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In dealing with multiple zeta values, the main diophantine challenge is
to prove that known dependence relations among them suffice to deduce
all algebraic relations. One tool which should be relevant is the structure
of Hopf Algebras, which occurs in several disguises in this context. How
to use it is not yet clear, but we point out that it already plays a role in
transcendental number theory: Stéphane Fischler deduces interpolation
lemmas from zero estimates by using a duality involving bicommutative
(commutative and cocommutative) Hopf Algebras.

In the first section we state two transcendence results involving values
of the exponential function; they are special cases of the linear subgroup
Theorem which deals with commutative linear algebraic groups.

In the second section, following S. Fischler, we explain the connection
between the data of the linear subgroup Theorem and bicommutative
Hopf algebras of finite type.

In the third and last section we introduce non-bicommutative Hopf
algebras related to multiple zeta values.

*Lecture given at University of Kinki (Osaka), for the international confer-
ence ‘“Zeta-functions, Topology and Quantum Physics 2003” March 3-6, 2003
http://math.fsci.fuk.kindai.ac.jp/zeta/. The author wishes to thanks Professor Shigeru
Kanemitsu for his kind invitation, his generous support and for the excellent organisation of
this conference. Last but not least, I am grateful to Stéhane Fischler for valuable remarks
on a previous version of this paper.
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1. Transcendence, exponential polynomials and
commutative linear algebraic groups

We start with two examples of transcendence results; their proofs
involve exponential polynomials and they occur as corollaries of a general
result on commutative algebraic groups: the linear subgroup Theorem.

In this context, there is duality, which can be explained by means of
the Fourier-Borel transform of exponential polynomials. This duality
is revisited by S. Fischer from the view point of commutative linear
algebraic groups, using Hopf algebras.

1.1 Transcendence results

Here is our first transcendence result ([B] Theorem 2.1).

Theorem 1.1. (Baker). Let fy, ..., 3, be algebraic numbers and aq, . .., ap,
be non-zero algebraic numbers. For 1 <1i < n, denote by log a; any com-
plex logarithm of a;. Assume

Bo + Brlogag + -+ -+ Brloga, = 0.

Then it holds that

1. By =0.

2. If (B1,...,0n) # (0,...,0), then the numbers logay,...,loga, are
Q-linearly dependent.

3.If (logay,...,logay) # (0,...,0), then the numbers [y,...,0B, are
Q-linearly dependent.

As is well known this result includes Hermite’s result (1873) on the
transcendence of e, Lindemann’s result (1882) on the transcendence of
m and more generally

Corollary 1.2. (Hermite-Lindemann). If 3 is a non-zero algebraic
number, then eP is a transcendental number.

Equivalently, if o is a non-zero algebraic number and if loga is any
non-zero logarithm of «, then log a is a transcendental number.

This includes the transcendence of numbers like e, T, e‘/i, log 2.
Denote by Q the field of all complex algebraic numbers, which is the

algebraic closure of Q in C and by £ = exp_l(ﬁx) the Q-vector space
of logarithms of algebraic numbers:

L={ eC;eecQ"}={loga; acQ"}.
Hermite-Lindemann’s Theorem asserts that £ does not contain any non-
zero algebraic number:

£LNQ = {0}.
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Another corollary of Baker’s Theorem 1.1 is the answer to Hilbert’s
seventh problem, given by A.O. Gel’fond and Th. Schneider in 1934:

Corollary 1.3. (Gel’fond-Schneider). If 8 is an irrational algebraic
number, a a non-zero algebraic number and log a a non-zero logarithm
of a, then the number

o = exp(Blog a)

1s transcendental.

Gel’fond-Schneider’s Theorem (Corollary 1.3) asserts that the quo-
tient of two non-zero elements in £ is either rational or else transcen-
dental; Baker’s Theorem 1.1 implies more generally that Q-linearly in-
dependent elements of £ are Q-linearly independent.

Theorem 1.1 also yields the transcendence of numbers like e\/iQ‘/g,

/1d—x—1<10 2+1>
0 1+f1:3_3 & \/§

and more generally (under suitable assumptions — see [B] Theorems 2.2,
2.3 and 2.4) of numbers of the form

eﬁoafl . “afnm and [y + Bilogay + -+ + By log ay,

when the numbers «; and 3; are algebraic.

It is to be remarked that Baker’s Theorem does not include all known
transcendence results related to the exponential function: here is an
example ([W] p. 386).

Theorem 1.4. (Sharp six exponentials Theorem). Let x1,z2 be
two complex numbers which are Q-linearly independent and y1,y2,ys3
three complex numbers which are also Q-linearly independent. Further
let Bij (i=1,2, j =1,2,3) be siz algebraic numbers. Assume

"V P e Q for i=1,2, j=1,2,3.

Then x;y; = B fori=1,2, j =1,2,3.

The special case (3;; = 0 for all 7, j is known as the six exponentials
Theorem (due to Lang and Ramachandra in the 60’s — see references in
(W], § 1.3): if x1,x2 are Q-linearly independent and y1,y2,ys are also
Q-linearly independent, then at least one of the siz numbers

e (1=1,2, j=1,2,3)

1s transcendental.



200 ZETA FUNCTIONS, TOPOLOG AND QUANTUM PHYSICS

The four exponentials Conjecture ([W] Conjecture 1.13) asserts that
two values for y should suffice: if x1,xo are Q-linearly independent and
Y1, Y2 are also Q-linearly independent, then at least one of the four num-
bers

e (1=1,2, j=1,2)

18 transcendental.

A sharper result is expected, which we call here the sharp four expo-
nentials Conjecture: under the same assumptions as in the four expo-
nentials Conjecture, if 8;; (1 = 1,2, j = 1,2) are four algebraic numbers
such that

Vi P e Q for i=1,2, j=1,2,

then one should have z;y; = B;; fori=1,2, j =1,2.

Conjecture 1.5. (Sharp five exponentials Conjecture). If z;, o
are Q-linearly independent, if y1,y2 are Q-linearly independent and if
a, P11, Bi2, B21, B2, v are six algebraic numbers such that

T1y1—P11  x1y2—P12  T2y1—PF21  ,T2y2—LF22 Yx2/T1)—C8
e , € , € , € , e(r2/71)

are algebraic, then x;y; = Bij for i = 1,2, j = 1,2 and furthermore
YTy = X1 .

The case 3;; = 0 of Conjecture 1.5 is an easy consequence of the sharp
six exponentials Theorem 1.4: this is the five exponentials Theorem (
[W] p. 385): If z1, z2 are Q-linearly independent, if y1,y2 are Q-linearly
independent and if v is a non-zero algebraic, then at least one of the five

numbers
eIV g1V T2 T2y eYr2/T1

18 transcendental.

Moreover, in the special case where the three numbers y;, yo and 7 /x;
are Q-linearly independent, the sharp five exponentials Conjecture 1.5
follows from the sharp six exponentials Theorem 1.4 by setting

ys=7v/x1, Biz=r, [az=aq,
so that
z1ys —Fi3 =0 and woy3 — Pag = (yx2/21) — .

In the case where the three numbers yi, y2 and 7/z; are linearly de-
pendent over Q, the conjecture is open. A consequence of the shar2p
five exponentials Conjecture 1.5 is the transcendence of the number ™ :
take

331:91:'7:1, xQZyQZ’iW,a:07 ﬂllzlv BZ]:O for (/ij)#(]'a]-)
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So far, we only know (W.D. Brownawell and the author) that at least
one of the two statements holds:
e ¢™ is transcendental.
o The two numbers e and 7 are algebraically independent.
In the same way, setting

ri=y1=7y=Lx=yp=\ a=0,6u=1 6;=0 for (ij)#(1,1),

we deduce from Conjecture 1.5 the transcendence of ¢** when ) is a non-
zero logarithm of an algebraic number. Writing a = e* or A = log o, we
have
6)\2 _ aloga.

Only the following weaker statement is known: at least one of the two
numbers

€>\2 _ alogoc’ e>\3 _ a(loga)z
s transcendental, which was proved initially by W.D. Brownawell and
the author as a consequence of a result of algebraic independence; how-
ever it is also a consequence of the sharp six exponentials Theorem 1.4
with

z1=y1=1,m=ya=\ y3=A% =1, Bi; =0 for (i,j) # (1,1).

The sharpest known result on this subject is the strong siz exponen-
tials Theorem due to D. Roy ([W] Corollary 11.16). Denote by L the
Q-vector space spanned by 1 and £: hence L is nothing else than the
set of complex numbers of the form

Bo + Zﬁi log a;,
i1

with n > 0, 8, algebraic numbers, o; non-zero algebraic numbers and
all values of their logarithm are considered. The strong six exponentials
Theorem states that if z1,zo are Q-linearly independent and if y1, Y2, Y3
are Q-linearly independent, then at least one of the siz numbers

18 not in E

The strong four exponentials Conjecture ([W] Conjecture 11.17) claims
that the same should hold with only two values y1,y2 in place of three.
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1.2 Exponential polynomials

The proofs of both Theorems 1.1 and 1.4 involve exponential polyno-
mials. Here are basic facts on them.
For the proof of Baker’s Theorem 1.1, assume

Bo + b1 10g ap+ -+ ﬁnfl log Qp_1 = log Q.

In Gel’fond-Baker’s Method (B1), we consider the following n + 1
functions

z0, €74, ..., el eﬂ020+51Z1+~~+5n71zn71

of n variables zo, ..., z,—1. At the points Z(1,log a1, ...,log a,—1) € C,
all these functions take algebraic values. Moreover we also get algebraic
numbers by taking derivatives with respect to the operators 9/9z;, (0 <
i<n-—1).

Notice that there are n variables, n 4+ 1 functions, 1 point (together
with its multiples) and n derivations (together with their compositions).

In Generalized Schneider’s Method (Bz), we consider the n + 1 func-
tions: zg, 21, ...,2p_1 and

Zn—1
n

e*ait o =exp{zo+ z1logas + -+ zp_1log a1}

at the points: {0} x Z" "' +Z(Bo,,...,Bs_1) € C". Only one derivation
yields algebraic numbers, namely 0/0z.

In this alternative approach there are again n variables and n + 1
functions, but a single derivation, while the points form a group of Z-
rank n.

1.3 Data for the proof of Theorem 1.4

Here are the main data for the proof of Theorem 1.4.

Assume z1, ..., x, are Q-linearly independent, yq, . . ., yp are Q-linearly
independent, (3;; are algebraic numbers and \;; are elements in £ such
that

)\ij:a:iyj—ﬁij for = 1,...,0,, jZl,...,b

with ab > a + b.

For Theorem 1.4 it would be sufficient to restrict to a = 2, b = 3,
but it will be useful to introduce these two parameters a and b so that
the situation becomes symmetric. As we shall see, we should assume
ab > a + b, which means either ¢ > 2 and b > 3 or else a > 3 and b > 2.

Consider the functions:

zi, eF/mEent) =5 (1 <i<a)
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at the points of the subgroup in C spanned by
(Bujs - -+ Bajr A1j) € C*TL (1 <5 <b).

These values are algebraic and the same holds for the values at the same
points of the derivatives of these functions with respect to the differential
operators 9/0z; (2 <i < a) and 9/0zq41 — 0/0z1.

Hence we are dealing with 2a functions in a + 1 variables, b points
(linearly independent) and a derivations.

1.4 Commutative linear algebraic groups

Theorems 1.1 and 1.4 are special cases of the linear subgroup Theo-
rem. Consider a commutative linear algebraic group, say G = GZO X G%
(where G, denotes the additive group and Gy, the multiplicative group),
over the field Q of algebraic numbers. Its dimension is d = do + d;. Let
W C T.(G) be a C-subspace which is rational over Q. Denote by /g its
dimension. Let Y C T.(G) be a finitely generated subgroup such that

I = exp(Y) is contained in G(Q) = Qdo x (Q ). Let ¢, be the Z-rank
of I'. Finally let V C T.(G) be a C-subspace containing both W and Y.
Let n be the dimension of V.

The conclusion of the linear subgroup Theorem below ([W] Theorem

11.5) is non-trivial only when

n(€1 + dl) < l1dy + Lody + 1dp. (1.6)

For each connected algebraic subgroup G* of G, defined over Q, we
define

Y*=YNT.(G"), V'=VNT(G"), W'=WnNT.(G")
and
d* = dim(G*), {7 =rankz(Y"), n*=dimc(V"), £5=dimc(W").

We may write G* = G{; x G} where G{; is an algebraic subgroup of Gy
and G7 is an algebraic subgroup of G1. Define

dy = dim(Gy), di = dim(G7),

so that d* = djj + dj.
If we set
GO / Gl G

/__’ = 9 ,:—: / /
Gy = G 1 G G o Gy x G,
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! Y / V / W
Y:Y*7 V:W’ W:W*’
and
dy = dim(Gp), dj =dim(G}), d =dim(G),
¢y =rankz(Y’), n'=dimc(V'), £ =dimcW'),
then

do=dy+dy, dy=dj+dy, d=d" +d,
=0+, n=n"+n, ly=1L05+1.
Theorem 1.7. (Linear subgroup Theorem).

(1) Assume d > n. Then there exists a connected algebraic subgroup G*
of G such that

0+ dy < dy
d—t0, —d—n

(1°) Assume £y > 0. Then there is a G* for which
=0 _n—1{
dy + 03 0

d >t and

(dy,47) # (0,0)  and

(2) Assume d > n and €y > 0. Assume further that for any G* for which
Y* £ {0}, we have
n* — ¢ S = b
ET - 4
Assume also that there is no G* for which the three conditions (] = 0,
n' =, and d' > 0 simultaneously hold. Then

di >0 and El(d— n) < dl(n—fo).

(2°) Assume d > n and {1 > 0. Assume further that for any G* for
which d' > n', we have
dq < d}
d—n = d —n'
Assume also that there is no G* for which the three conditions di = 0,
d* =n* and d* > 0 simultaneously hold. Then

n>¥f, and El(d—n) < dl(n—ﬁo).

(3) Assume €1 > 0. Then the family of G* for which ¢; # 0 and (n* —
05)/4; is minimal is not empty. Let G* be such an element for which d*
is minimal. Then either d* = n* or else

n — 4o n*—€8>d*—n*'

di >0 d >
1Zb et s T ST
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(3°) Assume d > n. Then the family of G* for which d > n’ and
dy/(d" —n') is minimal is not empty. Let G* be such an element for
which d' is minimal. Then either £] =0 or else

d; 4o

/ /
n >0, and > .
0 d—n —d—n' "~ n -

1.5 Fourier-Borel duality

Unifying the notation of §1.2 involving exponential polynomials, we
let dy + dy be the number of functions, dy of which are linear and d; are
exponential, £o the number of derivations, #; the number of points and
n the number of variables.

do d1 fo [1 n
Baker B: 1 n n 1 n
Baker Bs n 1 1 n n
Sharp six exponentials | a a a b |a+1

The inequality (1.6)
n(ly 4+ dy) < lrdy + body + C1dp.
is satisfied in the case of Baker’s Theorem 1.1 since
n(ty + dy) = n® 4 n, Ordy + Cody + O1do = n? +n+ 1.
For Theorem 1.4 the condition a 4+ b < ab is required:
n(ly+d)) =a*+ab+a+0b,  ld + Lody + (1dy = a® + 2ab.
There is a duality in each two cases: it consists in permuting
(do, du, Lo, 1) = (Lo, {1, do,d1)

For Baker’s Theorem 1.1 it permutes methods By and Bs. As pointed
out to me by S. Fischler, for Theorem 1.4 it is not a mere permutation
of a and b. Indeed the proof in § 1.3 involved the parameters

do=di=¢y=a, l1=b n=a+l,
henceforth the dual proof will involve the parameters

bo=41=dy=a, di=b, n=a+1.
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In the dual proof there are dy + di = a + b functions, namely z; —
Zat1, 22, - - - 5 2q tOgether with

eﬁljz1+---+ﬂajza+)\1jzfl+1 (1 < ] < b)7

the derivative operators are 0/0z; (1 < ¢ < a) and the points are
(0,...,0,1) together with

(xi/w1, =0i2y - .., —0ia, wi/71) (2<i<a)

where 6;; is Kronecker’s symbol.
This duality rests on the analytic formula

() o= (A e 0

This formula (1.8) is related to the Fourier-Borel transform as follows.
For s a non-negative integer and y a complex number, consider the
analytic functional

Loy : f+— (%)Sf(y)-

Its Fourier-Borel transform is the analytic function Lg,(f;) of ( € C
which is the transform of the function f¢ : z +— e*C:

fC(z) = eZCa Lsy(f() = CseyC_
This yields (1.8) for ¢ = 0. The general case follows from

Loy (28 ) = <d%>t Lsy(fo)-

Formula (1.8) extends to the higher dimensional case (that is when
n > 1). For v = (v1,...,v,) € C", set

0 0
Dy = 0] —— 4+ Uy
= 01821 toetv Oz,

Let wy,...,wy, uy,...,uq, and in C", ¢t € N% and s € N, For
z € C™, write

(ug)i = (ulé)tl e (Qdog)tdo and D‘% = Dill e D;ZOO .

Then
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Ezample. In the proof of the sharp six exponentials Theorem 1.4 given
in§1.3wheredy=dy =¥ =a,l1=bandn=a+1,

w; = (0i1,...,0i0,0) (1<i<a),
w; = (1,0,...,0,~1) and

w; = (0,02,...,0i0,0) (2<i<a),

is a linear combination of 1,...,, with ; = (0,...,0,1) and
i = (wi/w1, —0i2, ..., =0ia, i/m1) (2<i<a)
while is a linear combination of 1, ..., with

i = (B Baj, A1) (1<5<b).

Remark. The Fourier-Borel duality is not the same as the duality intro-
duced by D. Roy in [Ro] which relates (1) and (1’), (2) and (2’), (3) and
37

2. Bicommutative Hopf algebras

We consider commutative and cocommutative Hopf algebras (also
called bicommutative Hopf algebras) over a field of characteristic zero.
As the first example, the algebra of polynomials in one variable H =
[X] is endowed with a Hopf algebra structure with the coproduct A, the
co-unit € and the antipode S defined as the algebra morphisms for which

AX)=X®1+1®X, ¢X)=0 and S(X)=-X.

If we identify [X]® [X] with [T7, T5] by mapping X ® 1 to T} and 1 ® X
to 15, then

AP(X)=P(Ty+Ty), eP(X)=P(0), SP(X)=P(-X).

Since G4 (K) = Hom([X], K) and [G,] = [X], it follows that [G,] is a
bicommutative Hopf algebra of finite type.

Our next example is the algebra of Laurent polynomials H = [Y,Y ~!]
which becomes a Hopf algebra with the coproduct A satisfying A(Y') =
Y ®Y, the co-unit e for which ¢(Y) = 1 and the antipode S with S(Y') =
Y~!. The algebra isomorphism between H ® H and [Ty, T} L T2,T271]
defined by

Y®1F—>T1, 1®Yl—>T2

gives

AP(Y) = P(T\Ty), eP(Y)=P(1), SP(Y)=PY™".
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Since Gy, (K) = Hom([Y,Y '], K), we have [Gy,] = [Y,Y '] and again
[Gn] is a bicommutative Hopf algebra of finite type.

Combining these two examples, one gets a whole family of Hopf alge-
bras. Indeed let dy > 0 and d; > 0 be two integers with d = dg+d; > 0.
The Hopf algebra

[X]%% @ [y, Yy ~1)®h

is isomorphic to

H = [le-'-,Xdoa}/iayl_la" . 7Yd17Yd:1]7

hence is isomorphic to [G] with G = G% x G,

According to [A] Chap. 4 (p. 163), the category of -linear algebraic
groups is anti-equivalent to the category of commutative -Hopf algebras
of finite type. Hence the category of commutative linear algebraic groups
over s anti-equivalent to the category of bicommutative Hopf algebras
of finite type over .

The commutative and connected linear algebraic groups over an alge-
braically closed fields are the groups G% x G4 and the Hopf algebras
[Gd x Gd1] are the bicommutative Hopf algebras of finite type over
without zero divisors. In [G% x G9] the -vector space of primitive
elements has dimension dy, while the rank of group-like elements is d;.

We exhausted the list of examples of bicommutative Hopf algebras
without zero divisors and of finite type. However this is not the end of
the story: let W be a -vector space of dimension £y. Then the symmetric
algebra Sym(W) on W has a natural structure of bicommutative Hopf
algebra of finite type [H3]. If 0,...,0y, is a basis of W over , then
Sym(W) is isomorphic to [J1, ..., dy,], hence to [G2].

If T is a free Z-module of finite type and rank ¢, then the group
algebra I' is a bicommutative Hopf algebra of finite type isomorphic to
G4,

Therefore the category of bicommutative Hopf algebras without zero
divisors and of finite type over is equivalent to the category of pairs
(W,T') where W is a -vector space of finite dimension and I a free Z-
module of finite type. In

H~Sym(W)®T,

the space of primitive elements has dimension ¢y = dim W, while the
group-like elements have rank ¢; = rankI.

We now take = Q. S. Fischler [F1] further introduces two more cate-
gories.

Let €1 be the category whose objects are the triples (G, W,T") with
G = G% x G4 a commutative linear algebraic group over Q, W C T.(G)
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a subspace which is rational over Q and I' C G(Q) a torsion free finitely
generated subgroup; moreover G is minimal for these properties: no
algebraic subgroup G* other than G itself satisfies W C T.(G*) and
I Cc G*(Q).

We denote by £y the dimension of W and by ¢; the rank of I'.

The morphisms f : (G, W1,T'1) — (G2, W, T'2) are given by a mor-
phism f : G; — G3 of algebraic groups such that f(I'1) C I'y such that
the linear tangent map to f

df : Te(Gh) — Te(G2)

satisfies df (W7) C Wha.

The definition of the category €, requires the following additional
data. Let H be an bicommutative Hopf algebra of finite type over Q
and without zero divisors. Denote by dy the dimension of the Q-vector
space spanned by the primitive elements and by di the rank of the
group-like elements. Let H' be also a Hopf algebra, which is again
bicommutative, without zero divisors and of finite type over Q. The
dimension of the Q-vector space spanned by the primitive elements in
H' is denoted by ¢y while ¢; is the rank of the group-like elements in H’.
Let (-) : H x H — Q be a bilinear map such that

(r,yy) = (Az,y®y') and (z2',y) = (z @', Ay). (2.1)
We used the notation

(@@ B,7©8) = (@, 7)(8,9).

The objects of the category €, are the triples (H, H', (-)) given by
two bicommutative Hopf algebras, without zero divisors and of finite
type over Q, and a bilinear product satisfying (2.1). The morphisms are
the pairs (f,g) : (H, Y, (1) — (Ha, Hb, (-)2) where f : Hy — Hy and
g : Hy — Hj are Hopf algebra morphisms such that

(z1,9(x5))1 = (f(21), 25)a.

One composes two morphisms (f1,¢1) : (Hi, H{,(-)1) — (Ha, H}, (-)2)
and (fa, g2) : (Ha, Hy, (-)2) — (Hs, Hs, ()3) as

(f20 f1,91092) : (Hy, Hy, ()1) — (Hs, Hg, ()3).
Stphane Fischler [F1] proves:

Theorem 2.2. (S. Fischler). Both categories €1 and €5 are equivalent.
This equivalence preserves the parameters dgy, dy, Lo, £1.
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The category €2 has a natural contravariant involution which consists
in permuting H and H’. The corresponding involution in the category
¢ is the Fourier-Borel duality (1.9) we discussed above, which exchanges
(do,d1) and (€p,¢;) in Theorem 1.7.

The main goal in [F1] is to establish new interpolation lemmas. Theo-
rem 2.2 enables Fischler to obtain them by duality, starting from known
zero estimates.

Roughly speaking, a zero estimate (see for instance [W] § 2.1) is a
lower bound for the degree of a polynomial vanishing at a given finite
set of points (multiplicities may be considered). An interpolation lemma
provides a lower bound for an integer D with the following property:
given a finite set of points (maybe with multiplicities), there is a poly-
nomial of degree at most D taking given values at these points. In
terms of matrices, the zero estimates states that a matrix, whose entries
are the values of monomials at the given points, has maximal rank, if
only there are enough monomials (hence the matrix is sufficiently rect-
angular), while the interpolation lemma states that such a matrix has
maximal rank once there are enough points (again this means that the
matrix is sufficiently rectangular, but in the other direction).

This method using a duality to deduce interpolation lemmas from
zero estimates works only for linear commutative algebraic groups. Zero
estimates are known more generally for commutative algebraic groups
(hence for abelian and semi-abelian varieties), but duality does not ex-
tend to the non-linear case. Fischler [F2] uses other arguments to obtain
interpolation lemmas for non-linear commutative algebraic groups.

3. Hopf algebras and multiple zeta values

Let & denote the set of sequences s = (s1,...,8;) € N* with k > 0,
5122,5221(2§’L§]{?)

The weight |s| of s is s + -+ + si, while k is the depth of s.

For s € & set

C(s) = Z nyst .nlzsk‘

ny>->np>1

When s is the empty sequence (of weight and depth 0), we require ((s) =
1.

3.1 Goncharov’s Conjecture

Denote by 3 the Q-vector subspace of C spanned by the numbers

(2im) Fl¢(s) (s € ).
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As is well known (and as we shall see), for s and s’ in &, the product
C(s)¢(8) is in two ways a linear combination with positive coefficients
of numbers ((s”).

Hence 3 is a Q-sub-algebra of C with a double filtration by weight
and depth.

For a graded Lie algebra C, denote by iC, its universal envelopping
algebra and by

ucy = Pue);
n>0

its graded dual, which is a commutative Hopf algebra.
Conjecture 3.1. (Goncharov [G]). There exists a graded Lie algebra

Ce and an isomorphism
3~ Uy

of bifiltered algebras, by the weight on the left and by the depth on the
right.

Hopf algebras also occur in this theory in a non-conjectural way. They
are used to describe the above mentioned quadratic relations express-
ing the product of two multiple zeta values as a linear combination of
multiple zeta values.

3.2 The concatenation Hopf algebra

Let X = {zo,x1} be an alphabet with two letters. The free monoid
(of words) on X is

X*={ze -2, ; 6 €{0,1}, (1 <i<k), k>0}

whose product is concatenation, and its unity is the empty word e.
Let $ denote the free algebra Q(X) on X. An element P € § is

written

P = Z (Plw)w

weX*
with coefficients (P|w) € Q.
The concatenation Hopf algebrais (9,-, e, A €, S) where the coproduct
is
AP =P(zo®1+1®z0,2, @1 +1®x1),

the co-unit ¢(P) = (P | e) and the antipode

S(x1--zn) = (—1)"2p - 21

forn > 1 and zq,...,2, in X.
It is a cocommutative, not commutative Hopf algebra.
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3.3 The shuffle Hopf algebra

The shuffle product o : § X $ — § is defined inductively by the
conditions

ume = emu = u and zumyv = x(umyv) + y(rumv)

for z and y in X, v and v in X*. It endows $ with a structure of
commutative algebra 9.
According to [Re] Theorem 3.1, for P € 6,

AP = )" (Plum)u®v. (3.2)

u,veX*

The shuffle Hopf algebra is the commutative (not cocommutative)
Hopf algebra (9, m,e, ,¢€,.5), with ® : § — § ® § defined by

(@(w) [ u©v) = (uv | w).

Hence

From (3.2) it follows that the shuffle Hopf algebra is the graded dual
of the concatenation Hopf algebra (see [Re] Chap. 1).

We need to consider subalgebras of §.

For s > 1 define y, = xS_lxl. The subalgebra $' of $ spanned
by {y1,%2,...} is free, and so is the subalgebra $° of $! spanned by
{y2,v3,...}. Also ©! is the Q-vector space Qe + Hz1 spanned by {e} U
X*z1, while §° is the Q-vector space Qe + zoHx1 spanned by {e} U
on *1’1.

The shuffle mr makes $° and §* subalgebras of $;:

90 ol C P

Define a mapping ¢ : zoX*z; — C as follows. Each element w in 2o X *a;
can be written in a unique way ys, - - - ys, with s = (s1,...,s;) € 6. The
number of letters x1 in w is the depth k of, while the total number of
letters of w is the weight s1 + - -+ + s of s. Define

&(yﬁ T ysk) = C(Sl, B Sk)'
By Q-linearity one extends ¢ to a map from $° to C with ((e) = 1.
Using the representation of ¢ as Chen iterated integrals, namely ([K],
§ XIX.11), for w € xoX*x1,

(@ 7oy = / wer () -+~ we, (1)
1>t1 > >t,>0
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with ¢; € {0,1} (1 <i<p), e =0, ¢, =1,

dt dt
wo(t) = n and wi(t) = T

one checks that é is a commutative algebra morphism of 2 into C.

The structure of the commutative algebra $y is given by Radford
Theorem [Re] Chap. 6. Consider the lexicographic order on X* with
xo < x1. A Lyndon word is a word w € X* such that, for each decom-
position w = wv with u # e and v # e, the inequality w < v holds.
Examples of Lyndon words are xg, z1, oz} (k > 0), z§z1 (£ > 0),
x373. Denote by L the set of Lyndon words. Then the three shuffle
algebras are (commutative) polynomial algebras

= K[lm, 95 = K[L\{zo}], and 6 = K[L\ {zo,z1}] .
Therefore

N = ﬁgu[xO]m - ﬁ?u[x()a xl]m and f)%u - f,)g_[[fl?l]m (33)

34 Harmonic algebra

There is another product being shuffle-like law on 9, called harmonic
product by M. Hoffman ([H1], [H2]) and stuffle by other authors [BBBL],
denoted with a star, which also gives rise to subalgebras

90 c ol 9,

It is defined as follows. First on X*, the map x : X* x X* — § is defined
by induction, starting with

T KW = WK T = W

for any w € X* and any n > 0 (for n = 0 it means exw = wxe = w for
all w € X*) and then

Yst * Y0 = Ys(u * Y10) + ye(Yst * v) + yse(u * v)

for v and v in X*, s and t positive integers.

The harmonic product is an efficient way of writing the quadratic
relations among multiple zeta values arising from the expression of ((s)
as series: ﬁ is a commutative algebra morphism of $° into C.

Hoffman [H1] gives the structure of the quasi-harmonic algebra §, as
well as of its subalgebras $! and $: they are again polynomial algebras
on Lyndon words:

9. =KL, 90=K[L\{zo,z1}], and 6, =K[L\ {zo,21}],.
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Hence
9% = 9i[zo)s = 90wo, 71]x  and  HL = 90[z1]s. (3.4)

The quasi-shuffle Hopf algebra is the commutative algebra $! with
the coproduct A defined by the conditions

Aly)) =yiQe+e®y;

for ¢ > 1, the co-unit
e(P)=(P|e)

and the antipode

S(ysl T ysk) - (_l)kysk o Ysy-
This quasi-shuffle Hopf algebra is isomorphic to the Hopf algebra of non-
commutative symmetric series, whose graded dual is the Hopf algebra
of quasi-symmetric series (see [H2] and [H3]) .

3.5 Regularized double shuffle relations

As we have seen the map f is a commutative algebra morphism of $%
into C and also of .62 into C. Hence the kernel of é in §Y is an ideal
for the two algebra structures m and x. A fundamental question (cf.
Goncharov’s Conjecture 3.1) is to describe this kernel.

The relations

C(umv) = C(u)C(v) and  C(u*v) = C(u)C(v) for wand v in §°

show that, for any u and v in $°, umv — ux v belong to the kernel of f
The equations

C(umv —uxv) =0 for u and v in §° (3.5)

are called the standard linear relations among multiple zeta values.
Other elements belong to the kernel of (: Hoffman’s relations (see for
instance [Z]) are

C(zymw — 21 xv) =0 for v in §°. (3.6)
Notice that zjmv — 21 xv € §° for v € §°. The simplest example
Timys — Tl *x Yo € keré

yields the relation ((2,1) = ¢(3) known by Euler.
It was conjectured in [MJOP] that the elements

umv — uxv and xqmv — Ty *x v,
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when u and v range over the set $°, span the Q vector space ker& . This
conjecture is not yet disproved, but there is a little doubt about it for
the following reason.

From (3.3) and (3.4) it follows that there are two uniquely determined
algebra morphisms

Zy: 9 — R[T] and Z,: 9. — R[T]

which extend ¢ and map z; to T. According to [C], the next result is
due to Boutet de Monvel and Zagier (see also [I-K]).

Proposition 3.7. There is a R-linear isomorphism o : R[T] — RI[T]
which makes the following diagram commutative:

An explicit formula for o is given by means of the generating series

4 éf__ = . n§£E2 n
ZQ(T)E!—eXp Tt+ Y (-1) =t (3.8)

>0 n=2

It is instructive to compare the right hand side of (3.8) with the for-
mula giving the expansion of the logarithm of Euler Gamma function:

I'(1+1t)=exp (—72& + i(—l)"%t”) .
n=2

Accordingly, o may be viewed as the differential operator of infinite order

exp (i(—n”@ <§T)>

n=2

(just consider the image of e!T).

In [I-K] Thara and Kaneko propose a regularization of the divergent
multiple zeta values as follows.

Recall that $, = $°[x¢,71]m. Denote by reg, the Q-linear map
9 — 69 which maps w € $) to its constant term in its expansion as a
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polynomial in g,z in the shuffle algebra $°[xg, z1]y. Then reg,, is an
algebra morphism $, — 3681. Clearly for w € §Y we have

reg (w) = w.

Theorem 3.9. (Ihara, Kaneko). Let w be any word in X*. Write
w = 2 woxd with wy € H°, m >0 and n > 0. Then

reg,, (w g E ) phm(2 worg ) ma))

=0 5=0

Special cases are:
reg (z1") =reg (z5) =0 for m>1 and n>1.

reg, (z7'zh) = (=1 12l for m>1 and n>1.

reg, (z'xou) = (=1)"zo(2'mu) for m>0 and wuwe X x;.
reg(uxiag) = (—1)"(umag)zy  for n>0 and wue€zgX™.

Moreover there is an explicit expression for w as a polynomial in xg and
71 in the algebra $%[zo, 21]u:

m n
E 1regIJI " wory ! )ma| ma)).
=0 j=

The regularized double shuffile relations of Thara and Kaneko in [[-K]
produce a number of linear relations among multiple zeta values:

Theorem 3.10. (Ihara, Kaneko). For w € ' and wy € $°,

reg,, (wmwo — w * wy) € ker C. (3.11)

Special cases of (3.11) — for which no regularization is required — are
the standard relations (3.5) which correspond to w € $° and Hoffman’s
relations (3.6) which correspond to w = z;.

An example of u and v in $! for which umv — uxv € §9 but é(umv —
uxv) #0isu=v=ux.
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3.6 The main diophantine Conjecture

The main diophantine Conjecture arose after the works of several
mathematicians, including D. Zagier, A.B. Goncharov, M. Kontsevich,
M. Hoffman, M. Petitot and Hoang Ngoc Minh, K. Ihara and M. Kaneko,
J. calle, P. Cartier (see [C]).

Conjecture 3.12. The kernel of f is spanned by the elements
reg, (wmwy — w * wp)
where w ranges over $t and wy over H°.

Conjecture 3.12 means that the ideal of algebraic relations among
multiple zeta values is generated by the double shuffle relations of IThara
and Kaneko in Theorem 3.10.

More precisely, we introduce independent variables Z,,, where u ranges
over the set X*z1. Forv=>" cyuin 9l we set

Zy = ZcuZu

u

where Z, = 1. In particular, for u; and ug in xo X*21, Zy;mu, a0d Zy, xus,
are linear forms in Z,, u € xoX*x;. Also, for v € 209x1, Zs my—z,%v 1S
a linear form in Z,, u € rgX*z1.

Denote by S the ring of polynomials with coefficients in Q in the
variables Z,, where u ranges over the set of words in zgX™*z; which
start with xyp and end with x;. Further, denote by J the ideal of R
consisting of all polynomials which vanish under the specialization map
R — R which is the Q-algebra morphism defined by

Zy = {(u) (u€mX ).

The Q-sub-algebra in C of multiple zeta values (up to the normalization
with powers of 27, this is the algebra 3 of Goncharov’s Conjecture 3.1)
is isomorphic to the quotient /7.

Let be the ideal of %R generated by the polynomials

ZnZy — Zymy and  Z,  with r = reg, (wmwy — w * wp),

where u, v, wg range over §Y and w over H'.
Theorem 3.10 can be written C J and Conjecture 3.12 means = 7J.
The ideal of R associated to the above mentioned conjecture of [MJOP]
(see § 3.5) is the ideal, contained in , generated by the polynomials

Zqu - ZumU7 Zqu - Zu*v and lemu—xl*ua

where u and v range over the set of elements in zgX*x.
The structure of the quotient of R/ is being studied by Jean calle [E].
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