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Abstract

This study deals with the non-linear dynamic response oba@blle rotor supported by ball bearings.
The excitation is due to unbalance force. The finite elema&or Isystem is composed of a shaft with
one disk, two flexible bearing supports and a ball-beariegneint where the non-linearities are due
to both the radial clearance and the Herztian contact beiwaees and rolling elements. A numerical
analysis is performed to analyze the non-linear behavidinisfbearing rotor by using the Harmonic
Balance Method with appropriate condensation located onlythe non-linear coordinates of the
system in order to minimize computer time. The condensationess reduces the original non-linear
rotor system by focusing only on the solution of the nondinequations of the Fourier coefficients
associated with the system’s non-linear components.

In this study, the procedure is developed for the estimatibthe harmonic and super-harmonic
responses of the complex rotor system. Consequently, thdimear unbalance responses and the
associated orbits of the bearing rotor will be investigatéddoreover, the transition from contact
to no-contact states between rolling elements and racesth@iassociated restoring contact forces
are calculated for different speeds of the unbalanced.rdtorally, hardening-type nonlinearity or
softening-type nonlinearity due to the effects of radiglachnce and unbalance mass are examined.

1 Introduction

One of the most important non-linear mechanical componantstating machines to be taken into
account are bearings due to their considerable influenc@é@dynamic behavior of rotor systems.
For example, various works have studied non-linear belaluie to active magnetic bearings [1-3]
and fluid-film bearing [4-8]. The third major type of bearing®e the non-linear rolling-bearing

elements currently used to support gas turbine enginegatoe to their durability and low power

requirements [4, 6, 9]. It is well known that ball bearings arsource of nonlinearities for rotor sys-
tems. The nonlinear behavior of rotor systems involvingringgclearances and Hertzian ball-race
contact have been studied by several investigators. Fongbea the dynamic analysis of rotors with
bearing clearance was studied by Ehrich [10,11]. Sunngtgjcstudied ball passage vibrations theo-



retically, taking into account inertia and damping forc€Eemparisons with experimentally obtained
results were made. Choi and Noah [13] used the harmonic talaethod with the discrete Fourier
transform procedure to analyze the non-linear behaviorroter bearing system. Tiwari et al. [14]
studied the non-linear dynamics of a horizontal rigid rotbe appearance of instability and chaos in
the dynamic response are observed both numerically andimg@ally. They also studied the effect
of radial internal clearance of a ball bearing and the apea of regions of periodic, subharmonic
and chaotic behavior [15]. Later, Harsha et al. [16] proplasetake into account various sources of
nonlinearity such as Hertzian contact force, surface wessrand internal radial clearance resulting
in the transition from contact to no contact state betweeasand rolling elements. Periodic, quasi-
periodic and chaotic behavior were analyzed in detail. Moeeg, Harsha [17] investigated the effect
of radial internal clearance for rotor bearing systems imclvinolling element bearings show periodic,
quasi-periodic and chaotic behavior by considering tingpomse, Poincaré maps and power spectra.
Mevel and Guyader [18] observed experimentally the extsesf two different routes to chaos in
ball bearing dynamic motion. Nataraj and Harsha [19] ingadéd the nonlinear dynamic behavior
of an unbalanced rotor-bearing system due to cage run-dogy indicated that the responses can
be placed in three categories: periodic with no sensitiatynitial conditions or small variations of
system parameters, quasi-periodic and chaotic with exdmsensitivities to both the initial conditions
and small variations in the system parameters. Jang efis{@died the vibration due to ball bearing
waviness in a rotating system, taking account of the ceugaif force and gyroscopic moment of the
ball.

These studies demonstrated that the nonlinear dynamiomsespof a balanced rotor supported by
rolling element bearings can be very complex and both tinmsgming and costly to perform when
parametric design studies are needed. Therefore, due fadhthat the non linear behavior of rotor
systems can be complex, much work has been done on the thelebéa on the treatment of non-
linear differential equations. More particularly, nondar methods have been developed to analyse
vibration problems [21, 22]. One of the classical approadbe obtaining the non-linear response of
systems is the numerical integration procedure. Howelies,approach for non-linear models with
many degrees of freedom or strong non-linearities can Ineratxpensive and requires considerable
resources both in terms of computation time and data stofBige well-known approximation tech-
nique requires an initial assumption about the form of tHatsmn of the non-linear system, i.e. the
non-linear solution is approximated by finite Fourier sgri order to study the non-linear dynamics
problems of systems with strong non-linearities, the nucaétools most often used are Harmonic
Balance Methods and continuation schemes [8, 23]. Moredvitis system can be considered as
a linear structure with few additional non-linear elemeiitsnay be of great interest to keep only
the non-linear degrees of freedom, by introducing a coral@ms process to solve only the nonlinear
equations associated with the non-linear components cytstem [8].

In the present analysis, we propose to demonstrate theegitiziof the Harmonic Balance Method
with a condensation process on the non-linear terms in dalstudy the unbalance responses of
a non-linear flexible rotor system with a radial clearancd arHerztian contact between the races
and the rolling elements. Secondly, we investigate in paldr the evolution of the restoring non-
linear forces on each ball bearing for different rotatingeqs. Th effects of the radial clearances and
unbalance are investigated and both hardening-type reaniiy and softening-type nonlinearity are
examined.

The paper is divided into three parts. Firstly, the basiccepn of the Harmonic Balance Method,
the path following continuation based on Lagrangian exlaion, and the condensation on the non-



linear degrees-of-freedom are introduced. Secondly, tdrelmear rotor system under study is de-
scribed and developed. The third part presents non-linealysis of the rotor-bearing system. The
evolution of the non-linear responses within the speedeasfgnterest is investigated for different

unbalance masses and radial clearances. The associatisdobtibe rotor and the stator are calcu-
lated. Attention is finally focused on the contact at the imggelements: the non-linear contacts for
each ball of the bearing are evaluated and discussed fereiit rotating speeds of the rotor system
and for different radial clearances and unbalance masses.

2 General theory of the harmonic balance method and conden-
sation process

In this section, the harmonic balance method with a condEmsprocess on the non-linear degrees
of freedom will be presented.

2.1 Non-linear method: the Harmonic Balance Method

For a flexible non-linear rotor, the equations of motion mayitten as
MX + DX + KX =F;, (X, X,w,t) + Fyr (X, X,0,t) = F (X, X, w, 1) (1)

whereF; andF y are the linear and non-linear terms of the rotor system. ¢feoto estimate the
response of the non-linear system as a truncated Fouriesgérthis solution exists), the right-hand
side of the system is assumed to be a function that is penodime with period?’. Thus we assume
that the non-linear dynamical response of the rotor may Ipeceiimated by finite Fourier series with
w = 2% the fundamental frequency:

X (t) =Bg+ i (By, cos (kwt) + Ay sin (kwt)) 2)

k=1

wherem is the order of the Fourier serie®3,, A, and B, define the unknown coefficients of the
finite Fourier series. It can be seen that the Fourier sepnasidered in this study are developed for
harmonic and super-harmonic responses of the non-lingar sgystem. The number of harmonic
coefficients is selected on the basis of the number of sigmfibarmonics expected in the non-linear
dynamical response. Generally speaking, harmonic comysri®come less significant whem
increases. Moreover, we assume that the vector fEréK, X, w, t) can be solved in finite Fourier
series of ordemn

F (X, X, w, t) =Cp+ i (Cy cos (kwt) + Sy sin (kwt)) 3

k=1

Substituting equations 2 and 3 in equation 1 yields a s¢2f+ 1) * n equations (where is the
number of the degrees-of-freedom for the complete rotoribgaystem).
Using the first»* equations, the constant terBg can be determined. We obtain

KB, =Gy 4)
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The2m * n remaining equations defining tié&" Fourier coefficientsA, andB,, are given by

K — (kw)*M —kwD Al TSk 5)
kwD K- (kw)’M || B, | | Cy

However, it may be difficult to determine the Fourier coefitisC,, S, andC, (with 1 < k& < m)
from By, A, andBy, (with 1 < k < m) directly due to the complexity of the non-linearities. Gaon
and Giriffin [23] suggested that the truncated Fourier exgdoesof F' should be calculated by applying
an Alternate/Frequency Time domain method (AFT-method)

BoAB, - A,B, " X)) = F(XXwt) B [CSCi8,Cul  (6)

Following this, the(2m + 1) * n non-linear equations of motion 4 and 5 can be solved by using a
non-linear system of equations solver such as the Broydenadg24].

2.2 The path following continuation

In the field of rotating machinery, the behaviour of systes#fien calculated for different operational
speeds of interest while all the other parameters are kaptant. In this case, it may be useful to
apply predictor and corrector mechanisms in order to esérttae non-linear response of the rotor-
bearing system when rotation speed increases or decreases.

We assume that four previous non-linear responses of te-betaring system are obtained. Based
on these points, the estimated point on the solution braachbe predicted at a given arc length
by applying the Lagrangian polynomial extrapolation methény point on the solution branch is
represented byX;, w;) whereX; andw; define the Fourier coefficients and the parameter (i.e. the
rotating speed of the rotor-bearing system). Then, the emgth between two consecutive points
(X, w;) and(X,;1,w; 1) can be given by

A8 = (Xior = X)) (Kir = X)) + (i —w)?) =0, @

with the arc length parameters given by, = 0, S; = ASy, S = 51 + AS,, S3 = S, + AS; and

Sy =S5+ AS.

The estimation of the following point at distances can be predicted by using the Lagrangian ex-
trapolation scheme

X4 3 S—Sj Xz -
BT o

2.3 Condensation procedure

If a non-linear system consists of andegree of freedom system with non-linear forces assatiate
with ¢ of these degrees of freedom, this system may be consideeelih@sar structure withh = n—q
degrees of freedom and having several additional non4liekesments. Therefore it may be of great
interest to keep only the non-linear degrees of freedom [8, 25]. Equation 1 can berdered by
considering the linear transformatidd = PY = P[Y? YY" whereY” and Y contain thep
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linear degrees of freedom and th&on-linear degrees of freedom, respectively. Therefoeenitn-
linear equations 1 are transformed by

N, ¥, ][9] [ Do Do | [ V], [Bo K] [Y]_[F]
qu qu ?q qu qu Yq qu qu Yq a k4

Here, we present the condensation procedure used to oh&lfourier coefficients associated with
the non-linear and linear elements of the complete system.

2.3.1 Determination of the constant termSB{ associated with the non-linear elements

By substituting equations 2 and 3 in equations 9, and by oqyaeng coefficients for the constant
terms corresponding to the first linear equation of the sggtewe obtain
Kpp qu Bg _ Cg
Ky Ky By |G
whereB}, andB{ are the vectors with thglinear and; non-linear degrees of freedom of the system,

respectively.
By eliminatingB}, from the latter equatior3{ is given by

(10)

Bf = (K,, - KK, K,,)  (Ci-K,K,'Cl) (11)
2.3.2 Determination of the sine Fourier coefficient\{ associated with the non-linear elements
Then, by equating coefficients for the cosine terms foritfieharmonic of equations 5 we obtain
kwDAy + (K = (kw)* M) By, = Cy (12)
Similarly, by equating coefficients for the sine terms foe t* harmonic of equations 5 we obtain
(K — (kw)*M) Ay, — kwDBy, = S, (13)
Then, the determination of the Fourier coefficieds can be obtained by eliminating the Fourier

coefficientsB;, from equation 12 and 13. By premultiplying equations 12(5§/— (kw)? 1\7[)_1 and
substituting in equations 13, we obtain

(R — (k) M+ kD (R = (k) ) kD) Ay = Sy kD (R = (k) 8) € (14)
By introducing
~ ~ ~ ~ ~\ —1 ~
Ty = K — (kw)’M + kwD (K — (kw)’ M) kwD (15)
W, = S; + kD (K - (k) M) C, (16)
equation 14 may be rewritten in partitioned form (as don&iptesly for the constant terms)

Trpp Thpg Aﬁ _ Wi
Tk,qp Tkyqq Ai WZ

Finally, the Fourier coefficientA? can be determined by eliminating the Fourier coefficigkfsrom
the previous equations. After calculation, we obtain

_ -1 B
Aj = (Tkyqq - Tk,quk,zlakaypq) (WZ; - Tk,quk;pWZ) (18)

(17)
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2.3.3 Determination of the cosine Fourier coefficient8] associated with the non-linear ele-
ments

The same procedure can now be applied to the determinatidimeofFourier coefficient®}. By
eliminating the Fourier coefficientd, from equation 12 and 13 by premultiplying equations 13 by

(f{ — (kw)® 1\7[)71 and substituting in equations 13, we obtain
% 2 N7 ~ % 2 N7 -1 ~ ~ % 2 N7 -1
(K — (kw)*M + kwD (K — (kw)* M) ka> By = C; — hwD (K — (kw)*M) S, (19)

Using the relation 15 and introducing

1

Ui = Gy — kwD (K — (kw)’ M) S, (20)

equation 19 can be rewritten in partitioned form
Ty, pp Ty Pq Bi Ui
’ ’ = 21
l Tk,qp Tk,qq BZ Ui ( )

Finally, the Fourier coefficientB} can be determined by eliminating the Fourier coefficiditsrom
equations 21. We obtain

_ -1 _
BZ = (Tk7qq - Tkvquk,;ka‘,pq) (UZ - Tk,quk lpUﬁ) (22)

P,

2.3.4 Determination of the Fourier coefficientsBf,, A7 and B associated with the linear ele-
ments

Now, the(2m + 1) * p remaining unknown Fourier coefficieniB;,, A7 andB?’, can be estimated from
equations 10, 17 and 21. After calculations, we obtain

Bj = K;pl (Cg - quBg) (23)
Ai = Tk,ppil (Wi - Tk,quZ) (24)
B£ - Tk,ppil (U£ - Tk,quZ) (25)

Moreover, it can be seen that the same condensation prdoasisl e applied to the linear elements
if the number of linear components is low compared to the remolb non-linear components. After
calculation, we obtain the following relations

~ ~ ~ ~ —1 ~ ~
B = (Kpp - KPQK;qlKQP) (Cg - quK;qlCS) (26)
p -1 -1 P —1 q
Ak = (Tk:,pp - TkquTk,qukﬂp) (Wk - Tk,quk;,q(]Wk;) (27)
_ -1 _
Bz = (Tk,pp - Tk’,quk:,};qu’,qp) (Ui - Tkz,quk;,;qUZ) (28)

For the latter case, th@m + 1) x ¢ remaining unknowns Fourier coefficieris, A} andB] associ-
ated with the non-linear components can be deduced frontieqadl0, 17 and 21.
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2.3.5 Complete process for the determination of the Fouriecoefficients and the non-linear
dynamical response of the system

In conclusion, the Fourier coefficien®), A} andB] associated with the non-linear components of
the system are first determined by considering(the + 1) % ¢ equations 11, 18 and 22. Secondly,
determination of the FouridBf,, A? andB? associated with the linear components of the system are
obtained by considerinm + 1) * p relations 23, 24 and 25. Then, the calculations of the Fourie
coefficientsCy, S, andCj, (with 1 < k& < m) from By, = [Bf B{", A, = [A? AY" and

B, = [BY BZ]T are obtained by using the alternate frequency/time appr(see equations 6).
Therefore the previous equations 11, 18 and 22 can be sojvaddlver such as the Broyden method
[24].

To aid the reader’'s comprehension, it can be seen that fonergkenon-linear system, certain linear
degrees-of-freedom of the vect¥” can be transferred and added to the ve®dérnof the non-linear
degree-of-freedom without loosing the general processegoied previously. This operation can be
very interesting if keeping the physical linear degredreedom is necessary for the study (i.e. the
non-linear behavior of the chosen physical linear degfeiee@dom can be obtained directly by using
relations 18 and 22, without calculating expressions 242&4)dHowever, in this case, the size of the
vectorY? has been increased, thereby increasing calculation tidst@nage requirements.

3 Application to the flexible rotor-bearing system

In this section, the harmonic balance method with the cosalgon procedure on the non-linear co-
ordinates will be applied to the non-linear rotor-beariggtem shown in Figure 1.

3.1 Description of the flexible rotor system

Firstly, the complete modeling of the rotor-bearing systsrpresented. The classical equation of
motion of the shaft and disc elements will be briefly desaib&hen, the description and global
expressions of the rolling element bearings will be givendtail by considering the kinematics of
the rolling elements, the internal clearance and the Hemitact nonlinearity.

3.1.1 Shaft elements

The shaft is modeled by 13 Timoshenko beam elements withilaircross sections. Each Timo-
shenko beam finite element has four degrees of freedomslanede:

(M +M5,) XP+ (C" + wG") XP+ K'X" = 0 (29)

whereM?. andM}, are the translational and rotary mass matrices of the sleaftent.C*, G* andK®

are the external damping, gyroscopic, and stiffness nestniespectivelyw is the rotational speed.
External damping is taken as classical for the sake of soitpby considering Rayleigh’s expression
C’=a (MbT + Ml,’%) + BK® wherea andg are constant factors of proportionality and internal rotor
damping has been neglected.



3.1.2 Rigid disc

The disk is modeled as a rigid disk and can be written as
(Mg + M) X* + wGX? = F (30)

whereM4, M4 andG¢ are the translational mass, rotary mass and gyroscopiéaestespectively.
F? defines the unbalance or any other excitation on the disc.

3.1.3 Flexible supports and coupling

The flexible supports (see Section A and B in Figure 1) and loogigsee Section C in Figure 1)
situated at the two locations of the two rolling-elementrbegs and the right end of the shaft are
modeled as two-node linear elastic spring elements. Thesfpamulated from the following equations
of motion:

M*X*® 4+ K*X* = F* (31)
whereM?, K° andF* are the elementary mass matrix, stiffness matrix, and eatéoad vector.

3.1.4 The rolling bearing

A schematic diagram of the rolling element bearing with it®d frame of reference and the spin
direction of the rotor is shown in Figure 2. The rolling bewriis modeled as a two degrees of
freedom bearing with radial clearance and Hertz contastéen races and rolling elements. In this
study, the outer race of the ball bearing is assumed to be foxéke flexible support and the inner
race is assumed to be fixed to the shaft.

The precessional angular position of the center of the bajiven by (Harsha et al. [16] and Tiwari
et al. [14])

R,
cage — - 2
eag w(R,»JrRo) (32)

where R; and R, are the inner and outer race radii.defines the rotational speed of the rotor. The
varying compliance frequency is

R
— Weq, eN =wh - 33
Wy e = WeageiVh Wb<Ri+Ro) (33)
where N, defines the number of rolling elements for the rolling begwin

By considering that the angular spacing of the rolling eletaés constant, the angular space between
two balls is equal ta\d = % and each ball is located by its angular position changing wibhe as

the shaft rotates
2

N,
Then the relative radial distanc, between the inner and the outer races atitfiéball position can
be expressed by

O (k=1)+ Weaget , k=1,....N, (34)

Ap = (xo —x;)cos (Ok) + (yi —yo)sin(6) , k=1,...,N, (35)

wherez;, z,, y; andy, define the horizontal and vertical displacements of theriand outer races at
the k% ball.



Considering the position of each rolling element and thallétertzian contact, the restoring force

can be estimated : )
b= { 0 C Ap<d (36)

where is the radial clearance between races and rolling eleniéptdefines the effective stiffness
which is the combined stiffness of a ball in relation to thegnrace and outer race contacts

1
1 1

K32 + 3/2

(2

Ky = (37)

The material deformations are elastic and the dimensiotiseo€ontact area are small compared to
the curvature radii of the contacting bodies. As indicateéquation 36, restoring forcE, appears

if the k' ball (at the positiord,) is loaded (i.e.d, > §). If 6, < J, the k" ball is not loaded
and no restoring force is generated. It is noted that loadiragsumed to be in normal direction at
the contacting surfaces and that the deformations at theacosurface are small compared to the
dimensions of the contact area.

Finally, the global bearing reaction can be obtained by singrthe individual restoring force from
each of the rolling-element bearings. Then the total r@sfjdorce components’y and Fy- in X and

Y directions can be expressed as

Ny

FX = —ZFk COS (Qk) (38)
k=1
Ny

Fy = — Z Fk sin (Hk) (39)
k=1

3.1.5 The complete flexible rotor system

After assembling, the general dynamics equations of thepbeta rotor system can be written in the
following ) .

whereX, X andX are the acceleration, velocity and displacement vectdfsis the mass matrix,

C is the external damping matrix associated with the nontiraigarts,G is the gyroscopic matrix
and K is the stiffness matrix. It should be noted that the intedehping has been neglected in
this analysis. However, it may be observed that the noratimeethod (i.e. the Harmonic Balance
Method) works even if the internal damping of the rotor sgsis taken into accountF; contains
the weight forces and the unbalance forcBs;;, corresponds to the complete non-linear forces due
to the rolling-element bearings. defines the rotating frequency of the system.

All the parameters of the rolling-bearing element and therreystem are given in Tables 1 and 2.
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Figure 2: Rolling element bearing and definition of the gstatad rotor centers
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Notation Description Value

R, Ball radius 5.953mm
R, outer race radius 38.933mm
Ny number of balls 14
o radial clearance 20pum
Mps rolling element mass 1.5kg
Ky load-deflection factor for contact pointd.6 x 107 N/m3/?

Table 1: Geometric properties of the rolling-bearing elame

Notation Description Value
Doyt diameter of the shaft 0.04m
Lhagt length of the shaft 1.7m

Ly 1% length section of the shaft 0.222m

Ly 274 length section of the shaft 1.136m

Ls 37 length section of the shaft 0.146m

P density 7800kg/m?

E Young's modulus of elasticity 2.1 x 10" N/m?

@ first Rayleigh damping coefficient 1.36

g second Rayleigh damping coefficient 1.75 x 107°

D giscouter outer diameter of disc 0.4m
Discinner inner diameter of disc 0.04m

hdise thickness of disc 0.02m

d, eccentricity of the mass unbalance 0.2m
Mg, 1% rolling element mass 1.5kg
Kp 1% rolling element stiffness 7x 108N/m
Mps 274 rolling element mass 1.5kg
Kgo load-deflection factor for point contactd.6 x 107 N/m3/?
Mps1 15! bearing support mass 6kg
Kpsi 1% bearing support stiffness 3.8 x 105N/m
Mpgso 2nd pearing support mass 6kg
KBpss 274 pearing support stiffness 3.8 x 105N/m
Mpc flexible coupling mass 0.73kg
Kre flexible coupling stiffness 5.75 x 10*N/m

Table 2: Parametric values of the flexible rotor system
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3.2 Numerical studies

As explained previously, the rolling-bearing system iriigeged here is composed of a horizontal
flexible shaft of 1700mm length with a circular cross secoddOmm. The shaft has one disk with
a diameter of 400mm and a thickness of 20mm attached 196mmitfre right-end of the shaft. The
flexible coupling is added at the right-end of the shaft torzart the motor. The rotor shaft is sup-
ported by two bearing supports; the two supports are plad@dn and 1478mm respectively from
the end of the shaft with the flexible coupling. The secondibgaupport illustrated in Figure 1 is
composed of a rolling bearing with radial clearance and Heontact between the races and rolling
elements, as previously explained in Section 3.1.4. Allghmmetric values for the rolling bearing
element and the complete rotor are given in Tables 1 and 2.

Here, the non-linear unbalance responses due to the nearland linear components will be inves-
tigated, after which the non-linear restoring forces areldhsociated contact evolution at the rolling
bearing element will be calculated.

3.2.1 Non-linear unbalance responses

The non-linear unbalance responses and contacts of thémear-components (i.e. the rotor and
stator coordinates at the non-linear rolling bearing elets)eare obtained by solving the non-linear
equations 11, 18 and 22, the non-linear unbalance respohteslinear components being obtained
by using the relations 23, 24 and 25.

The number of harmonics chosen for the approximated saligieelected on the basis of the number
of significant harmonics expected in the non-linear dynatmesponse. In this study, the number of
significant harmonic components varies with the rotatingeshof the rotor due to the relative contri-
bution of the unbalance forces, gravity and restoring adrftarces on each ball bearing. However,
the number of harmonic components retained in the solubotite following numerical analysis is
equal to twelve due to the fact that the harmonic componezusibe less significant for upper orders.
The complete vertical and horizontal unbalance resporigas aon-linear rotor-bearing element and
the contribution of the first twelve orders for the non-lineamponents are shown in Figures 3 (for
a radial clearance of = 10um and an unbalance massaf, = 2g). The non-linear unbalance
responses of the linear components of the rotor system #&fthend of the shaft are given in Figure
4. These non-linear amplitudes are obtained by considehagrevious relations 23, 24 and 25.
Firstly, it is shown that the complete non-linear dynamigp@nses (noted "CP” in Figures) at the
non-linear and linear rotor-bearing elements are very derypvith significant contributions not only
of the first and second orders (i.e. the blue and red linesallsotthe sixth orders (i.e. the grey lines)
when the rotating speed is in the range [0-500] rpm. Howevegn be seen that in some cases the
first and second order approximations of the truncated Eoseries should be enough to obtain a
good approximation of the non-linear dynamics of the rgfflmearing rotor system (see, for example,
the speed range = [1000; 4000]rpm where the amplitudes of the rotor are maximal).

Moreover, it is clearly shown that the contribution of th& upper orders can be significant at low
amplitudes and when the rotor is passing through};thfitical speeds. To facilitate understanding, the
forward and backward critical speeds for the first and seconades are situated arout@d40rpm and
2050rpm, and2900rpm and3520rpm, respectively. For example, thex, 6x, 5x, 4x, 3x and2x
harmonic components are predominar@@irpm, 300rpm, 360rpm, 450rpm, 610rpm and880rpm
(290rpm, 340rpm, 400rpm, 500rpm, 670rpm and 1020rpm, respectively) due to the fact that the
rotation speed passes through the subharmonic comporfahts forst backward critical speed (and
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the first forward critical speed, respectively). The samermenon can be observed for the sec-
ond backward and forward critical speeds: when the rotosgashrough th&x, 6x, 5x, 4x, 3x
and 2x harmonic components of the backward or forward criticalesjseof the second mode (at
430rpm, 500rpm, 600rpm, 750rpm, 970rpm and1480rpm for the backward mode, respectively; at
470rpm, 540rpm, 660rpm, 820rpm, 1100rpm and 1720rpm for the forward mode, respectively),
the amplitudes of the'" associated upper orders increase.

The non-linear responses of the rotor at the non-lineardiméaring element and at the left end of
the shaft are illustrated in Figures 5 for a radial clearanicé = 10um and an unbalance mass of
m, = 4g. It can be seen that the non-linear responses of the rottareyare complex with jump phe-
nomenon for rotor speeds betweenr- 2100rpm andw = 2300rpm. This jump is not only observed
for the first order, but also for the second, third, fourth &ftd orders, as illustrated in Figures 5. This
phenomenon indicates the "hardening effect™ at the firgical speed due to the contribution of the
non-linear terms of the rolling bearing. Therefore, for agitation level about twice as high as that
of the initial case, the peak of the first forward critical sgeappears for a rotating speed higher than
about 7% with respect to the initial case. The hardening-tygnlinearity on the maximum amplitude
of the harmonic components can also be observed. It is thesilge to see that two stable solutions
coexist when the rotation speed is aroy2tho : 2210]rpm.

As previously seen for the unbalance casg= 2¢ (Figures 3 and 4), the global non-linear responses
are very complex with the significant presence of the firstpad and sixth orders (see the horizon-
tal amplitudes at the left end of the shaft). Even if the noedr behavior between the two cases
(m, = 2g andm, = 4g) are different (with the appearance of jump phenomenonxXanwle), the
global contributions of each order for the two cases are genylar: the maximum amplitude is ob-
served when the rotation speed exceeds the first criticadspe= 2000rpm), the most important
contributions are given by the first and second orders whesspleed reaches about [1000-4000]rpm,
the sixth order makes a significant contribution at low sp@edund [0-500]rpm), and the’” orders
appear when the rotor speed reaches arqlluoﬁcritical speeds. Finally, it can be seen that the non-
linear responses at the left end of the shaft (see the linE™@ Figures 4 and 5) are governed by
the amplitudes of the sixth order when the rotation spee@twden [0-1300]rpm: the contribution
of the sixth order is most significant when the rotation spedaetween [0-500]rpm and one of the
highest amplitudes if the rotor speed reaches around [20@{tpm.

The orbits at the disc position, left end and middle of thdtsdu@ shown in Figures 6 for various
rotation speeds between [300-1500]rpm when the compooétiien'* orders have significant con-
tributions. Thus it is clear that the non-linear responsasloe very complex with “multiple inside
or outside loops™.

Figures 7 show the complete non-linear amplitudes for thar ghaft and the two stators of the rolling
bearing elements at specific rotation speeds. For eachtb@serbits associated with the non-linear
degrees of freedom (and thus calculated by using the coatiengprocess and the relation equations
11, 18 and 22) are indicated by red lines. The orbits cornedjng to the linear degrees of freedom
obtained by using the expressions 23, 24 and 25 are inditgtelde black lines. The blue line il-
lustrates the deflection of the rotor shaft. To facilitatenpoehension, the top subfigures illustrate
the rotor amplitudes of the linear and non-linear degredsegfdom, and the stator amplitudes at the
rolling bearing element are presented by the lower subfgy(foe the linear and non-linear degrees of
freedom). It should be noted that the orbits and the deflecifdhe shaft are presented without the
static deflection of the rotor in order to clearly show the pbemity of the non-linear response that
generally occurs at low amplitudes.
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Figures 7 (c) and (d) show the shaft’s deflection at the baatkaad forward first critical speeds (for
w = 1737rpm andw = 2052rpm). The shaft’'s deflections for the backward and forward sdcon
critical speeds (fow = 2932rpm andw = 3526rpm) are given in Figures 7 (e) and (f), respectively.
It may be observed that the rotor’s orbits are very simple simdlar to a simple loop when the ro-
tation speed is passing through the second critical spdemtsthe first critical speeds, simple loops
are shown at the right-end of the shaft and at the disc paosititowever, inner loops appear for the
orbits at the left position, at the middle of the shaft anchatfirst bearing support. These results are
in perfect agreement with the previous evolutions of therlesewomponents: the second order of the
Fourier series is sufficient to describe the non-linear bemand the associated orbits of the non-
linear rotor system at the first critical speeds, and the dirder gives an adequate approximation of
the rotor orbits at the second critical backward and forwaitical speeds. Finally, Figures 7 (a) and
(b) illustrate that the orbits can be more complex (as presipseen in Figures 6): the contributions
of then'® order are shown for all the shaft orbits. All these orbitswghdn Figures 6 and 7 clearly
indicate the complexity and variability of the non-lineasponses of the rotor-bearing system.

90 2e-006 90 3e-006 90 1e-006

270 270

(b) w = 460rpm (€) w = 500rpm (d) w = 660rpm

90 1e-006 90 1e-006 90 1.5e-006 90 2e-006

0 270

270 270

(e)w = 740rpm () w =900rpm (9) w = 1100rpm (h) w = 1300rpm

Figure 6: Evolution of complex orbits far = 10um andm,, = 2¢ (b,c) disc position (d,e,g,h) left
end (a,f) middle of the shaft

3.2.2 Non-linear contact forces and orbits at the rolling-fearing element

In this part of the paper, the contacts between races ansl dradl the associated restoring forces in
fixed coordinates (OXY in Figure 1) are investigated in oftdarnderstand the relative contribution of
the unbalance and gravitational forces for the rotor, ttagtshhirling motion, and the associated non-
linear behavior at the rolling-bearing element. Due to tbedensation process previously presented
and by using the relations 11, 18 and 22, the non-linear behafthe rotor system is only estimated
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at the non-linear degrees of freedom in this part of the study

In order to carry out this analysis, the evolution of the emhton each ball is first evaluated and
discretized over one period of revolution of the rollingabieg cagev..,c = w(R;/(R; + R,)) where
R; and R, are the outer and inner race radii of the rolling bearing @etrandv defines the rotation
speed of the rotor. Secondly, the global restoring forcalsuwdated in the fixed coordinates not only
over one period of revolution of the rolling-bearing cagé &lso over fifty periods, in order to show
the envelops of the non-linear contact forces of the rolbegring element.

Figures 8 and 9 show the evolution of the contact restorimgefofor each ball of the bearing for
a radial clearance of = 10um, and an unbalance massiaf, = 2¢g andm,, = 4¢, respectively. The
white lines define the limits between the contact and noair#ones for each ball.

Figures 10 and 11 give the global restoring forces for bo#esan the fixed coordinates. The blue
lines represent the evolution of the non-linear contact ave period of revolution of the rolling-
bearing cage. The green surface corresponds to the envlopmon-linear contact over fifty periods
of revolution. The red line indicates that the rotor andtaire in contact with a non-linear force
greater than zero. Figures 9 and 11 give contact evolutionalf the speed ranges of interest (i.e.
w = [0 — 4000]rpm and form,, = 4¢) whereas Figures 8 and 10 focus on the first critical speeads fo
my = 2g.

For the first unbalance mass, = 2¢, the rotor moves at the bottom of the bearing for different
rotation speedsdy = 1895rpm, w = 1990rpm, w = 2215rpm andw = 2244rpm), as indicated in
Figures 10(a,b,e,f) with the red lines that define the noadr contact of the rolling-bearing element
in fixed coordinates. Regarding the associated non-linearacts on each ball of the bearing (see
Figures 8(a,b,e,f)), five or six balls are in contact withdler ring each time and the number of times
of contact and non-contact per ball is similar for each dadkw = 1895rpm andw = 2244rpm, the
evolution of contact for each ball is due to the revolutiortd rolling-bearing cage: the area within
which the rolling elements are still in contact with the naeg, generally referred to as the loaded
zone, is situated at the bottom of the ball bearings (in fix@atdinates). The value of the non-linear
contact force is still high, as shown in Figure 10(a) and 84 the green surfaces that indicate the
contact over fifty periods of revolution of the rolling-beay cage). When the rotor exceeds the first
forward critical speed (i.ew = 1990 — 2130rpm), the contact value at the bottom of the bearing
can be equal to zero (see the green surface in Figures I)&)cnd the red lines correspond to the
full circle. Moreover, the evolutions of the non-linear tacts on each ball become more complex,
as indicated in Figures 8(b,c,d,e). The contact and nottacbtimes per ball can differ considerably
from one ball to another and the associated restoring cofdsmes can increase or decrease during
one period of revolution of the rolling-bearing cage. FipaFigures 10(c) and 8(c) illustrate the case
of a complete whirling contact on the rolling element (ilee tadial clearance in the fixed coordinates
is consumed while the red line defines the full "circle™ imgare 10(c)). It is noted that the value of
the non-linear restoring forces is still higher at the bottof the rolling element. Due to cage rotation,
the maximum value of the non-linear contact changes frombatid¢o another, as indicated in Figure
8(c). Finally, it can be seen that the period of contact/antact between the rotor and each ball in
this case (i.ew = 2030rpm andm,, = 2¢, Figure 8(c)) decreases in comparison to the previous cases
(i.e.w = 1895rpm or w = 2244rpm for m,, = 2¢, Figures 8(a,f)).

Then, for the second unbalance mags= 44, the same non-linear evolutions are observed around
the first critical speed: each ball participates with almbst same contact time over the period of
rotation of the rolling-bearing cage and the non-lineartaohforces can increase or decrease during
one period. When the rotor whirls on the bottom of the bearihg evolution of the contact forces
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corresponds to one period of revolution of the rolling-legrcage. At the first critical speed (i.e.
w = 2100 — 2200rpm), the rotor whirls completely in the rolling-bearing elemi@nd the clearance
is consumed in the fixed coordinates during its rotation (itee red lines define the ™full circle™,
as shown in Figure 11). Moreover, due to the increase of th@lance force, the contact on all the
rotor-bearing elements (i.e. the "'red circle™) is preséor a greater speed range and the values of the
non-linear contact forces at the top and bottom of the rgléfement are more higher (see Figure 11
for w = 2195rpm). In this case, the unbalance effect is predominant for ¢melmear behavior of the
contact/no-contact evolutions. As seen in Figure Qdoer 2204rpm three or four contacts occur per
period of revolution of the rolling-bearing cage for eachl.bBach ball participates with almost the
same contact time over the period of rotation. As previoghlgwn, the period of contact/no-contact
between the rotor and each ball is similar to the period ofthation of the rototw.
However, if the rotation speed is around the first criticatexh, the contact time and the restoring
contact force are very different and complex per period @bhation for each ball (see Figures 9 for
w = 1919rpm w = 2253rpm) even if the rotor and stator orbits are simple and close tereégdic
harmonic form (see results of the previous section).
Finally, the non-linear contact forces are given for theespmnge of interest = 0 — 4000]rpm in
Figures 11. It can be seen that the non-linear contact owepenod of revolution of the cage (i.e.
the blue line) or the envelopes of the non-linear contaet @he green surface) are totally different
for the different rotation speeds and can be complex in soasex For example, the non-linear
contact can be dissymmetrical on the rotor-bearing eler{feniexample, at the following rotation
speedsiw = [1696; 1787;2703; 2890]rpm). These dissymmetric non-linear restoring forces at the
rolling element are observable at the first and second backevéical speeds where the rotor orbits
are elliptical. Then, at low amplitudes, the value of the #iarar force can remain constant due to
the fact that the rotor moves on the bottom of the rolling edain see for example Figure 11 for
the following rotation speeds = [296; 1595; 4000]rpm where the blue lines (i.e. evolution of the
non-linear contact forces over one period of revolutionh® tolling-bearing cage) are similar to the
green surface (i.e. evolution of the non-linear contactésrover fifty periods of revolution of the
rolling-bearing cage). As explained previously, the ceh&nd non-contact times per ball and the
value of the non-linear forces are similar from one ball totaer, in this case due to the rotation of
the rolling cage.

Finally, it can be seen that the non-linear contact forcaartolling element can be different for a
given rotation speed if in run-up or run-down configuratici® to the jump phenomenon. This fact
is illustrated in Figure 12 fom, = 4g andd = 10um.

”

3.2.3 Influence of the mass unbalance and the radial clearaac

In this section, the influence of the mass unbalangeand the radial clearandeon the non-linear
responses, the Fourier components and the non-linearatdataes and orbits at the rolling-bearing
element are investigated.

Figures 13 and 14 show the non-linear amplitudes and theidfotmmponents relating to the un-
balance and the radial clearance, respectively. Figurebusbrate the associated non-linear contact
forces at the rolling-bearing element.

Firstly, the unbalance mass is increased frignto 4¢. In the simulations, a reduction of the unbalance
mass appears to be an effective way to reduce the vibratuah ¢é the non-linear response and the
subharmonic components if the rotation speed is higherth@ov-pm, as illustrated in Figures 13.
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Initially a softening-type nonlinearity, due to the nondar contribution of the rolling bearing, is ob-
served for low excitation levels (i.en, = [1;2]g). This "softening effect” is observed on the first
and second orders around the first forward critical speed.aR@xcitation level of about 0.5 times
the initial case (frommn, = 2¢g tom, = 1g), the peak of the response appears for a frequency lower
than about 2% in comparison to the initial case fg = 2g), even if the amplitude increases. For
the two highest excitations (i.en, = 3¢ andm, = 4g), a hardening-type nonlinearity is obtained
with jumps. Jumps can be observed not only for the first orddrthe complete non-linear response
(i.e. Composite Power), but also for the second harmonicpaorant, as shown in Figure 13. For
these two highest excitations, increases of about 2% ancdk8pectively of the frequency of the max-
imum amplitude are observed. Moreover, an increase of ttaion speed interval where two stable
solutions coexist is obtained due to the hardening-typdimearity of the rolling bearing. For low
rotational speeds (i.ew = [0 — 1000]rpm), it is noted that the non-linear responses and the most
important sub-harmonic component in the amplitudes (réei06) are not changed.

Secondly, Figures 14 give the non-linear amplitudes andtheier components for the radial
clearance. In this example, the radial clearance is desdefasm 30um to Oum. It can be seen that
that the radial clearance influences the critical speedseofdtor. By increasing the radial clearance,
a small softening-type nonlinearity can be observed. Ferléingest radial clearance (30n), the
peak of the response appears for a frequency lower by abourh 4&mparison to the initial case (10
um). However, the non-linear response and the subharmonipeoents appear to be very similar
for the different radial clearances under study. Finaligufes 15 illustrate the non-linear contact
forces for the different unbalances and radial clearancethe rotation speed arourd@®00rpm. It
should be noted that the unbalance mass influences the mear-liestoring forces at the rolling-
bearing element: increasing the mass unbalance allowstbeto whirl in the cage with an increase
of the non-linear contact forces. A reduction or increaseadfal clearance has very little effect on
the non-linear contact forces.
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Figure 13: Influence of the unbalance mass on the rotor unbal@sponses (black=composite power,
blue=order 1, red=order 2, magenta=order 3, green=ordsraf=order 5, grey=order 6, m,, = 1g,
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4 Conclusion

This Harmonic Balance Method with a condensation procedasedeveloped in order to analyze the
non-linear behavior of a rotor system with a rolling bearegigments. In this study, twelve harmonic
components were chosen in order to approximate the noafli@sponse. The non-linear elements
are both due to the radial clearance and the Herztian cooé#eeen races and rolling elements.

The results demonstrated that the non-linear unbalanpemss and the associated orbits can be very
complex due to the non-linear elements and the relativeribomion of unbalance forces and radial
clearance: thex!"” Fourier components can make a significant contribution wihenrotor passes
through thel sub-critical resonances and critical speeds. In partictia2x and3x and6x super-
harmonic frequency components afids and : sub-critical resonances are significant. It appears
that the vibration amplitudes in the sub-critical and catiresonances depend on the radial clearance
and unbalance mass. If the unbalance mass and radial atearamnain constant during operation of
rotor, thelx, 2x and3x amplitude may change during run-up or rundown due to theroenae of

the jump phenomenon.

The changes in the non-linear contacts at each rolling bgatement were examined in details, with
particular attention given to when the rotor exceeds @it&peeds. It was shown that the contact
evolution for each ball-bearing can be very simple evenafribn-linear behavior of the rotor and the
associated orbits are complex. Finally, it was shown thagasmsbalance and radial clearance affect
the non-linear contact forces and the whirling motion of theor at the rolling-bearing element.
In particular, it was shown that increasing small excitatievels leads to an initial softening-type
nonlinearity, which turns into hardening-type for highgciations.

Nomenclature

X displacement vector

X velocity vector

X acceleration vector

M mass matrix of the rolling-bearing rotor system

K stiffness matrix of the rolling-bearing rotor system

G gyroscopic matrix of the rolling-bearing rotor system

C damping matrix of the rolling-bearing rotor system

F; vector of the weight and unbalance forces

Fy; vector of the non-linear forces due to the rolling-elemesdring

m order of the Fourier series

A,  Fourier coefficients of the sinus function for thé& order

B. Fourier coefficients of the cosinus function for tki& order

Y?  plinear degrees of freedom of the rolling bearing rotor syste

Y? g non-linear degrees of freedom of the rolling bearing roy@mtem

B}  Fourier coefficients of the sinus function for th& order of the non-linear dof
A} Fourier coefficients of the cosinus function for thi& order of the non-linear dof
B}  Fourier coefficients of the sinus function for th& order of the linear dof

A?  Fourier coefficients of the cosinus function for thé order of the linear dof
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