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INFORMATION AND (CO-)VARIANCES IN DISCRETE

EVOLUTIONARY GENETICS INVOLVING SOLELY SELECTION

THIERRY E. HUILLET

Abstract. The purpose of this Note is twofold: First, we introduce the gen-
eral formalism of evolutionary genetics dynamics involving fitnesses, under
both the deterministic and stochastic setups, and chiefly in discrete-time. In
the process, we particularize it to a one-parameter model where only a selection
parameter is unknown. Then and in a parallel manner, we discuss the esti-
mation problems of the selection parameter based on a single-generation fre-
quency distribution shift under both deterministic and stochastic evolutionary
dynamics. In the stochastics, we consider both the celebrated Wright-Fisher
and Moran models.

Keywords: Evolutionary genetics, covariances, fitness landscape, selection.

Topics: Evolutionary processes (theory), Population dynamics (Theory).

1. Introduction and outline

In this Note, we revisit the basics of both the deterministic and stochastic dynamics
arising in discrete-time evolutionary genetics (EG). We start with the haploid case
with K alleles before switching to the more tricky diploid case. In the course of
the exposition, we shall focus on a particular one-parameter selection instance of
the general fitness model for which only the selection parameter is assumed to be
unknown.

Let us summarize and comment the content of Section 2. In the deterministic
haploid case, the updates of the allele frequency distributions are driven by the
relative fitnesses of the alleles, ending up in a state where only the fittest will
survive. From the dynamics, it appears that the mean fitness increases as time
passes by, the rate of increase being the variance in relative fitness. This constitutes
the core of the Fisher theorem of natural selection (FTNS). Introducing a discrete
version of the Fisher information on time brought about by the allelic frequencies,
it follows that one can identify this Fisher information with the variance in relative
fitness.

In the deterministic diploid case, there is a similar updating dynamics but now on
the full array of the genotype frequencies. When mating is random so that the
Hardy-Weinberg law applies, we may look at the induced marginal allelic frequen-
cies dynamics. It follows that the induced closed-form allelic updating dynamics
looks quite similar to the one occurring in the haploid case except that the mean
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fitness now is a quadratic form in the current frequencies whereas marginal fitnesses
no longer are constant but affine functions in these frequencies. In this context,
the FTNS still holds true but, as a result of the fitness landscape being more com-
plex, there is a possibility for a polymorphic equilibrium state to emerge. A short
incursion in the continuous-time setting shows that here again one can identify the
variance in relative fitness to a familiar Fisher information on time brought about
by the frequencies. If one rather looks at the partial rate of increase of the mean
fitness, one can identify it with half the allelic variance in relative fitness which
is that component of the full genotypic variance in relative fitness which can be
explained additively by the alleles constituting the genotypes, [3]. The remaining
interaction part of this decomposition of the full genotypic variance can naturally
be attributed to the dominance relationships between the alleles. In the interpre-
tation of some authors, including W. J. Ewens ([3], p. 64 − 67), this last property
based on the partial rate of increase rather constitutes the essence of the FTNS.
Using this circle of ideas, it follows that looking at the partial rate of increase of
the mean fitness also makes sense when dealing with the full array of the genotype
frequencies, no matter what form of mating is at stake. It also involves an allelic
variance in relative fitness. In each case, we keep looking at the incarnation of these
results when dealing with the one-parameter selection model. So far the results in-
troduced and discussed can be found to be classical, our own contribution being
perhaps to put things in order and fix the notations and formalism in a clear way.
An excellent introduction to these and related problems can be found in [7]. We
believe that the following developments can be considered as being entirely new.

To end up with Section 2, we discuss the estimation problem of the selection param-
eter based on both the current and shifted allele frequencies observations. Similarly,
we discuss this problem when the observable is a general scalar output of the current
frequency distribution. When looking at the updating of this output, we encounter
a particular incarnation of the Price equation, [4].

Section 3 is devoted to the stochastic version of these considerations when the
transitions in the constitutive allelic population sizes are given by a K−dimensional
Wright-Fisher model with total constant-size (see [3] and [8]). We show that the
mean of the increment of the random absolute mean fitness is positive, whereas
its rate of increase differs from its variance. We suggest that when the size of the
total allelic population goes to infinity, one should recover part of the marginal
deterministic theory. In the selection example, we compute the classical Fisher
information on the selection parameter and exhibit its possible use in the estimation
problem. We finally present some comparative issues pertaining to a related model
of fundamental importance in the context of stochastic EG: the Moran model.

Lots remain to be done in the same spirit, in particular including mutations and
considering the multi-loci case with recombination. We again emphasize that in
our models, there are no mutations included.

2. EG theory: the deterministic point of view

We start with the haploid case before moving to the diploid case, see ([3] and [7]
for similar concerns).
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2.1. Single locus: haploid population with K alleles. Consider K alleles Ak,
k = 1, ..., K attached to a single locus. Suppose the current time-t allelic frequency
distribution on the K−simplex SK is given by xk, k = 1, ...,K. Let x := xk, k =
1, ..., K stand for the column-vector1 of these frequencies with |x| :=

∑
k xk = 1.

Let wk > 0, k = 1, ..., K be the absolute fitness of allele Ak. Let

(1) wk (x) =
wk

w (x)

be the relative fitness of allele Ak where w (x) :=
∑

l wlxl represents the mean
fitness of the population at time t. We shall also let

(2) σ2 (x) =

K∑

k=1

xk (wk − w (x))
2

stand for the variance in absolute fitness and

(3) σ2 (x) =

K∑

k=1

xk (wk (x) − 1)
2

= σ2 (x) /w (x)
2

will be the variance in relative fitness.

From the deterministic EG point of view, the discrete-time update of the allele
frequency distribution on the simplex SK is given by2

(4) x′
k = pk (x) , k = 1, ..., K.

where pk (x) := xkwk (x) . The quantity wk (x) − 1 interprets as the frequency-
dependent Malthus growth rate parameter of xk.

The vector p (x) := pk (x), k = 1, ..., K, maps SK into SK . In vector form, with
w(x) := wk (x), k = 1, ..., K and Dx :=diag(xk, k = 1, ..., K), the nonlinear deter-
ministic EG dynamics reads:

x′ = p (x) = Dxw (x) = Dw(x)x,

or, with ∆x := x′ − x, the increment of x

∆x =
(
Dw(x) − I

)
x.

Avoiding the trivial case where fitnesses are all equal, without loss of generality, we
can assume that either w1 ≥ ... ≥ wK = 1 or w1 ≤ ... ≤ wK = 1. Thus allele A1

or AK has largest fitness. The deterministic EG dynamics attains an equilibrium
where only the fittest will survive. The equilibrium is an extremal state of the
boundary of SK .

Example (selection). In general, all the wk are unknown but sometimes, the set
of unknowns can be reduced to 1 as follows: Let s > −1 stand for a selection param-
eter. Let ak, k = 1, ..., K stand for a known [0, 1]−valued decreasing sequence with
a1 = 1, aK = 0 and assume wk = 1+sak. The fitness landscape is w (x) = 1+sa (x)
where a (x) :=

∑
k akxk. A possible choice of ak is ak = (K − k) / (K − 1) leading

to equally spaced fitnesses with wk+1 −wk = −s/ (K − 1) . An alternative choice is

1In the sequel, a boldface variable, say x, will represent a column-vector so that its transpose,
say x

∗, will be a line-vector.
2The symbol ′ is a common and useful notation to denote the updated frequency
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ak = (K/k − 1) / (K − 1) with wk+1 − wk = − Ks
K−1

1
k(k+1) . Depending on s > 0 or

s < 0, the unit fitness 1 is either the minimal or the maximal value of the ordered
wks. Although this particular model does not cover the class of all possible fitnesses,
its generality is sufficient for our purposes and allows a considerable simplification
of the exposition which otherwise would become tedious. It does not alter the gen-
eral line of thought in a major way. �

According to the EG dynamical system (4), for each k, the relative fitness decreases
as time passes by. Indeed, with ∆wk (x) := wk (x′) − wk (x)

∆wk (x) = wk

(
Dw(x)x

)
− wk (x) =

wk

w
(
Dw(x)x

) − wk

w (x)

=
wk∑

l wlwl (x) xl

−
wk∑
l wlxl

< 0

because wl (x) = wl

w(x) and w (x)
2

<
∑

l w
2
l xl. However, unless the equilibrium

state is attained, the absolute mean fitness w (x) increases:

∆w (x) = w (x′) − w (x) =
∑

k

wk∆xk

=
∑

k

wkxk (wk (x) − 1) =

∑
k w2

kxk

w (x)
− w (x) > 0.

The mean fitness is maximal at equilibrium. The rate of increase of w (x) is:

(5)
∆w (x)

w (x)
=
∑

k

xk (wk (x) − 1)
2

=
∑

k

(∆xk)
2

xk

which is the variance in relative fitness σ2 (x) defined in (3). These last two facts
are sometimes termed the 1930s Fisher fundamental theorem of natural selection
(FTNS).

Remarks.

(i) The expression appearing in the right-hand side of (5) is also

∑

k

(∆xk)
2

xk

=
∑

k

xk

(
∆xk

xk

)2

.

The discrete frequency distribution x depends on the time parameter t ∈ {0, 1, 2, ...}

which is itself discrete. The quantity Ix (t) :=
∑

k xk

(
∆xk

xk

)2

may therefore be

interpreted as a discrete version of the Fisher information about t brought by x.
From (5), we get that the rate of increase of the mean fitness (which is the variance
in relative fitness) identifies with this Fisher information

(6)
∆w (x)

w (x)
= σ2 (x) = Ix (t) > 0. �

(ii) When wk = 1 + sak as in the selection example, the variance in relative fitness
reads

σ2 (x) =

(
s

1 + sa (x)

)2∑

k

xk (ak − a (x))2 . �
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2.2. Single locus: diploid population with K alleles. We now run into similar
considerations but with diploid populations whose genetical information governing
their developments is carried by pairs of chromosomes. When considering the es-
timation problem, to avoid overburden notations that would blur the exposition,
we shall limit ourselves to the special one-parameter fitness model where a single
selection parameter s is unknown. Under this hypothesis, the estimation problem
is over-simplified because it avoids estimating the full fitness array that would lead
to additional notational and technical difficulties due to multidimensionality.

Joint EG dynamics. Let wk,l > 0, k, l = 1, ..., K stand for the absolute fitness of
the genotypes AkAl attached to a single locus. Assume wk,l = wl,k. Let W be the
symmetric fitness matrix with k, l−entry wk,l. Assume the current frequency dis-
tribution at time t of the genotypes AkAl is given by xk,l. Let X be the frequencies
array with k, l−entry xk,l. The joint EG dynamics in the diploid case is given by
the updating:

(7) x′
k,l = xk,l

wk,l

w (X)

where the mean fitness w now is given by: w (X) =
∑

k,l xk,lwk,l. Define the relative

fitness of the genotype AkAl by: wk,l (X) :=
wk,l

w(X) and let W (X) be the matrix

with entries wk,l (X). Then the joint EG dynamics takes the matrix form:

X ′ = X ◦ W (X) = W (X) ◦ X

where ◦ stands for the (commutative) Hadamard product of matrices.

Let J be the K × K flat matrix whose entries are all 1. Then

∆X := X ′ − X = (X − J) ◦ W (X) = W (X) ◦ (X − J) .

We shall also let

(8) σ2 (X) =

K∑

k,l=1

xk,l (wk,l − w (X))
2

stand for the genotypic variance in absolute fitness and

(9) σ2 (X) =
K∑

k,l=1

xk,l (wk,l (X) − 1)2 = σ2 (X) /w (X)2

will stand for the diploid variance in relative fitness.

Consider the problem of evaluating the increase of the mean fitness. We have

(10) ∆w (X) =
∑

k,l

∆xk,lwk,l =
∑

k,l

xk,l

(
w2

k,l

w (X)
− wk,l

)
= w (X)σ2 (X) > 0

with a relative rate of increase: ∆w (X) /w (X) = σ2 (X) . This is the full diploid
version of the FTNS.

Marginal allelic dynamics. Assuming a Hardy-Weinberg equilibrium, the fre-
quency distribution at time t, say xk,l, of the genotypes AkAl is given by: xk,l =
xkxl where xk =

∑
l xk,l is the marginal frequency of allele Ak in the whole geno-

typic population. The whole frequency information is now enclosed within x := xk,
k = 1, ..., K. For instance, the mean fitness w now is given by the quadratic form:
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w (x) =
∑

k,l xkxlwk,l = x∗Wx with x∗ the transposed line vector of the column

vector x = X1 (1 the unit K-vector). We shall also let

(11) σ2 (x) =
K∑

k,l=1

xkxl (wk,l − w (x))2

stand for the genotypic variance in absolute fitness and

σ2 (x) =

K∑

k,l=1

xkxl (wk,l (x) − 1)2 = σ2 (x) /w (x)2

will stand for the diploid variance in relative fitness with wk,l (x) := wk,l/w (x) the
relative fitnesses. These quantities may now simply be indexed by x.

Before we come to the diploid marginal EG dynamics, let us make the following
remarks. Let

(12) S2 (α) :=

K∑

k,l=1

xkxl (wk,l − w (x) − αk − αl)
2
.

The values of α minimizing S2 (α) are easily seen to be α
∗ = α∗

k = wk (x)−w (x) ,
k = 1, ..., K. We shall let

(13) σ2
D (x) := S2 (α∗) =

K∑

k,l=1

xkxl (wk,l − (wk (x) + wl (x) − w (x)))
2

and call it the dominance variance. Then we get

(14) σ2 (x) = σ2
D (x) + σ2

A (x) .

The variance σ2
A (x) is that component of the total variance in absolute fitness of

the genotypes which can be explained additively by the alleles constituting those
genotypes, [2]. Indeed, we can easily check that

(15) σ2
A (x) = 2

K∑

k=1

xk (wk (x) − w (x))2 .

The number σ2
A (x) /2 can be interpreted in terms of the fitness covariance between

parent and offspring in the updating step (see Ewens, [3], p. 7).

The residual part σ2
D (x) is that component of σ2 (x) which can be explained by

the interactions pertaining to dominance between the alleles forming the genotypes.

Consider now the update of the allelic marginal frequencies x themselves. If we
first define the frequency-dependent marginal fitness of Ak by wk (x) = (Wx)k :=∑

l wk,lxl, the marginal dynamics is given as in (4) by:

(16) x′
k = xkwk (x) =: pk (x) , k = 1, ..., K

where now: wk (x) := wk(x)
w(x) is the relative fitness of Ak. In vector form

x′ =
DxWx

x∗Wx
= Dw(x)x,
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where w (x) := wk (x) , k = 1, ..., K. Again, the mean fitness w (x) , as a Lyapounov
function, increases as time passes by. We indeed have

∆w (x) = w (x′) − w (x) =
∑

k,l

xkwk (x)wk,lxlwl (x) −
∑

k,l

xkwk,lxl > 0,

because, defining 0 < X (x) :=
∑

k,l xk (1 − wk (x))wk,l (1 − wl (x))xl, we have

∆w (x) = X (x) +
2

w (x)

(
∑

k

xkwk (x)
2
− w (x)

2

)
> 0.

Its partial rate of increase due to frequency shifts only is

∆P w (x)

w (x)
:=

∑
k ∆xkwk (x)

w (x)
.

This quantity is half the allelic variance in relative fitness σ2
A (x) /

(
2w (x)

2
)

=

σ2
A (x) /2. Indeed,

(17)
∆P w (x)

w (x)
=
∑

k

xk (wk (x) − 1)2 =
∑

k

(∆xk)
2

xk

= σ2
A (x) /2.

The mean fitness increase phenomena (either global or partial) occur till the EG
dynamics reaches an equilibrium state. In the diploid case, this dynamics can
have more complex equilibrium points, satisfying wk (xeq) = w1 (xeq), k = 2, ..., K
and

∑
l xeq,l = 1. In particular, a stable internal (polymorphic) equilibrium state

can exist, a necessary and sufficient condition being that W has exactly one strictly
positive dominant eigenvalue and at least one strictly negative eigenvalue (see King-
man, [6]) or else that the sequence of principal minors of W alternates in sign. An
internal polymorphic equilibrium state is asymptotically stable iff it is an isolated
local maximum of the mean fitness. If this is the case, there is a unique z > 0
for which Wz = 1 and the equilibrium polymorphic state is xeq = z/ |z| . More-
over, starting from any initial condition in the interior of SK , all trajectories are
attracted by this xeq . When there is no such unique globally stable polymorphic
equilibrium, all trajectories will still converge but perhaps to a local equilibrium
state where some alleles get extinct.

Except for the fact that the mean fitness now is a quadratic form in x and that
the marginal fitness of Ak now is frequency-dependent, depending linearly on x,
as far as the marginal frequencies are concerned, the updating formalism (16) in
the diploid case looks very similar to the one in (4) describing the haploid case. In
the diploid case, assuming fitnesses are multiplicative, say with Wk,l = wkwl, then

wk (x) := wk(x)
x∗Wx

= wk
P

l wlxl
and the dynamics (16) boils down to (4). However, the

mean fitness in this case is w (x) = (
∑

l wlxl)
2

and not
∑

l wlxl as in the haploid
case.

Example (selection). In general the whole fitness matrix is unknown. In some
cases, only one selection parameter s is to be determined (estimated from data).
Assume indeed wk,l = 1 + sak,l where ak,l = al,k ∈ [0, 1] are known and s > −1.

A natural choice could be ak,l = K−k
K−1

K−l
K−1 , with a1,1 = 1 and aK,K = 0. Or else:
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ak,l = (K/k − 1) (K/l − 1) / (K − 1)
2
. The simple popular model ak,l = δk,l is also

of wide use in this context (see [3], p. 53 or [7] p. 14).

Then W = J + sA where A is a known matrix whose k, l−entry is ak,l. With
ak (x) =

∑
l ak,lxl and a (x) = x∗Ax, the EG dynamics reads

(18) x′
k = xk

1 + sak (x)

1 + sa (x)
, k = 1, ..., K.

The allelic variance in relative fitness reads

(19) σ2
A (x) /2 =

(
s

1 + sa (x)

)2∑

k

xk (ak (x) − a (x))2 . �

Remarks:

(i) There is an alternative vectorial representation of the dynamics (16) and (18).
Define the symmetric positive-definite matrix Q (x) with quadratic entries in the
frequencies:

Q (x)k,l = xk (δk,l − xl) .

Introduce the column vector of the relative fitnesses: w (x) = wk (x) , k = 1, ..., K
(with w (x) =: ∇V (x) = 1

2∇ log w (x) , half the gradient of the logarithm of mean
fitness). Then, (16) may be recast as the gradient-like replicator dynamics:

(20) ∆x = Q (x)w (x) =
1

w (x)
Q (x) Wx = Q (x)∇V (x) ,

with |∆x| = 1∗∆x = 0 as a result of 1∗Q (x) = 0∗. Note

∇V (x)
∗
∆x = ∇V (x)

∗
Q (x)∇V (x) ≥ 0.

In the selection case when wk (x) = 1 + sak (x), using Q (x)1 = 0 :

∆x = Q (x) (w (x) − 1) =
s

1 + sa (x)
Q (x)Ax. �

(ii) Although we shall not run into details pertaining to the continuous-time setting,
let us say a few words on this particular aspect. In continuous-time t ≥ 0, the
dynamics of xk := xk (t) is

·
xk = xk (wk (x) − w (x)) , k = 1, ..., K

where the ‘dot’ is the time-derivative. The growth rate is driven by the average

excess in mean fitness wk (x) − w (x) . Alternatively, the dynamics on SK is
·
x

= Q (x) Wx with d
dt

|x| = 0 because |x| = 1∗x = 〈1,x〉 and 1∗Q (x) = Q (x)1 = 0.

In the special selection case,
·
x = sQ (x) Ax or

·
xk = sxk (ak (x) − a (x)) , k = 1, ..., K.

In this case, the positive quantity

K∑

k=1

(
·
xk

)2

xk

=

K∑

k=1

xk

[
d (log xk)

dt

]2
= s2

K∑

k=1

xk (ak (x) − a (x))
2
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may be viewed as the familiar Fisher information Ix := Ix (t) of the frequency
distribution x, as a discrete probability distribution parameterized by continuous
time t. One can check that, if the mean fitness is w (x) = 1 + sa (x), then

·
w (x) = s

·
a (x) = 2Ix.

So the time derivative of w (x) coincides with twice this Fisher information. This
constitutes the diploid continuous-time version of (6).

Defining the dimensionless parameter θ := st and looking at the time-changed
frequencies πk (θ) := xk (θ/s), we get the s−free dynamics

·
πk = πk (ak (π) − a (π)) , k = 1, ..., K,

where the ‘dot’ now is the derivative with respect to θ. Clearly,
·
w (π) =

·
a (π) =

2Iπ (θ) > 0. �

Partial change of mean fitness. Let us return to the joint EG dynamics where
no hypothesis on mating was made and consider the full mean fitness

(21) w (X) =
∑

k,l

xk,lwk,l.

Define αk = wk (X) − w (X) where wk (X) :=
∑

l xk,lwk,l/xk and xk :=
∑

l xk,l is
the marginal frequency of Ak. Replace the expression (21) by the equally correct

(22) w (X) =
∑

k,l

xk,l (w (X) + αk + αl) ,

suggesting that the fitnesses of the genotypes AkAl would rather be w
(α)
k,l := w (X)+

αk + αl.

Define the partial change, say ∆P , of mean fitness as

∆P w (X) :=
∑

k,l

∆xk,l (w (X) + αk + αl)

where only a variation in the frequency term is considered. After some elementary
algebra, we get

∆P w (X) =
∑

k,l

∆xk,l (αk + αl) = 2
∑

k

αk

∑

l

∆xk,l

= 2
∑

k

αk∆xk =: σ2
A (X) /w (X) ,

leading to a partial rate of increase ∆P w (X) /w (X) = σ2
A (X) which is similar to

(17). In the alternative Castilloux-Lessard interpretation of this phenomenon, [1],

defining ∆x
(α)
k,l := ∆xk,l

αk+αl

w(X) and observing

∆P w (X) =
∑

k,l

∆x
(α)
k,l wk,l,

the partial change involves an allele-based modification of the genotype frequencies
while the genotype fitnesses wk,l are kept unchanged.
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2.3. Estimation of s. We now switch to the announced estimation of s problem
which seems to be new.

Assume the current and updated frequencies x and x′ are being observed at some
times t, t + 1. We wish to use this information to estimate the unknown value of
s. Let first s∗k be the estimate of s which explains the observable (x;x′

k) at best.
Clearly, from (18),

(23) s∗k =
x′

k − xk

ak (x) xk − x′
ka (x)

does the job. A natural estimator s∗ = s∗ (x;x′) of s which explains best the
observable (x;x′) is:

s∗ = arg min
s

∑

k

xkx′
k (s − s∗k)2

which is:

(24) s∗ =
1∑

l xlx′
l

∑

k

xkx′
ks∗k,

a weighted average of the s∗k attributing more credit to s∗k when xkx′
k is largest.

Sometimes, the xk, x′
k are not directly observed. Rather, what is observed is the

scalar output:

y := h (x) :=
∑

k

xkhk (x)

for some known family of measurements hk (x), k = 1, ..., K given the process x
is in state k. Simple but important examples are hk (x) = xα−1

k (α > 1) in which
case, y = h (x) =

∑
k xα

k is α−homozygosity (typically α = 2), or hk (x) = − logxk

in which case, y = h (x) = −
∑

k xk log xk is the Shannon entropy of the frequency
distribution.

Let κ be a discrete random variable with P (κ = k) = xk, k = 1, ..., K so that
y := E (hκ (x)) , the mathematical expectation with respect to κs law. From (18),
we have:

y′ = h (x′) :=
∑

k

x′
khk (x′) =

∑

k

∆xkhk (x′) +
∑

k

xkhk (x′)

=
s

1 + sa (x)

∑

k

xkhk (x′) (ak (x) − a (x)) + E (hκ (x′))

=
s

1 + sa (x)
Cov (hκ (x′) , aκ (x)) + E (hκ (x′)) .

Therefore, the observed shift in the measurement is

(25) ∆y =
s

1 + sa (x)
Cov (hκ (x′) , aκ (x)) + E (∆hκ (x))

and an estimate s∗ based on ∆y can immediately be written down by mere solving
the above equation (25) which is reminiscent of a Price equation (see [4]). It involves
two terms, one which is related to the correlation between the measurement at t+1
and the fitness function at t that has to do with the frequency shift only, another
related to the induced change of the character value only.
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3. EG theory: the stochastic point of view

With wk (x) := wk(x)
w(x) , let pk (x) := xkwk (x), k = 1, ..., K with

∑
k pk (x) = 1 be

defined as in the previous Section either from allelic or genotypic fitnesses. We
shall assume throughout that the special selection model assumptions: wk (x) =
1 + sak (x) and w (x) = 1 + sa (x) are at stake.

3.1. The Wright-Fisher model. We start considering similar problems under
the Wright-Fisher model.

The Model and first properties. Consider an allelic population with constant
size N. In the haploid (diploid) case, N is (twice) the number of real individuals.
Let i := ik and i′ := i′k, k = 1, ..., K be two vectors of integers quantifying the
size of the allelic populations at two consecutive generations t and t + 1. With

|i| =
∑

k ik, therefore
∣∣ i

N

∣∣ =
∣∣∣ i

′

N

∣∣∣ = 1 on SK . Suppose the stochastic EG dynamics

now is given by a Markov chain whose one-step transition matrix P from states
I = i to I′ = i′ is given by the multinomial Wright-Fisher (WF) model

(26) P
(
I′t+1 = i′ | It = i

)
=: P (i, i′) =

(
N

i′1 · · · i
′
K

) K∏

k=1

pk

(
i

N

)i′k

.

The state-space dimension of this Markov chain is
(

N+1
K−1

)
(the number of composi-

tions of integer N into K non-negative parts).

Let el be the K−null vector except for its l−th entry which is 1. The extremal states
S∗

K := {i∗l := Nel, l = 1, ..., K} , are all absorbing for this Markov chain because

pk

(
i
∗

l

N

)
= δk,l. Under our assumptions, the chain is not recurrent. Depending on

the initial condition, say i0, the chain will necessarily end up in one of the extremal
states i∗l , with some probability, say πl (i0), which can be computed as follows. Let
πl := πl (i), i ∈ SK be an harmonic function of the WF Markov chain, solution to:

(27) (P − I)πl = 0 if i ∈ SK\S∗
K and πl = 1 (i = Nel) if i ∈ S∗

K .

It satisfies

P (Iτ = Nel | I0 = i0) = πl (i0) ,

where τ (< ∞ almost surely) is the random hitting time of S∗
K for It and the πl (i0)s

are normalized so as
∑

l πl (i0) = 1. Thus πl (i0) is the searched probability to end
up in state Nel starting from state i0. In the same vein, the expected hitting time
α (i0) := Ei0 (τ ) solves:

(P − I)α = 1, i/N ∈ SK\S∗
K

α = 0, i/N ∈ S∗
K

where α := α (i), i ∈ SK . With πl the solution to the above Dirichlet problem, the
equilibrium measure of the chain therefore is:

πeq :=

K∑

l=1

πl (i0) δi∗
l
,
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which depends on i0. Unless some prior information on i0 is given, we may assume
that i0 = N

K
1 in which case one expects πl (i0) = 1/K and πeq is uniform on the

extremal states.

Necessarily, one allele will fixate and there is no polymorphic equilibrium state even
when dealing with diploid populations. Which allele and with what probability will
depend on the initial condition. Thanks to fluctuations, the picture therefore looks
very different from the one pertaining to the deterministic theory. For analogies of
this construction with statistical physics, see [10], [9].

The marginal transition matrix from i to I ′k = i′k is binomial bin
(
N, pk

(
i

N

))
:

P (i, i′k) =

(
N

i′k

)
pk

(
i

N

)(
1 − pk

(
i

N

))N−i′k

.

With pk

(
i

N

)
:= ik

N
wk

(
i

N

)
, given I = i, the k−th component I ′k of the updated

state is now random with:

Ei (I
′
k) = Npk

(
i

N

)
and σ2

i
(I ′k) = Npk

(
i

N

)(
1 − pk

(
i

N

))
.

Mean fitness. We shall introduce the random increment in absolute mean fitness
as

(28) ∆wI′

(
i

N

)
:=

K∑

k=1

(
I ′k
N

−
ik
N

)
wk

(
i

N

)
= s

K∑

k=1

(
I ′k
N

−
ik
N

)
ak

(
i

N

)
.

Dropping for notational ease the argument i

N
appearing in ∆wI′ , ak, a and pk, we

get

Ei∆wI′ = s

K∑

k=1

ik
N

(
1 + sak

1 + sa
− 1

)
ak =

s2

1 + sa

K∑

k=1

ik
N

(ak − a) ak

(29) =
s2

1 + sa

[
K∑

k=1

ik
N

a2
k − a2

]
> 0.

The mean of the increment of the random absolute mean fitness is positive (a
random version of the FTNS). Its rate of increase is

(30)
Ei∆wI′

(
i

N

)

w
(

i

N

) =

(
s

1 + sa

)2
[

K∑

k=1

ik
N

a2
k − a2

]
,

involving the variance of the aks under the current frequency distribution ik

N
, k =

1, ..., K.

Let us now compute the variance of ∆wI′

(
i

N

)
. We get:

(31) σ2
i
(∆wI′) = s2σ2

i

(
K∑

k=1

I ′k
N

ak − a

)
= s2σ2

i

(
K∑

k=1

I ′k
N

ak

)

= s2



Ei




K∑

k,k′=1

I ′kI ′k′

N2
akak′



−

(
Ei

(
K∑

k=1

I ′k
N

ak

))2


 .
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It is proportional to the variance of the weighted outcomes
∑K

k=1
I′

k

N
ak given i.

Using Ei (I
′
kI ′k′ ) = N (N − 1) pkpk′ and Ei

(
I ′2k
)

= Npk + N (N − 1) p2
k, we get

σ2
i
(∆wI′) = s2




K∑

k,k′=1

N (N − 1) pkpk′

N2
akak′ + N

K∑

k=1

pk

N2
a2

k −

(
K∑

k=1

pkak

)2




and so,

(32) σ2
i

(
∆wI′

(
i

N

))
=

s2

N




K∑

k=1

pka2
k −

(
K∑

k=1

pkak

)2


 ,

again involving the variance of the aks but now under the updated mean frequency

distribution pk = Ei

(
I′

k

N

)
= ik

N
1+sak

1+sa
, k = 1, ..., K.

We conclude that

(33)
Ei∆wI′

(
i

N

)

w
(

i

N

) ≁ σ2
i

(
∆wI′

(
i

N

))

as one might have expected from the analogies with the deterministic theory.

In fact, the full law of ∆wI′

(
i

N

)
can be computed and the large N population limit

is worth investigating. Indeed, its Laplace-Stieltjes transform (LST) reads

Ei

(
e−λ∆w

I′( i

N )
)

= eλsa
Ei

(
e−

λs
N

P

K
k=1

I′

kak

)
=

(
K∑

k=1

pke−
λs
N

(ak−a)

)N

,

suggesting from large deviation theory that, if ik := ⌊Nxk⌋, k = 1, ..., K

∆wI′

(
⌊Nx⌋

N

)
a.s.
→

N↑∞
∆wI′ (x) = s

K∑

k=1

pk (x) (ak (x) − a (x))

=
s2

1 + sa (x)

(
K∑

k=1

xkak (x)2 − a (x)2
)

,

which is the deterministic value σ2
A (x) / (2 (1 + sa (x))) of the marginal determin-

istic theory (15).

Statistics. We now suppose the WF Markov chain is in state i, with i 6= i∗l so that
it has not yet reached any of its equilibrium states. Based on the observation i, we
would like to design estimators of the selection parameter s.

The log-likelihood of the model (26) is

log P (i, i′) = log

(
N

i′1...i
′
K

)
+

K∑

k=1

i′k log

[
ik
N

wk

(
i

N

)
/w

(
i

N

)]
.

If wk = 1 + sak and w = 1 + sa, its derivative with respect to s is

∂s log P (i, i′) = ∂s

(
K∑

k=1

i′k log (1 + sak) − N log (1 + sa)

)
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=

K∑

k=1

i′k
ak

1 + sak

− N
a

1 + sa
.

The value sMLE = sMLE
(

i

N
, i

′

N

)
for which ∂s log P (i, i′) = 0 is the Maximum

Likelihood Estimator of s given the observable
(
i; i′
)
. It is given by the implicit

equation

(34)

K∑

k=1

i′k
N

ak

(
i

N

)

1 + sMLEak

(
i

N

) =
a
(

i

N

)

1 + sMLEa
(

i

N

) .

It is probably biased. Let us compute the Fisher information on s enclosed in the
observation (i; I′) which is

(35) Ii (s) = Ei

[
(∂s log P (i, I′))

2
]
.

We get

Ii (s) =
∑

i′

P (i, i′)

[
K∑

k=1

i′k
ak

1 + sak

−
Na

1 + sa

]2

= σ2
i

(
K∑

k=1

I ′k
ak

1 + sak

)

=

K∑

k,k′=1

ak

1 + sak

ak′

1 + sak′

Ei (I
′
kI ′k′ ) −

(
Na

1 + sa

)2

and therefore

(36) Ii (s) =
N

1 + sa

[
K∑

k=1

ik
N

(
a2

k

1 + sak

−
a2

1 + sa

)]
.

The Fisher information is exactly the variance of the weighted outcomes
∑K

k=1
I′

k

N
ak

1+sak

given i. We conclude that

(37)
Ei∆wI′

(
i

N

)

w
≁ Ii (s) .

From the expression of the mean Ei (I
′
k)

Ei

(
I ′k
N

)
=

ik
N

1 + sak

1 + sa

and, with 〈i′k〉i = 1
n

∑n

m=1 i′k,m the empirical average given i of I ′k based on a size-n

sample observation of I ′k

s∗k =
〈i′k〉i − ik

ak

(
i

N

)
ik − 〈i′k〉i a

(
i

N

)

is a first moment estimator of s explaining best
(
i;i′k,m, m = 1, ..., n

)
and

(38) s∗ =
1∑

l il 〈i
′
l〉i

∑

k

ik 〈i
′
k〉i s

∗
k,

a moment estimator of s explaining best
(
i; i′m, m = 1, ..., n

)
whenever we are in

possession of n observed copies i′ of I′ based on the same i. This estimator is also
biased.
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With ŝ = s∗ or sMLE , let

(39) Ri (ŝ, s) = Ei

[
(ŝ − s)

2
]

= σ2
i (ŝ) + (Ei (ŝ) − s)

2

be the quadratic risk function associated with the estimator ŝ. By the Fréchet-
Darmois-Cramer Rao theorem, we have

(40) Ri (ŝ, s) ≥
1

Ii (s)
,

where, in this classical interpretation of the Fisher information, Ii (s)
−1 appears as

a universal lower bound of the estimator quadratic error.

Finally, we would like to stress that these considerations are also relevant in the
context of another fundamental stochastic model arising in the context of evolu-
tionary genetics. We shall give some elements of how to proceed with this model
presenting very different properties.

3.2. The K−allele Moran model. We now focus on the estimation problem un-
der the Moran model.

The Model. Let α, β ∈ {1, ..., K} . In the Moran version of the stochastic evolu-
tion, given It = I = i, the only accessible values of I′ are the neighboring states:
i′α,β := i + dα,β where dα,β = (0, .., 0,−1, 0, ..., 1, 0, ..., 0) . Here −1 is in position α
and 1 in position β 6= α corresponding to the transfer of an individual from cell
α to cell β. The Moran stochastic EG dynamics now is given by a Markov chain
whose one-step transition matrix P from states I = i to I′ = i′ is:

(41) P (It+1 = i′ | It = i) = 0 if i′ 6= i′α,β and

P
(
It+1 = i′α,β | It = i

)
=: P

(
i, i′α,β

)
=

iα
N

pβ

(
i

N

)
,

where pβ

(
i

N

)
is given by pβ

(
i

N

)
:=

iβ

N
wβ

(
i

N

)
.

Summing P
(
i, i′α,β

)
over α, β, β 6= α in (41), we get the holding probability

P (It+1 = i | It = i) = 1 −
∑

α,β:β 6=α

iα
N

pβ

(
i

N

)
=
∑

α

iα
N

pα

(
i

N

)
,

completing the characterization of the K−allele Moran model. The probability
that in a one-step transition, the size of allele Aα population shrinks of one unit is:

∑

β 6=α

P
(
i, i′α,β

)
=

iα
N

(
1 − pα

(
i

N

))
.

The probability that in a one-step transition, the size of allele Aβ population un-
dergoes a one unit growth is:

∑

α6=β

P
(
i, i′α,β

)
=

(
1 −

iβ
N

)
pβ

(
i

N

)
.
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As a nearest-neighbor random walk model, the Moran model has a much simpler
transition matrix P of the Jacobi type. The equilibrium measure of the chain again
is:

(42) πeq :=

K∑

l=1

πl (i0) δi∗
l
,

where πl again solves the Dirichlet problem (27) but with this new simpler Jacobi P .

In what follows, we assume the special one-parameter selection model leading to:

pβ

(
i

N

)
=

iβ
N

1 + saβ

1 + sa
.

Mean fitness. Let us compute the LST of
∑

k akI ′k in the context of a Moran
model. We get the factorized form:

Ei

(
e−λ

P

k
akI′

k

)
=

∑

α,β:α6=β

e−λ
P

k
aki′α,β(k)P

(
i, i′α,β

)
+ e−λ

P

k
akik

∑

β

iβ
N

pβ

= e−λ
P

k
akik




∑

α,β:α6=β

e−λ
P

k
akdα,β(k)P

(
i, i′α,β

)
+
∑

β

iβ
N

pβ





= e−λ
P

k
akik




∑

α,β:α6=β

e−λ(aβ−aα) iα
N

pβ +
∑

β

iβ
N

pβ





= e−λ
P

k
akik




∑

β

e−λaβpβ

∑

α6=β

iα
N

eλaα +
∑

β

iβ
N

pβ





= e−λ
P

k
akik




∑

β

e−λaβpβ

(
∑

α

iα
N

eλaα −
iβ
N

eλaβ

)
+
∑

β

iβ
N

pβ





=
(
e−λ

P

k
akik

)(∑

α

iα
N

eλaα

)


∑

β

e−λaβpβ



 .

Recalling ∆wI′

(
i

N

)
= s

∑K

k=1

(
I′

k

N
− ik

N

)
ak, this leads in particular to (compare

with (29)):

(43) Ei (∆wI′) =
s

N

(
Ei

(
K∑

k=1

I ′kak

)
−

K∑

k=1

ikak

)
=

s

N




∑

β

aβ

(
pβ −

iβ
N

)



=
s2

N (1 + sa)




∑

β

iβ
N

a2
β − a2



 > 0.
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The variance of ∆wI′

(
i

N

)
could easily be computed. Using the above result, we

indeed get:

Ei

(
e−

P

l λlI
′

l

)
= e−

P

l λlil

∑

α

iα
N

eλα

∑

β

e−λβpβ ,

giving the joint LST of I′ given I = i. Putting λl = 0 if l 6= k, the kth−marginal
reads:

Ei

(
e−λkI′

k

)
= e−λkik

(
1 −

ik
N

+ eλk
ik
N

)(
1 − pk + e−λkpk

)

which is of the random walk type. Indeed, we get: Pi (I
′
k = i′k) = 0 if i′k 6= ik ± 1 or

i′k 6= ik and

Pi (I
′
k = ik) =

(
1 −

ik
N

)
(1 − pk) +

ik
N

pk

Pi (I
′
k = ik + 1) =

(
1 −

ik
N

)
pk ; Pi (I

′
k = ik − 1) =

ik
N

(1 − pk) .

In the special one-parameter case, we have

Ei (I
′
k) = ik +

(
pk −

ik
N

)
= ik +

ik
N

(
1 + sak

1 + sa
− 1

)
.

Using previously introduced notations, this gives a first moment estimator of s

explaining best
(
i;i′k,m, m = 1, ..., n

)
as:

(44) s∗k =
N
(
〈i′k〉i − ik

)

ik (ak − a)
.

4. Concluding Remarks

In this Note our concern has been to introduce the general formalism of evolutionary
genetics dynamics under fitness, in both the deterministic and stochastic setups,
and chiefly in discrete-time. In the stochastic version of the problem, both the
Wright-Fisher and the Moran models were considered. In the process, we revisited
the various facets of the famous Fisher theorem of natural selection in both the de-
terministic and stochastic formulations. For the sake of simplicity of the exposition,
we limited ourselves to a simplified one-parameter model where the sole selection
parameter is unknown. Using these preliminary results and facts, we discussed
the estimation problems of the selection parameter based on a single-generation
frequency distribution shift under both deterministic and stochastic evolutionary
dynamics. To the best of the author’s knowledge, this particular way to address
the estimation problem is new. It was stressed that in our models, there were no
mutation effects included. We plan to include these effects in a forthcoming work.
When mutations are present, the situation changes drastically. Firstly, in the de-
terministic formulation, the replicator dynamics combining fitness and mutations
no longer is gradient-like in general. Still, an internal equilibrium point can exist
were fitnesses to be multiplicative or would the mutation rates satisfy a house of
cards condition [7]. Secondly, in the stochastic formulation, the Markov chains
under study (either Wright-Fisher or Moran) are ergodic, now with an invariant
measure which is independent of the initial condition. This also changes the picture
drastically.
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