Unique continuation estimates for sums of semiclassical eigenfunctions and null-controllability from cones

Abstract : For all sums of eigenfunctions of a semiclassical Schrödinger operator below some given energy level, this paper proves that the ratio of the L² norm on R^d over the L² norm on any given open set is bounded by exp(C/h) for some positive C in the semiclassical limit h tends to 0. Corresponding estimates on a compact manifold are also given. They generalize the unique continuation estimate of Lebeau, with Jerison, Robbiano and Zuazua, on sums of classical eigenfunctions of the Laplacian on a compact manifold below an eigenvalue threshold as this threshold tends to infinity. The main tools are semiclassical Carleman estimates following Lebeau, Robbiano and Burq with a new semiclassical propagation of smallness argument. For sums of classical Hermite functions, or for sums of classical eigenfunctions of homogeneous polynomial potential wells, similar unique continuation estimates from cones are deduced. They apply to the null-controllability from a cone of the heat semigroups corresponding to these Schrödinger operators, with a sharp cost estimate of fast control, following a new version of the strategy of Lebeau and Robbiano.
Type de document :
Pré-publication, Document de travail
20 pages, 1 figure, AMS-LaTeX. 2008
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00411840
Contributeur : Luc Miller <>
Soumis le : mardi 10 novembre 2009 - 22:27:48
Dernière modification le : mercredi 4 juillet 2018 - 23:14:02
Document(s) archivé(s) le : mercredi 22 septembre 2010 - 13:36:17

Fichier

Miller.scs.HAL.101109.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00411840, version 2

Collections

Citation

Luc Miller. Unique continuation estimates for sums of semiclassical eigenfunctions and null-controllability from cones. 20 pages, 1 figure, AMS-LaTeX. 2008. 〈hal-00411840v2〉

Partager

Métriques

Consultations de la notice

496

Téléchargements de fichiers

130