating the continuity equation (27b) over z and making use of the bound-
ary condition (27c) shows as for viscous flow that the diffusive flux vector
qd (qdx, qdy) is divergence free.

Finally, the diffusive problem in a two-phase medium (see fig. 6) can be rewrit-
ten as follows:

qd = −Dh (x, y)∇c in β (32a)

∇.qd = 0 in β (32b)

qd.n = 0 on C βσ (32c)

3.2.3 Transport properties of the rough contact

Previous models describe viscous and diffusive flows at the microscale, i.e. at
the scale of asperities. The two problems being similar, they can be rewritten
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in a generic form:

q = −k∇ω in β (33a)

∇.q = 0 in β (33b)

n.k∇ω = 0 on C βσ (33c)

with k = h3

12µ
and ω = p for viscous flow and k = Dh (x, y) and ω = c

for diffusion. We now need to relate the macroscopic flow rate per width
unit, at the scale of surface element under consideration in this work, to the
macroscopic driving force (i.e. the macroscopic pressure gradient or species
gradient). To do so, we can employ a formalism identical to volume averaging
[22]. This is performed by averaging equations (33) over S (see fig. 6) making
use of two averaging operators defined as:

〈ϕ〉 =
1

S

∫

Sβ

ϕdS =
1

Sβ + Sc

∫

Sβ

ϕdS (34a)

and

〈ϕ〉β =
1

Sβ

∫

Sβ

ϕdS (34b)

along with the averaging theorem:

〈∇ϕ〉 = ∇〈ϕ〉 +
1

S

∫

Cβσ

nϕdS (34c)

Without providing details (see [22] for the method and [23]-[24] for develop-
ments on similar problems), the generic macroscopic equation takes the form:

〈q〉 = −H.∇〈ω〉β (35)

In equation (35), the tensor H is given by:

H = 〈k (I + ∇b)〉 (36)

where b is the solution of the closure problem that is written as:

∇. (k∇b) = −∇k̃ in β (37a)

−n.∇b = n on Cβσ (37b)

〈b〉 = 0 (37c)

b (x + ri) = b (x) (37d)

with k̃ = k − 〈k〉 and ri the surface element dimension in the ith direction.
This surface element is supposed to be representative of a periodic infinite
structure.
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The transmissivity tensor K (viscous flow) allows to express the lineic flow
rate at the scale of the surface element as:

〈qv〉 = −
K

µ
.∇〈p〉β (38)

where K = H with k = h3

12
in (36); K has the dimension of length to the cube.

In the same way, the effective diffusivity tensor D leads to the expression of
the lineic flow rate by diffusion at the scale of the element of surface as:

〈qd〉 = −DD.∇〈c〉β (39)

where D = H with k = h in (36). Note that D has the dimension of length.

As can be seen from the definition of K and D and from equations (37), these
two tensors are intrinsic, i.e. they depend only on the structure of the aperture
field h (x, y) and on the contact areas.

Equations (37) were derived while considering a continuous aperture field.
However, if roughness is measured on a set of nx x ny points so that the surface
is represented by nx x ny cells, each of them having a constant aperture hi,
the discrete form of the closure problem is:

ith cell: ∇.∇bi = 0 (40a)

ij interface: n.ki (∇bi + I) = n.kj (∇bj + I) (40b)

ij interface: bi = bj (40c)

jth cell: ∇.∇bj = 0 (40d)
∑

i

bi = 0 (40e)

Equations (40b) and (40c) allow the continuity of n.q and ω respectively, be-
tween each cell. Moreover, at the scale of the surface element, b is assumed
to be periodic. Methods to approximate H could be employed to estimate, at
least, its diagonal component in the direction of ∇〈ω〉β [25] using the effective
medium theory [26]-[27] or a stochastic approach [28]. To avoid other approx-
imations than the Reynolds one, the problem (40) is solved here in a similar
way to that proposed for instance by Brown [29] using a finite volume scheme
that is second order in space [30]. The computational grid exactly corresponds
to that used for surface measurement or generation. Due to the discontinuity
of k (and hence of ∇b) at the interface between two adjacent grid blocks, a
second order approximation of the flux of b on this interface requires the use
of the harmonic mean of ki and kj as proposed for the problem of heat con-
duction in heterogeneous materials [31]. The linear system obtained from this
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finite volume discretization is solved using a preconditionned conjugate gra-
dient algorithm [32]. This provides the b field that is further used to compute
H according to equation (36). It should be noticed that since K and D are
related to two very distinct averages (h3 and h respectively) of the aperture
field, the comparison on K and D computed on real and synthesized surfaces
provide two efficient discriminating tests of the validity of the representation
of the self-affine fractal surfaces under consideration.

3.3 Algorithm

The computational algorithm used to determine transport properties of a
rough contact is shown in figure 7. It is initiated with a set of nx x ny points
z (x, y) describing a representative surface element either of the real or syn-
thesized surface. The aperture field h (x, y) resulting from deformation of the
initial surface z (x, y) is computed with the elasto-plastic deformation model
as described above. Intrinsic transmissivity and diffusivity tensors, K and D
respectively, are computed using the same numerical procedure. Distinction
between viscous and diffusive effects is performed by the surface preparation
module. The percolation module allows to remove all non percolating clusters,
i.e. non contact areas not connected to surface edges.
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Fig. 7. Computational scheme -

4 Results and discussions

In this section, we consider the contact between one of the rough surfaces pre-
sented in section 2 and a perfectly rigid and smooth plane. Results obtained
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from lapped and sand-blasted real and synthesized surfaces are compared in
order to validate the use of synthetic self-affine fractal surfaces. Two aspects
are investigated: the distribution of contact spots on the one hand and viscous
and diffusive transport properties of the contact on the other hand. Compu-
tations were performed with the mechanical properties of stainless steel (see
tab. 2) for several average contact pressures Pca ranging from 7 to 600 MPa.

Several self-affine fractal surfaces were synthesized using the same roughness
parameters but changing the initial random sequence aij. Thus, for each kind
of texture (lapped and sand-blasted), four different surfaces were synthesized
from the power spectral densities of the real surfaces considered in section 2.

Table 2
Mechanical properties of stainless steel -

Young’s modulus Poisson’s ratio Hardness

E ν H

210000 MPa 0.3 1800 MPa

4.1 Effective contact areas

In figure 8, we have represented the ratio of the true contact area Sc to the
nominal surface area S = LxLy versus the average contact pressure Pca. The
linear dependence of Sc/S on Pca is confirmed and an excellent agreement
is observed between real and synthesized surfaces. However, it must be no-
ticed that the successful comparison between the effective contact areas is not
sufficiently discriminating since, as can be seen from the graphs in figure 8,
lapped and sand-blasted surfaces exhibit identical variations of S/Sc versus
Pca, although these surfaces have roughness parameters that are significantly
different. To be more conclusive, a comparison of the distribution of local
contacts is necessary.

In figures 9 and 10, we have reported the mean, m, and the standard devia-
tion, σ, of the distribution of contact spot areas versus the contact pressure
Pca for lapped and sand-blasted surfaces respectively. For lapped surfaces, we
can observe that all the synthesized surfaces have a similar behavior, while
for sand-blasted surfaces, a more significant dispersion between the four re-
alizations is observed. As noticed in section 2, lapped surfaces differ from
sand-blasted ones in the relative power of low frequencies. Contrary to lapped
surfaces, the dominant pattern of sand-blasted surfaces is determined by the
longer wavelengths close to the scale of the surface element under consider-
ation. Thus, while changing the initial random sequence aij, the texture of
sand-blasted surfaces is more affected than that of lapped surfaces, that is
why a significant scatter is observed among synthesized sand-blasted surfaces
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Fig. 8. Relative contact area Sc/S versus average contact pressure Pca -

and not among synthesized lapped surfaces.

As can be seen in figure 9, a good agreement between real and synthesized
surfaces is observed on the mean, m, of the contact spot areas since relative
deviations between real and synthesized lapped surfaces are smaller than 10%.
The comparison of the standard deviations σ shows that this parameter is more
sensitive since relative deviations are about 30%.
Deviations between the mean of the real sand-blasted surface and the average
value of the corresponding synthesized surfaces (figure 10) can reach 20%,
which remains fully consistent in comparison to the relative dispersion on the
four realizations of synthesized surfaces (about 15%). Results concerning the
standard deviation σ show a good agreement between real and synthesized
surfaces since results obtained on the real surface fall well within the range of
those obtained on synthesized surfaces.

4.2 Effective transport properties

Because of machining process, surfaces under investigation here are expected
to be isotropic in the x-y plane, featuring spherical K and D tensors, i.e.
K =KI and D =DI. Our numerical results confirm this property (at least for
lapped surface; see discussions below). In fact, off-diagonal terms for the two
types of surfaces were, at least, two orders of magnitude smaller than diagonal
terms. As a consequence, our discussion is focused on the diagonal terms of K
and D. Figure 11 shows the log-log plots of the diagonal terms of K and D of
the real and synthesized lapped surfaces versus the average contact pressure
Pca. This figure clearly indicates that the real surface is perfectly isotropic
at the scale of investigation. All synthesized surfaces have the same transport
properties, except at high contact pressure Pca where some dispersion can be
observed. At low Pca, the number of percolating clusters, i.e. paths where the

18



0 200 400 600
0

5

10

15

20

25

30

35

m
co

nt
ac

t a
re

a (
µm

2 )

 

 

0 200 400 600
0

20

40

60

80

100

120

140

160
Lapped surfaces

Pca (MPa)

σ co
nt

ac
t a

re
a (

µm
2 )

 

 

Real surface
Synthesized surfaces

Real surface
Synthesized surface

Fig. 9. Mean, m, and standard deviation, σ, of the distribution of contact spot areas
of lapped surfaces -
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Fig. 10. Mean, m, and standard deviation, σ, of the distribution of contact spot
areas of sand-blasted surfaces -

fluid can flow, is large, explaining why all surfaces are statistically identical.
When increasing Pca, the number of percolating clusters decreases, leading to
scattered values of K and D. Moreover, transport properties rapidly decrease
with the increasing of the contact pressure which confirms that tightening
makes the contact less percolating. Whereas experimental results obtained
on turned surfaces indicate that both K and D depend on Pca according
to a power law [33], effective transport properties of self-affine fractal surfaces
exhibit a more complex behavior. It must be noticed that the range of variation
of K is much wider than that of D, and this is due to the fact that this
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later quantity is related to the aperture field h while the former is related to
h3. For both K and D, an excellent agreement is obtained between real and
synthesized surfaces. Whatever Pca, relative deviations remain smaller than
7% on the estimation of D. It can reach 20% on the estimation of K, which
is small compared to the range of variation of K over roughly three orders of
magnitude for the range of Pca under consideration.

In figure 12, we have reported the diagonal terms of K and D estimated on
the real and synthesized sand-blasted surfaces. In contrast to lapped surfaces,
diagonal terms are significantly different as evidenced by results on the real
surface. The same behavior is observed on each of the four realizations. For
each surface, at a given value of Pca, relative deviations of diagonal terms
with respect to their average value increase with contact pressure Pca. As
for lapped surfaces, this is due to the number of percolating clusters which
decreases when Pca increases. These deviations can reach 20% for diffusivity
and 45% for transmissivity. Anisotropy of the transport properties is a result
of a size effect, as already discussed above for the distribution of contact spot
areas. Since the fractal character of this surface remains at a scale equal to the
size Lx, Ly of the surface element under investigation, dispersion is expected
on its behavior that must be analyzed on average over several realizations.
However, as for lapped surfaces, a very good agreement between computed
transport properties is obtained between real and synthesized sand-blasted
surfaces. Along with results on effective contact areas, this validates the use
of synthesized surfaces for the estimation of both the effective contact and the
transport properties of a rough contact between self-affine fractal surfaces.
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Fig. 11. Transport properties of the real and synthesized lapped surfaces -
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Fig. 12. Transport properties of the real and synthesized sand-blasted surfaces -

5 Conclusions

A global and deterministic approach for computing both deformation under
load and transport properties of a rough contact from surface textures has been
presented. The study was carried out on a class of rough surfaces exhibiting
fractal properties. The fractal nature of textures produced by lapping and
sand-blasting was confirmed from direct measurements. These two kinds of
surface textures differ in their spectral densities: sand-blasted surfaces exhibit
fractal properties at every scale investigated whereas lapped surfaces exhibit
fractal properties only for frequencies higher than a cut-off frequency ωmin.
Textures of sand-blasted surfaces are consequently less regular than those of
lapped surfaces since they contain longer wavelengths.

Equivalent self-affine fractal surfaces were synthesized with the same fractal
properties as the real surfaces and a thorough comparison of contact areas on
the one hand and of transport properties on the other, was performed between
real and synthesized surfaces. Due to the existence of the cut-off frequency,
the study on lapped surfaces shows that when synthesizing several surfaces
with the same roughness parameters, results are almost identical. This is not
true for sand-blasted surfaces and significant dispersions are observed between
results obtained from four realizations of synthesized surfaces. For the same
reasons, at the scale of the surfaces investigated in this work, transport prop-
erties of lapped surfaces are isotropic whereas due to a size effect, transport
properties of sand-blasted surfaces are anisotropic.

The main result of this work is twofold. First, distributions of contact areas of
the synthesized surfaces were shown to be in good agreement with those of the
real surfaces. Secondly, a very good agreement was obtained between real and
synthesized surfaces during the estimation of viscous and diffusive transport
properties, for both lapped and sand-blasted surfaces. This represents a set
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of very discriminating comparisons leading to the conclusion that synthesized
self affine surfaces can be used to describe contact mechanics and contact
transport properties through a contact between rough surfaces produced by a
random machining process.
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