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Abstract This note presents an estimator of the hazard rate function based on right censored data. A
collection of estimators are built from a regression-type contrast, in a general collection of linear models.
Then, a penalised model selection procedure gives an estimator which satisfies an oracle inequality. In
particular, we can prove that it is adaptive in the minimax sense on Hölder spaces.
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1 Introduction

In medical follow-up and other subjects, the observation of a variable of interest, for example the lifetime
of an individual, can be right censored. This means that we only observe the minimum of the lifetime
and a variable called censoring time (for example the time when a patient leaves the medical program),
which is supposed independent of the lifetime. We also observe if this minimum corresponds to the
variable of interest or to the censoring time. More precisely, we consider a sample (Xi)i=1,...,n of non-
negative variables, and a sample (Ci)i=1,...,n of non-negative censoring times. Then we observe a sample
(Yi, δi)i=1,...n with:

Yi = min(Xi, Ci), δi = 1Xi≤Ci
(1)

A function of interest in such a study is the hazard rate function of X, which represents the risk of death
at a time x knowing that the patient is alive until x. If we denote by fX(x) and FX(x) = P [X1 ≥ x] the
density and the survival function of X, we have:

h(x) =
fX(x)

FX(x)
(2)

A lot of papers are devoted to hazard rate estimation, among which two general methods can be
drawn in the non parametric context that we only consider.

The first one consists in estimating h by a quotient of two estimators. The most obvious is f̂X/F̂X

where f̂X and F̂X are estimators of fX and FX . In general, FX is replaced by the well known Kaplan
Meier estimator of FX (Kaplan and Meier (1958)). Another decomposition of h is

h =
fXFC

FY

(3)
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The function ψ(x) = fX(x)FC(x), called the subdensity of X, corresponds heuristically to the “density”
of the observed variables Xi, in the sense that for every function t : R

+ → R such that t(0) = 0:

E[t(δiYi)] = E[δit(Xi)] =

∫
t(x)ψ(x)dx

As the (δi, Xi) are directly measured, ψ is easier to estimate than fX . Similarly, FY is easier to estimate
than FX . Indeed it can simply be replaced by the empirical survival function of the observed (Yi).
Patil (1993) proposes a kernel estimator of ψ with a bandwidth selection and gets an estimator of h
via expression (3). Antoniadis et al (1999) use a wavelet decomposition but their estimator is not really
adaptive as the optimal resolution of the wavelets depends on the regularity of fX . Comte and Brunel
(2005) build a projection estimator of ψ by model selection in more general bases, and obtain an adaptive
estimator.

Other estimators of h are based on the cumulative hazard H(x) = − log(FX(x)). One of the most
frequently used estimator of H is the Nelson-Aalen estimator (Nelson (1972)). Obviously, we have:

h(x) = H ′(x) (4)

Yandell (1983) and Tanner and Wong (1983) build an estimator of h by differentiating the Nelson-
Aalen estimator of H with a delta-sequence method, and Muller and Wang (1994) introduce a variable
bandwidth. Comte and Brunel (2008) propose a projection type estimator based on a approximation of
cumulative hazard function. The method is very different from the one presented here, but leads also to
an adaptive estimation procedure.

Let us mention also the estimator of Reynaud-Bouret (2006) built by model selection in a set of
random models, which is adaptive on Hölder spaces with regularity smaller than 1.

The present note describes a regression type strategy, in a different spirit from other procedures.
It leads to an adaptive estimator for the integrated squared risk on a set [0, τ ] such that P (Y ≥ τ) is
positive. The proofs are self contained (apart from the well-known Talagrand Inequality), and the key
point is that the reference norm for the risk is chosen to be well suited to the problem.

The plan of the paper is the following. Section 2 presents the framework, and the main assumptions.
The estimation procedure is described in Section 3, as well as the main result. But the estimator built in
Section 3 brings into play unknown quantities, which are estimated in Section 4. The proofs are gathered
in Sections 5 and 6. Section 7 recalls classical deviation inequalities for empirical processes.

2 Presentation of the framework, assumptions and notations

2.1 Framework

We consider a sample (X1, . . . , Xn) of i.i.d. (independent identically distributed) non negative random
variables with common survival function FX(x) := P [X1 ≥ x] and density fX , and a sample (C1, . . . , Cn)
of i.i.d. non negative random variables with common survival function FC . We suppose that the (Ci)
are independent of the (Xi) The variables of interest are the (Xi), but we only observe the sample
((Y1, δ1), . . . , (Yn, δn)) defined in (1). The aim of this paper is to build an estimator of the hazard rate of
X1 given by (2), on a compact interval A on which FY = FCFX is lower bounded by a positive number.
Theoretically, A is a known compact interval independent of the data, even if practically it is chosen by
looking at the data. Moreover, we take A = [0, 1] for simplicity, but the results can be adapted to any
compact interval A by rescaling the data. More precisely, we consider the following assumptions:

Aframe : We suppose that FY is lower bounded on A = [0, 1] by F 0 > 0, and that h is upper bounded
by ‖h‖∞,A := supx∈A h(x) <∞.
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2.2 Notations

We define the following scalar products and norms on L2(A). For every s, t ∈ L2(A):

〈s, t〉 =

∫

A

s(x)t(x)dx, ‖t‖2 =

∫

A

t2(x)dx

〈s, t〉F Y
=

∫

A

s(x)t(x)FY (x)dx, ‖t‖2
F Y

=

∫

A

t2(x)FY (x)dx

〈s, t〉n =
1

n

n∑

i=1

∫

A

s(x)t(x)1Yi≥xdx, ‖t‖2
n =

1

n

n∑

i=1

∫

A

t2(x)1Yi≥xdx

Let A be a square matrix, we denote by Sp(A) the spectrum of A, that is the set of its eigenvalues.
Let β and L be positive numbers, and r the greatest integer smaller than β, we define the Hölder

space H(β, L) on A:

H(β, L) = {f : A→ R, |f (r)(x) − f (r)(y)| ≤ L|x− y|β−r,∀x, y ∈ A}
For every x ∈ R, we denote by E(x) the integer part of x, that is the greatest integer smaller than or

equal to x.
All throughout the paper, Ci denotes a universal numerical constant, and C, C ′ denote constants

which depend on the given parameters of the problem and may change from one line to another.

2.3 Collections of models

The estimators proposed in this paper are computed by model selection in a general collection of models
Mn := {Sm,m ∈ Jn} where every model Sm is a finite dimensional linear subset of L2(A) with dimension

Dm. We suppose that the collection Mn satisfies either Assumption A
(1)
mod

or A
(2)
mod

.

A
(1)
mod

: The models Sm are nested, that is Jn = {1, . . . , Nn} and:

S1 ⊂ S2 ⊂ · · · ⊂ SNn
:= Sn

Besides, there exists a constant K such that for every model Sm, and for every (φm
1 , . . . , φ

m
Dm

) or-
thonormal basis of Sm for the L2(A)-norm:

sup
x∈A

|
Dm∑

λ=1

(φm
λ (x))2| ≤ K2Dm (5)

Moreover, the maximum size of model satisfies: Nn ≤ n/ ln2 n.

A
(2)
mod

: There exists a linear subset Sn of L2(A) with dimension Nn ≤ n/ ln2 n such that every model
Sm is a subspace of Sn, and the global space Sn satisfies Property (5).

Remark 1 Obviously, Assumption A
(1)
mod

is stronger than Assumption A
(2)
mod

. Thus, A
(2)
mod

allows more
irregular collections of models. Let us explain this notion on the example of histograms. Let In be the
regular partition of [0, 1] of step 1/Nn, and Sn the set of histograms on [0, 1] which are constant on In.

Under Assumption A
(2)
mod

, the collection Mn can include any set of histograms Sm based on a partition

Im of [0, 1] composed of union of intervals from In. Whereas Assumption A
(1)
mod

only allows diadic regular
set of histograms, that is:

Sm = V ect
{

1[ j−1

Dm

j

Dm
[, j = 1, . . . Dm

}
, where Dm = 2km

for some km = 1, . . . , kn and 2kn = Nn. We consider also a general assumption related to the maximum
number of models for a given dimension.

A
(3)
mod

: For every a > 0, there exists a constant A > 0 such that, for every n ∈ N
∗,

∑

m∈Jn

exp(−a
√
Dm) ≤ A
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3 Theoretical estimators

The estimators built in this section bring into play unknown quantities, that is why we call them the-
oretical estimators. We replace in turn these quantities by estimators in Section 4. In Section 3.1, we
present a non adaptive procedure, to build an estimator ĥm of h on each model Sm. The model selection
procedure is described in Section 3.2, with two different penalties corresponding to the two Assumptions

A
(1)
mod

and A
(2)
mod

. Section 3.4 presents the main result.

3.1 Non adaptive estimator

We consider the following contrast, for every t ∈ L2(A):

γn(t) = ‖t‖2
n − 2

n

n∑

i=1

δit(Yi)

Let us justify this contrast. First,

h1A = arg min
t∈L2(A)

‖t− h‖2
F Y

= arg min
t∈L2(A)

‖t‖2
F Y

− 2〈t, h〉F Y

Besides for every t ∈ L2(A), E[‖t‖2
n] = ‖t‖2

F Y
. In addition, for every i = 1, . . . , n:

E[δit(Yi)] = E[E [δit(Yi)|Xi]] = E [t(Xi)E[1Xi≤Ci
|Xi]]

= E[t(Xi)FC(Xi)] =

∫

A

t(x)FC(x)fX(x)dx

=

∫

A

t(x)FC(x)FX(x)h(x)dx = 〈t, h〉F Y
(6)

Thus E[γn(t)] = ‖t‖F Y
− 2〈t, h〉F Y

and h1A = arg mint∈L2(A) E[γn(t)]. This explains how γn(t) is built.

For every model Sm, we define h̃m = arg mint∈Sm
γn(t). Let (φm

1 , . . . , φ
m
Dm

) be an L2(A)-orthonormal

basis of Sm, then h̃m =
∑Dm

λ=1 ãλφ
m
λ with:

∂γn(
∑Dm

λ=1 aλφ
m
λ )

∂aλ
= 0, ∀λ = 1, . . . Dm

This is equivalent to:
ĜmÃm = V̂m

with Ãm = (ã1, . . . , ãDm
)t and:

Ĝm = (〈φm
λ , φ

m
λ′〉n)λ,λ′=1,...,Dm

, V̂m =

(
1

n

n∑

i=1

δiφ
m
λ (Yi)

)

λ=1,...,Dm

(7)

where M t denotes the transpose of M . But the matrix Ĝm is not necessarily invertible. We consider a
set on which Ĝm is invertible, more precisely on which the spectrum of Ĝm is lower bounded. First, we
define the following set:

∆1 =

{
| ‖t‖2

n

‖t‖2
F Y

− 1| < 1

4
,∀t ∈ Sn

}
(8)

Since ‖.‖n is the empirical norm associated to ‖.‖F Y
, P [∆1] is close to 1 (see Proposition 53). Let t ∈ Sn.

On the set ∆1 and under Assumption Aframe, we have

3

4
F 0‖t‖2 ≤ 3

4
‖t‖2

F Y
≤ ‖t‖2

n (9)

so that for every λ ∈ Sp(Ĝm),
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3

4
F 0 ≤ λ. (10)

Then we consider the following set, on which Ĝm is invertible:

∆th
2 =

{
min(Sp(Ĝm)) ≥ 3

4
F 0

}
(11)

and it satisfies ∆1 ⊂ ∆th
2 . Finally, we consider the estimator of h: ĥm =

∑Dm

λ=1 âλφ
m
λ with

Âm = (â1, . . . , âDm
)t =

{
Ĝ−1

m V̂m on ∆th
2

0 otherwise

3.2 Adaptive estimators

By the non adaptive estimation procedure described above, we obtain a collection of estimators {ĥm,m ∈
Mn}, among which one is automatically selected by a penalised model selection procedure. We briefly
present this strategy, developped by Birgé and Massart (1998). For every model Sm the risk of the

estimator ĥm is split in two terms:

E[‖ĥm − h‖2
F Y

≤ 2
(
‖h− hm‖2

F Y
+ E[‖ĥm − hm‖2

F Y
]
)

where hm is the ‖.‖F Y
-projection of h on Sm The bias term ‖h− hm‖2

F Y
decreases when the model Sm

grows, whereas the term E[‖ĥm − hm‖2
F Y

] has the order Dm/n of a vairiance-type term, and increases

with Dm. (Nevertheless in our case it is not exactly a variance, as E[ĥm(x)] 6= hm(x).) Thus, the best
model would be the one which realises the better trade-off between bias and variance.

The basic outline of model selection is to estimate the bias-variance sum (possibly up to a constant
independent of m) and to select the model which minimises this sum. Besides,

‖h− hm‖2
F Y

= ‖hm‖2
F Y

− 2〈h, hm〉F Y
+ ‖h‖2

F Y
.

The term ‖hm‖2
F Y

− 2〈h, hm〉F Y
is estimated by γn(ĥm) (see 6). The variance term E[‖ĥm − hm‖2

F Y
] is

upper bounded by a deterministic term with order Dm/n, called the penalty. We do not explicitly prove
this result here but a more general one (see Theorem 1 and Comment 1. hereafter).

We consider two penalties with order Dm/n, but with different constants.

penth
1 (m) =

BK2

F 0

Dm

n
, penth

2 (m) = B‖h‖∞,A
Dm

n
(12)

with B > 3, and select the model

m̂i = arg min
m∈Mn

γn(ĥm) + penth
i (m)

for i = 1 or 2. We get two almost data-driven estimators of h: ĥ
bm1

and ĥ
bm2

. Each penalty corresponds to

a set of assumptions. Penalty penth
2 corresponds to Assumption A

(2)
mod

so it works under both A
(1)
mod

and

A
(2)
mod

(see remark 1). Penalty penth
2 only works under Assumption A

(1)
mod

, but is more computing-saving
because F 0 is estimated anyway, to compute the non adaptive estimators (see ∆th

2 in (11)).

Remark 2 Actually, any constant B > 1 could be allowed in the above penalties provided slight changes
in the definition of ∆th

2 , but we fix B > 3 for simplicity’s sake. This point is discussed more precisely in
Section 5.5. Nevertheless, as B tends to 1, the constants C and C ′ involved in Theorem 1 tend to infinity.
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3.3 Result

The following theorem states the adaptivity of ĥ
bmi

:

Theorem 1 Let i = 1 or 2. Under Assumption A
(i)
mod

, A
(3)
mod

and Aframe,

E

[
‖ĥ

bmi
− h‖2

F Y

]
≤ C inf

m∈Mn

{
inf

t∈Sm

‖t− h‖2
F Y

+ penth
i (m)

}
+
C ′

n
(13)

where C is a numerical constant and C ′ depend on (K,F 0, ‖h‖∞)

Comments:

1. We do not study explicitly the risk of ĥm for one model Sm but a particular case of (13) when Mn

is restricted to {Sm} provides the following inequality:

E

[
‖ĥm − h‖2

F Y

]
≤ C”

{
inf

t∈Sm

‖t− h‖2
F Y

+ penth
i (m)

}

for i = 1 or 2.
2. Huber and MacGibbon (2004) prove that the minimax rate of convergence on the Hölder space

H(β, L), for β > 0 and L > 0 is the classical rate n−2β/(2β+1). Besides, suppose that h ∈ H(β, L):

inf
t∈Sm

‖t− h‖F Y
≤ inf

t∈Sm

‖t− h‖ ≤ C(L, β)D−β
m

Thus for a model of dimension Dm∗ = n1/(2β+1):

E

[
‖ĥm∗ − h‖2

F Y

]
≤ Cn−2β/(2β+1)

So, for this choiceDm∗ , ĥm∗ is optimal in the minimax sense on the space H(β, L). Thus, the collection
Mn contains an estimator with optimal rate, but the choice of Dm∗ = n1/(2β+1) is not accessible as
β is unknown.

3. The model selection procedure enables to choose automatically such a model, whithout estimating
β. More precisely, Inequality (13) (called an oracle inequality) shows that the risk bound of ĥ

bmi
has

same order as the risk of the best estimator among the collection {ĥm,m ∈ Mn}. In particular, ĥ
bmi

reaches the minimax rate of convergence n2β/(2β+1) over all Hölder classes H(β, L) for β > 0, L > 0.

4 Data-driven estimators

The estimators presented in this section are similar to the ones of Section 3, but the unknown quantities
F 0 and ‖h‖∞,A are replaced by estimators.

4.1 Estimator of F 0

F 0 is the lower bound of FY on A = [0, 1], so F 0 = FY (1). Thus a natural estimator of F 0 would be the
value of the empirical function in 1. For forcing the estimator of F 0 to be lower bounded, we define:

F̂0 := max(αn,
1

n

n∑

i=1

1Yi≥1), where αn = 1/
√
n

and denote by:

∆3 =

{
3

4
F 0 ≤ F̂0 ≤ 5

4
F 0

}

6



4.2 Estimator of ‖h‖∞,A

Let ν = ‖h‖∞,A. Let D = E(nγ) be a middle-sized model with 0 < γ < 1, and SD = V ect(ϕD
1 , . . . , ϕ

D
1 )

the set of piecewise constant functions on [0, 1]: ϕD
j =

√
D1[ j−1

D
, j

D
[. Let ĥD := arg mint∈SD

γn(t). As

the basis functions (ϕD
j ) have disjoint supports, the matrix ĜD of the scalar product 〈., .〉n in the basis

(ϕD
1 , . . . , ϕ

D
D) is diagonal, with diagonal coefficients:

(
‖ϕD

j ‖2
n

)
j=1,...,D

On the set ∆1, these coefficients are positive, so the matrix ĜD is invertible and

ĥD =
∑

j=1,...,D

âjϕ
D
j where âj =

(1/n)
∑n

i=1 δiϕ
D
j (Yi)

‖ϕD
j ‖2

n

Let us denote ν̂n := ‖ĥ‖∞, then:

ν̂n =
√
D max

j=1...,D
âj

Besides, we denote by hD the ‖.‖F Y
-projection of h on SD, then

hD =
∑

j=1,...,D

ajϕj where aj =

∫
A
ϕD

j (x)h(x)FY (x)dx

‖ϕD
j ‖2

F Y (x)

(14)

Finally, we define the following set whose probability is close to 1 (see Proposition 63):

∆4 :=

{
3

4
ν ≤ ν̂n ≤ 5

4
ν

}

4.3 Data-driven estimator

Let Sm be a model of the collection Mn. We follow a procedure similar to the one described in Section
3.1, but now the set ∆th

2 is replaced by

∆2 :=

{
min(Sp(Ĝm)) ≥ 3

5
F̂0

}
.

Now we have ĥm =
∑Dm

λ=1 â
m
λ φλ with Âm = (âm

1 , . . . , â
m
Dm

)t given by Âm = Ĝ−1
m V̂m on ∆2, and 0

otherwise, where Ĝm and V̂m are defined in (7).

Moreover, we take:

pen1(m) =
BK2

F̂0

Dm

n
, pen2(m) = Bν̂n

Dm

n

with B > 15/4. Lastly we consider the estimators ĥ
bm1

and ĥ
bm2

where

m̂i = arg min
m∈Mn

γn(ĥm) + peni(m)

for i = 1 or 2.

7



4.4 Results

Now our estimators are completely data-driven when B is chosen, and we can generalize Theorem 1 as
follows.

Theorem 2 Let i = 1 or 2. Suppose that Assumption A
(i)
mod

, A
(3)
mod

and Aframe hold, and that:

‖h− hD‖∞ ≤ ν

8
(15)

where hD is the projection of h in the histogram basis defined in (14), then:

E

[
‖ĥ

bmi
− h‖2

F Y

]
≤ C inf

m∈Mn

[ inf
t∈Sm

‖t− h‖2
F Y

+ penth
i (m)] +

C ′

n

where C is a numerical constant and C ′ depend on (K,F 0, ‖h‖∞)

Remark 3 1. If h is in the Hölder space H(β, L) for some β ∈]0, 1[, L > 0, then Assumption (15) is
satisfied for n large enough. In fact, let y ∈ A:

|h(y) − hD(y)| =

∣∣∣∣∣∣
h(y) −

D
∫ j/D

(j−1)/D
h(x)FY (x)dx

D
∫ j/D

(j−1)/D
FY (x)dx

∣∣∣∣∣∣

=

∣∣∣D
∫ j/D

(j−1)/D
h(y)FY (x)dx−D

∫ j/D

(j−1)/D
h(x)FY (x)dx

∣∣∣

D
∫ j/D

(j−1)/D
FY (x)dx

≤
D
∫ j/D

(j−1)/D
|h(y) − h(x)|FY (x)dx

D
∫ j/D

(j−1)/D
FY (x)dx

≤ L

Dβ

The comments of Section 3.3 hold, so the adaptive estimators are minimax over Hölder spaces.
2. As notified in Remark 2, B could be choosen as any numerical constant, provided that it is greater

than 1.

5 Proof of Theorem 1

The following Propositions are intermediate results to prove Theorem 1. Suppose that Assumption

Aframe and A
(3)
mod

hold.

Proposition 51 Let i = 1 or 2. Suppose that Assumption A
(i)
mod

holds, then

E

[
‖ĥ

bmi
− h‖2

F Y
1∆1

]
≤ C inf

m∈Mn

[
inf

t∈Sm

‖t− h‖2
F Y

+ penth
i (m)

]
+
C ′

n
(16)

where C is a numerical constant and C ′ depend on (K,F 0, ‖h‖∞)

Proposition 52 For every model Sm ∈ Mn:

‖ĥm − h‖F Y
≤ 2K

√
Nn

F 0

+ ‖h‖F Y
a.e.

Proposition 53 Suppose that Assumption A
(1)
mod

or A
(2)
mod

holds, then

P (∆c
1) ≤ 2 exp(−C2F

2

0

n

Nn
)

where C2 is a numerical constant.
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5.1 Proof of Theorem 1

Under A
(i)
mod

, Nn ≤ n/(lnn)2, so according to Proposition 52 and 53,

E

[
‖ĥ

bmi
− h‖2

F Y
1∆c

1

]
≤
(

2K
√
Nn

F 0

+ ‖h‖F Y

)
exp[−C2F 0

n

Nn
] ≤ Cn exp[−C2F 0(lnn)2]

= Cn
[
exp(−C2F 0 lnn)

]ln n
= Cn

[
n−C2F 0

]ln n

= Cn1−C2F 0 ln n ≤ C ′

n
(17)

And the result of Proposition 51 ends the proof of the Theorem. ✷

.

5.2 Proof of Proposition 51

Let i=1 or 2. To simplify the notations, we denote by pen(m) = penth
i (m) and m̂ = m̂i. Let Sm be a

model in the collection Mn and hm be any function in Sm. On the set ∆th
2 , we have:

γn(ĥ
bm) + pen(m̂) ≤ γn(hm) + pen(m)

Thus,

‖ĥ
bm‖2

n − ‖hm‖2
n ≤ pen(m) − pen(m̂) +

2

n

n∑

i=1

δi(ĥ
bm − hm)(Yi)

Besides, ‖ĥ
bm − hm‖2

n = ‖ĥ
bm‖2

n + ‖hm‖2
n − 2〈ĥ

bm, hm〉n, so:

‖ĥ
bm − hm‖2

n ≤ pen(m) − pen(m̂) +
2

n

n∑

i=1

δi(ĥ
bm − hm)(Yi) − 2〈ĥ

bm, hm〉n + 2‖hm‖2
n

= pen(m) − pen(m̂) − 2〈ĥ
bm − hm, hm〉n +

2

n

n∑

i=1

δi(ĥ
bm − hm)(Yi)

= pen(m) − pen(m̂) − 2〈ĥ
bm − hm, hm − h〉n + 2νn(ĥ

bm − hm)

where we denote:

νn(t) =
1

n

n∑

i=1

δit(Yi) − 〈t, h〉n

Let us denote Sm + Sm′ = {t + t′, t ∈ Sm, t
′ ∈ Sm′}, then by noting that 2ab ≤ 2a2 + (1/2)b2 for every

a, b, and with Cauchy-Schwartz Inequality:

‖ĥ
bm − hm‖2

n ≤ pen(m) − pen(m̂) − 2〈ĥ
bm − hm, hm − h〉n + 2‖ĥ

bm − hm‖F Y
sup

t∈Sm+S
cm,‖t‖F Y

=1

νn(t)

≤ pen(m) − pen(m̂) + 2‖ĥ
bm − hm‖n‖hm − h‖n +

1

2
‖ĥ

bm − hm‖2
F Y

+2 sup
t∈Sm+S

cm,‖t‖F Y
=1

(νn(t))2

Since 2ab ≤ (1/4)a2 + 4b2, for every p(m,m′) function of (m,m′):

‖ĥ
bm − hm‖2

n ≤ pen(m) − pen(m̂) + 2p(m, m̂) + 2‖ĥ
bm − hm‖n‖hm − h‖n +

1

2
‖ĥ

bm − hm)‖2
F Y

+2 sup
t∈Sm+S

cm,‖t‖F Y
=1

[(νn(t))2 − p(m, m̂)]

≤ pen(m) − pen(m̂) + 2p(m, m̂) +
1

4
‖ĥ

bm − hm‖2
n + 4‖h− hm‖2

n

+
1

2
‖ĥ

bm − hm‖2
F Y

+ 2 sup
t∈Sm+S

cm,‖t‖F Y
=1

[(νn(t))2 − p(m, m̂)]

9



Thus:

3

4
‖ĥ

bm − hm‖2
n ≤ pen(m) − pen(m̂) + 2p(m, m̂) +

1

2
‖ĥ

bm − hm‖2
F Y

+ 4‖h− hm‖2
F Y

+2 sup
t∈Sm+S

cm,‖t‖F Y
=1

[(νn(t))2 − p(m, m̂)]

On the set ∆1 ∩∆th
2 = ∆1 (cf Section 3.1), ‖ĥ

bm − hm‖n ≥ 3
4‖ĥbm − hm‖F Y

, hence

((
3

4
)2 − 1

2
)‖ĥ

bm − hm‖2
F Y

≤ 4‖h− hm‖2
n + pen(m) − pen(m̂) + 2p(m, m̂)

+2 sup
t∈Sm+S

cm,‖t‖F Y
=1

[(νn(t))2 − p(m, m̂)]

Moreover, we note that ‖ĥ
bm −hm‖2

F Y
≥ 1

2‖ĥbm −h‖2
F Y

−‖h−hm‖2
F Y

, and E
[
‖h− hm‖2

n

]
= ‖h−hm‖2

F Y

so:

E

[
‖ĥ

bm − h‖2
F Y

1∆1

]
≤ C1

{
‖h− hm‖2

F Y
+ E[pen(m) − pen(m̂) + 2p(m, m̂)]+

sup
t∈Sm+S

cm,‖t‖F Y
=1

[(νn(t))2 − p(m, m̂)]

}
(18)

where C1 is a numerical constant. Besides, νn(t) is a centered process since

E[δit(Yi)] =

∫

A

t(x)h(x)FY (x)dx = E[〈t, h〉n]

(see (6)). Therefore, we insert the mean term
∫

A
t(x)h(x)FY (x)dx to obtain the sum of two variance-type

terms. More precisely, we define:

νn,1(t) =
1

n

n∑

i=1

δit(Yi) −
∫

A

t(x)h(x)FY (x)dx

νn,2(t) =
1

n

n∑

i=1

∫

A

t(x)h(x)1Yi≥xdx−
∫

A

t(x)h(x)FY (x)dx

Then, since (a+ b)2 ≤ 3
2a

2 + 3b2,

E

[
sup

t∈Sm+S
cm,‖t‖F Y

=1

((νn(t))2 − p(m, m̂))

]

≤ 3

2
E

[
sup

t∈Sm+S
cm,‖t‖F Y

=1

((νn,1(t))
2 − 2

3
p(m, m̂))+

]
+ 3E

[
sup

t∈Sm+S
cm,‖t‖F Y

=1

(νn,2(t))
2

]
(19)

Moreover, the two terms above are upper-bounded as follows.

lemma 51 Under the Assumptions of Theorem 1

E

[
sup

t∈Sm+S
cmi

,‖t‖F Y
=1

(νn,2(t))
2

]
≤ 1

F 0n
‖h‖2

F Y

lemma 52 1) Let

p1(m,m
′) =

BK2

2F 0

Dm +Dm′

n
(20)

then under Assumptions A
(1)
mod

, A
(3)
mod

and Aframe, we have:

E




(

sup
t∈Sm+S

cm1
,‖t‖F Y

=1

(νn,1(t))
2 − 2

3
p1(m, m̂1)

)

+



 ≤ C ′

n

10



2) Let

p2(m,m
′) =

BK2‖h‖∞,A

2

Dm +Dm′

n
(21)

then under Assumptions A
(1)
mod

, A
(3)
mod

and Aframe, we have:

E




(

sup
t∈Sm+S

cm2
,‖t‖F Y

=1

(νn,1(t))
2 − 2

3
p2(m, m̂2)

)

+



 ≤ C ′

n

for some constant C ′ depending on (K, ‖h‖∞,A, F 0).

Finally, for the estimator ĥ
bm1

:

pen(m) − pen(m̂1) + 2p1(m, m̂1) =
BθK2

F 0

Dm

n
(22)

and for the estimator ĥ
bm2

pen(m) − pen(m̂1) + 2p1(m, m̂1) = BθK2‖h‖∞,A
Dm

n
(23)

Finally inequalities (18), (19), (22) or (23), and the results of Lemmas 51 and 52 provides inequality
(16), which ends the proof of 51. ✷

Proof of Lemma 51
Let (φn

1 , . . . , φ
n
Nn

) be an ‖.‖-orthonormal basis of the global space Sn, and note that {t, ‖t‖2
F Y

≤ 1} ⊂
{t, ‖t‖2 ≤ F

−1

0 }. Then:

E

[
sup

t∈Sm+S
cmi

,‖t‖F Y
=1

(νn,2(t))
2

]
≤ E

[
sup

t∈Sn,‖t‖F Y
=1

(νn,2(t))
2

]

≤ E

[
sup

t∈Sn,‖t‖2≤1/F 0

(νn,2(t))
2

]

= E



 sup
PNn

λ=1
a2

λ
≤1/F 0

(
Nn∑

λ=1

aλ(〈φn
λ, h〉n − 〈φn

λ, h〉F Y
)

)2




With Cauchy-Schwartz Inequality, we obtain

E

[
sup

t∈Sm+S
cmi

,‖t‖F Y
=1

(νn,2(t))
2

]
≤ 1

F 0

Nn∑

λ=1

E
[
(〈φn

λ, h〉n − 〈φn
λ, h〉F Y

)2
]

=
1

F 0

Nn∑

λ=1

1

n
V ar

[∫

A

h(x)φn
λ(x)1Y1≥xdx

]

≤ 1

F 0n
E

[
Nn∑

λ=1

〈φn
λ, h(.)1Y1≥.〉2

]
=

1

F 0n
E
[
‖(h(.)1Y1≥.)Sn

‖2
]

where (h(.)1Y1≥.)Sn
denotes the L2-orthogonal projection of h(.)1Y1≥. on Sn. Thus:

E

[
sup

t∈Sm+S
cmi

,‖t‖F Y
=1

(νn,2(t))
2

]
≤ 1

F 0n
E
[
‖h(.)1Y1≥.‖2

]
=

1

F 0n
‖h‖2

F Y
✷

Proof of Lemma 52
For i=1 or 2, we have:

E




(

sup
t∈Sm+S

cmi
,‖t‖F Y

=1

(νn,1(t))
2 − 2

3
pi(m, m̂i)

)

+



 ≤
∑

m′∈Jn

E




(

sup
t∈Sm+Sm′ ,‖t‖F Y

=1

(νn,1(t))
2 − 2

3
pi(m,m

′)

)

+





11



Besides, for every models Sm, Sm′ , we upper bound the term E[(supt∈Sm+Sm′ ,‖t‖F Y
=1(νn,1(t))

2−pi(m,m
′))+]

with Talagrand Inequality as recalled in Theorem 4.

Let us compute first the term H. Under Assumption A
(1)
mod

, Sm ⊂ Sm′ or Sm′ ⊂ Sm. Thus, if we
denote by Dm+m′ the dimension of Sm +S′

m, we have Dm+m′ = max(Dm, Dm′) ≤ Dm +Dm′ . Moreover,

we denote by (φm+m′

1 , . . . , φm+m′

Dm+m′
) the orthonormal basis of Sm + Sm′ with φm+m′

λ = φm
λ if Sm ⊂ Sm′ ,

and φm′

λ if Sm′ ⊂ Sm.

1. Suppose that the assumptions of 1. in Lemma 52 hold. Similarly to the upper bound of
E[supt∈Sm+S

cm,‖t‖F Y
=1(νn,2(t))

2], we obtain

E

[
sup

t∈Sm+Sm′ ,‖t‖F Y
=1

(νn,1(t))
2

]
≤ E

[
sup

t∈Sm+Sm′ ,‖t‖≤1/F 0

(νn,1(t))
2)+

]

≤ 1

F 0

Dm+m′∑

λ=1

1

n
V ar

[
δ1φ

m+m′

λ (Y1)
]

≤ 1

F 0

Dm+m′∑

λ=1

1

n
E

[
(φm+m′

λ )2(Y1)
]

(24)

Besides, under Assumption A
(1)
mod

:
∥∥∥∥∥∥

Dm+m′∑

λ=1

(φm+m′

λ )2

∥∥∥∥∥∥
∞

≤ K2Dm+m′ , (25)

hence:

E

[
sup

t∈Sm+Sm′ ,‖t‖F Y
=1

(νn,1(t))
2

]
≤ 1

nF 0

∥∥∥∥∥∥

Dm+m′∑

λ=1

(φm+m′

λ )2

∥∥∥∥∥∥
∞

≤ K2(Dm +Dm′)

F 0n
:= H

2

Since B > 3, according to the definition (20) of p1(m,m
′), we have (2/3)p(m,m′) = θH2 for some

θ > 1. Besides,

sup
t∈Sm+Sm′ ,‖t‖F Y

=1

‖δ1t(Y1)‖∞ ≤ sup
t∈Sm+Sm′ ,‖t‖2≤1/F 0

‖t‖∞ = sup
P

D
m+m′

λ=1
a2

λ
≤1/F 0

∥∥∥∥∥∥

Dm+m′∑

λ=1

aλφ
m+m′

λ

∥∥∥∥∥∥
∞

With Cauchy-Schwartz Inequality, and inequality (25), we obtain

sup
t∈Sm+Sm′ ,‖t‖F Y

=1

‖δ1t(Y1)‖∞ ≤ 1√
F 0

∥∥∥∥∥∥

Dm+m′∑

λ=1

(φm+m′

λ )2

∥∥∥∥∥∥
∞

≤ K√
F 0

√
Dm +Dm′ := b

And according to computings (6),

sup
t∈Sm+Sm′ ,‖t‖F Y

=1

V ar(δ1t(Y1)) ≤ sup
t∈Sm+Sm′ ,‖t‖F Y

=1

E[δ1t
2(Y1)]

= sup
t∈Sm+Sm′ ,‖t‖F Y

=1

∫

A

t2(x)h(x)FY (x)dx ≤ ‖h‖∞,A := v

Then, with Talagrand Inequality, we obtain

E




(

sup
t∈Sm+Sm′ ,‖t‖F Y

=1

(νn,1(t))
2 − 2

3
p(m,m′)

)

+





≤ C
‖h‖∞,A

n
exp

(
−κK

2(Dm +Dm′)

F 0‖h‖∞,A

)
+ C

′K2(Dm +Dm′)

F
2

0n
2

exp(−κ′√n)
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Thus, with Assumption A
(3)
mod

, we have

∑

m′∈Mn

E




(

sup
t∈Sm+Sm′ ,‖t‖F Y

=1

(νn,1(t))
2 − 2

3
p(m,m′)

)

+



 ≤ C ′

n

which conclude the proof of 1. in Lemma 52.
2. Suppose that the assumptions of 2. in Lemma 52. Let (ψ1, . . . , ψDm+m′

) be an orthonormal basis of
Sm + Sm′ for the norm ‖.‖F Y

. Then, similarly to (24):

E

[
sup

t∈Sm+Sm′ ,‖t‖F Y
=1

(νn,1(t))
2

]
≤ 1

n

Dm+m′∑

λ=1

V ar(δ1ψ
2
λ(X1)) ≤

1

n

Dm+m′∑

λ=1

E[δ1ψ
2
λ(X1)]

=
1

n

Dm+m′∑

λ=1

∫

A

ψ2
λ(x)h(x)FY (x)dx

≤ ‖h‖∞,A
Dm +Dm′

n
:= H

2

Besides, according to Assumption A
(2)
mod

:

sup
t∈Sm+Sm′ ,‖t‖F Y

=1

‖δ1t(Y1)‖∞ ≤ sup
t∈Sm+Sm′ ,‖t‖2≤1/F 0

‖t‖∞ ≤ K√
F 0

√
Nn := b

and the end of the proof is similar to the 1). ✷

5.3 Proof of Proposition 52

Let m ≤ Nn:

‖ĥm − h‖F Y
≤ ‖ĥm‖ + ‖h‖F Y

= ‖Âm‖ + ‖h‖F Y

≤ max
(
Sp(Ĝ−1

m )
)
‖V̂m‖ + ‖h‖F Y

=
[
min

(
Sp(Ĝm)

)]−1

‖V̂m‖ + ‖h‖F Y

According to inequality (10):

‖ĥm − h‖F Y
≤ 4

3F 0

[

Dm∑

λ=1

(
1

n

n∑

i=1

φm
λ (Yi)δi)

2]1/2 + ‖h‖F Y

≤ 4

3F 0

[

Dm∑

λ=1

1

n

n∑

i=1

(φm
λ )2(Yi)]

1/2 + ‖h‖F Y

≤ 4

3F 0

∥∥∥∥∥

Dm∑

λ=1

(φm
λ )2

∥∥∥∥∥

1/2

∞

+ ‖h‖F Y

≤ 4K
√
Nn

3F 0

+ ‖h‖F Y
✷
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5.4 Proof of Proposition 53

The proof of Proposition 53 is inspired from Baraud (2002).

∆c
1 =

{
|‖t‖2

n − ‖t‖2
F Y

| > 1

4
‖t‖2

F Y
,∀t ∈ Sn

}
=

{
sup

t∈Sn,‖t‖F Y
=1

ηn(t2) >
1

4

}

where ηn(t) = 1
n

∑n
i=1(

∫
A
t(x)1Yi≥xdx−

∫
A
t(x)FY (x)dx). Let (ψ1, . . . , ψNn

) be an orthonormal base of
the global space Sn for the norm ‖.‖F Y

, then

∆c
1 =




 sup
P

a2
λ
=1

∑

λ,λ′

aλaλ′

[
1

n

n∑

i=1

(

∫

A

ψλ(x)ψλ′(x)1Yi≥xdx−
∫

A

ψλ(x)ψλ′(x)FY (x)dx)

]
>

1

4






:=




 sup
P

a2
λ
=1

∑

λ,λ′

aλaλ′Sλ,λ′ >
1

4






On the one hand, let λ, λ′ be fixed, then:

1

n

n∑

i=1

E

[(∫

A

ψλψλ′1Yi≥xdx

)2
]

= E

[(∫

A

ψλψλ′1Y1≥xdx

)2
]

:= vλ,λ′

and for every l ≥ 2:

E

[(∫

A

ψλ(x)ψλ′(x)1Y1≥xdx

)l

+

]
≤ E

[(∫

A

ψλ(x)ψλ′(x)1Y1≥xdx

)2(∫

A

|ψλ(x)ψλ′(x)|dx
)l−2

]

≤ vλ,λ′

(∫

A

ψ2
λ(x)dx

∫

A

ψ2
λ′(x)dx

)l/2−1

≤ vλ,λ′

(
1

F 0

)l−2(∫

A

ψ2
λ(x)FY (x)dx

∫

A

ψ2
λ′(x)FY (x)dx

)l/2−1

= vλ,λ′

(
1

F 0

)l−2

:= vλ,λ′cl−2
λ,λ′

Thus, Bernstein Inequality recalled in Theorem 3 provides the following upper bound:

P
[
|Sλ,λ′ | ≥

√
2vλ,λ′x+ cλ,λ′x

]
≤ 2 exp(−nx)

On the other hand,

{
|Sλ,λ′ | <

√
2vλ,λ′x+ cλ,λ′x,∀λ, λ′ = 1, . . . Nn

}

⊂






Nn∑

λ,λ′=1

|aλ||Sλ,λ′ ||aλ′ | <
√

2x

Nn∑

λ,λ′=1

|aλ|
√
vλ,λ′ |aλ′ | + x

Nn∑

λ,λ′=1

|aλ|cλ,λ′ |aλ′ |,∀(aλ)λ=1,...Nn






⊂




 sup
P

a2
λ
=1

Nn∑

λ,λ′=1

|aλ||Sλ,λ′ ||aλ′ | <
√

2x sup
P

a2
λ
=1

Nn∑

λ,λ′=1

|aλ|
√
vλ,λ′ |aλ′ | + x sup

P

a2
λ
=1

Nn∑

λ,λ′=1

|aλ|cλ,λ′ |aλ′ |






=

{
sup

t∈Sn,‖t‖F Y
≤1

|ηn(t2)| ≤
√

2xρ(V ) + xρ(C)

}

where ρ(M) denotes the maximum of the spectrum of M , and V and C denote the following matrix:

V :=
(√
vλ,λ′

)
λ,λ′=1,...,Nn

, C = (cλ,λ′)λ,λ′=1,...,Nn
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Thus, for every x ≥ 0,

P

[
sup

t∈Sn,‖t‖F Y
≤1

|ηn(t2)| >
√

2xρ(V ) + xρ(C)

]
≤
∑

λ,λ′

P
[
|Sλ,λ′ | >

√
2vλ,λ′x+ cλ,λ′x

]
≤ 2N2

n exp(−nx)

To upper bound the term P [∆c
1], we choose x such that

√
2xρ(V ) ≤ 1

8 and xρ(C) ≤ 1
8 . Let L(ψ) =

max(ρ(C), 16ρ(V )2) then,

P [∆c
1] ≤ 2 exp

(
− n

8L(ψ)

)

Now we have to upper bound L(ψ). Applying two times Cauchy-Schwartz Inequality,we obtain

(ρ(V ))
2

= sup
P

a2
λ
=1

[
Nn∑

λ=1

|aλ|
(

Nn∑

λ′=1

|aλ′ |√vλ,λ′

)]2

≤ sup
P

a2
λ
=1

(
Nn∑

λ=1

a2
λ

)


Nn∑

λ=1

[
Nn∑

λ′=1

||aλ′ |√vλ,λ′

]2




= sup
P

a2
λ
=1

Nn∑

λ=1

(
Nn∑

λ′=1

|aλ′ |√vλ,λ′

)2

≤
Nn∑

λ=1

(
Nn∑

λ′=1

vλ,λ′

)

We replace vλ,λ′ by its expression.

(ρ(V ))
2 ≤

Nn∑

λ=1

E

[
Nn∑

λ′=1

〈ψλ′ , ψλ1Y1≥.〉2
]

≤ 1

F 0

Nn∑

λ=1

E

[
Nn∑

λ′=1

〈ψλ′ , ψλ1Y1≥.〉2F Y

]

Besides,
√∑Nn

λ′=1〈ψλ′ , ψλ1Y1≥x〉2F Y

is equal to the norm of the ‖.‖F Y
-projection of ψλ1Y1≥. on Sn, so:

Nn∑

λ′=1

〈ψλ′ , ψλ1Y1≥x〉2F Y
≤ ‖ψλ1Y1≥.‖2

F Y
≤ ‖ψλ‖2

F Y
= 1

Hence (ρ(V ))
2 ≤ Nn

F
2

0

.

Besides,

ρ(C) =
1

F 0

sup
P

a2
λ
=1




Nn∑

λ,λ′=1

|aλ||aλ′ |





≤ 1

F 0

sup
P

a2
λ
=1

√√√√
Nn∑

λ=1

a2
λ

√√√√
Nn∑

λ=1

(

Nn∑

λ′=1

|aλ′ |)2

≤ 1

F 0

sup
P

a2
λ
=1

√
Nn

Nn∑

λ′=1

|aλ′ | ≤ Nn

F 0

Finally L(ψ) ≤ max(Nn

F 0

, 16Nn

F
2

0

) = 16Nn

F
2

0

and

P [∆c
1] ≤ exp

(
−C2F

2

0

n

Nn

)
✷

5.5 Comment about the constant in the penalty

This Section ensues from Remark 2. Suppose that ∆th
2 is replaced by the set:

{
| ‖t‖2

n

‖t‖2
F Y

− 1| ≤ α,∀t ∈ Sn

}

and the inequalities of the kind 2ab ≤ 2a2 + (1/2)b2 by 2ab ≤ (1/β)a2 + βb2 in the proofs above. Then
if α, β are chosen small enough, Theorem 1 still holds for a constant B > 1 in the penalty.
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6 Proof of Theorem 2

The following Propositions are intermediate results to prove Theorem 2.

Proposition 61 Suppose that Assumptions A
(3)
mod

and Aframe hold.

1. If Assumption A
(1)
mod

holds, then:

E

[
‖ĥ

bm1
− h‖2

F Y
1∆1∩∆2∩∆3

]
≤ C inf

m∈Mn

[
inf

t∈Sm

‖t− h‖2
F Y

+ penth
1 (m)

]
+
C ′

n

2. If Assumption A
(2)
mod

holds, then:

E

[
‖ĥ

bm2
− h‖2

F Y
1∆1∩∆2∩∆3∩∆4

]
≤ C inf

m∈Mn

[
inf

t∈Sm

‖t− h‖2
F Y

+ penth
2 (m)

]
+
C ′

n

where C is a numerical constant and C ′ depends on (K,F 0, ‖h‖∞)

Proposition 62 Under Assumption Aframe:

1. For every n such that αn ≤ F 0/2:

P [∆c
3] ≤ 2 exp(−C1nF 0)

for some numerical constant C1.
2.

∆c
2 ∩∆3 ⊂ ∆c

1 ∩∆3

Proposition 63 Under Assumptions (15) and Aframe, we have:

P [∆c
4 ∩∆1] ≤ 4D exp

(
−C n

D

)
(26)

where C depends on (ν, F 0, ‖h‖∞).

6.1 Proof of Theorem 2

Similarly to the proof of Proposition 52, for every model m,

‖ĥm − h‖F Y
≤ 2K

√
Nn

F̂0

+ ‖h‖F Y
≤ 2K

√
Nn

αn
+ ‖h‖F Y

= 2Kn+ ‖h‖F Y

since F̂0 ≥ αn and Nn ≤ n.

• Proof for i = 1:

E

[
‖ĥ

bm1
− h‖2

F Y
1(∆1∩∆2∩∆3)c

]
≤
(
2Kn+ ‖h‖F Y

)2
P [(∆1 ∩∆2 ∩∆3)

c]

and

P [(∆1 ∩∆2 ∩∆3)
c] = P [∆c

1 ∪∆c
2 ∪∆c

3]

= P [(∆c
1 ∪∆c

2 ∪∆c
3) ∩∆3] + P [(∆c

1 ∪∆c
2 ∪∆c

3) ∩∆c
3]

≤ P [(∆c
1 ∩∆3) ∪ (∆c

2 ∩∆3)] + P [∆c
3]

According to 2) of Proposition 62, we have

P [(∆1 ∩∆2 ∩∆3)
c] ≤ P [∆c

1 ∩∆3] + P [∆c
3] ≤ P [∆c

1] + P [∆c
3]

Thus Proposition 53 with computings in (17), and Proposition 62 lead to

P [(∆1 ∩∆2 ∩∆3)
c] ≤ exp

(
−C1F 0

n

lnn

)
+ 2 exp(−C2F 0n)

Hence E

[
‖ĥm1

− h‖2
F Y

1(∆1∩∆2∩∆3)c

]
≤ C′

n and 1. of Proposition 61 ends the proof for i = 1.
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• Proof for i = 2:

P [(∆1 ∩∆2 ∩∆3 ∩∆4)
c] = P [(∆c

1 ∪∆c
2 ∪∆c

3 ∪∆c
4) ∩∆1] + P [∆c

1]

≤ P [∆c
1 ∪∆c

2 ∪∆c
3] + P [∆c

4 ∩∆1] + P [∆c
1]

According to inequality (27),

P [(∆1 ∩∆2 ∩∆3 ∩∆4)
c] ≤ 2P [∆c

1] + P [∆c
3] + P [∆c

4 ∩∆1]

and Propositions 8, 62 and 63 allow to conclude similarly to the case 1.. ✷

6.2 Proof of Proposition 61

We only expose the proof for the estimator ĥ
bm1

. The proof of Proposition 61 follows the same line as
Proposition 51, let us point out the slight differences. Inequalities (18) and (19), as well as Lemma 51
hold. Hence, for every model m and every h ∈ Sm,

E

[
‖ĥ

bm1
− h‖2

F Y
1∆1∩∆2∩∆3

]
≤ C1

{
‖h− hm‖2

F Y
+ E [(pen1(m) − pen1(m̂1) + 2p1(m, m̂1))1∆3

] +

+ ‖h‖2
F Y

1

F 0n
+

∑

m′∈Mn

E




(

sup
t∈Sm+Sm′ ,‖t‖F Y

=1

(νn,1(t))
2 − 2

3
p1(m,m

′)

)

+










with

p1(m,m
′) =

2B

5

K2

F 0

Dm +Dm′

n

The only difference with the proof of Proposition 51 is the upper bound of E [(pen1(m) − pen1(m̂1) + 2p1(m, m̂1))1∆3
],

indeed:

E [(pen1(m) − pen1(m̂1) + 2p1(m, m̂1))1∆3
] = E

[(
B

F̂0

Dm −D
bm

n
+

4B

5F 0

Dm +D
bm

n

)
1∆3

]

≤ E

[(
B

F̂0

Dm −D
bm

n
+
B

F̂0

Dm +D
bm

n

)
1∆3

]

= E

[
2B

F̂0

Dm

n
1∆3

]
≤ 8B

3F 0

Dm

n
✷

6.3 Proof of Proposition 62

1. If αn ≤ F 0/2, then

P [∆c
3] = P

[∣∣∣∣∣
1

n

n∑

i=1

(1Yi≥1 − F 0)

∣∣∣∣∣ ≥
1

4
F 0

]
= P

[∣∣∣∣∣
1

n

n∑

i=1

(1Yi≥1 − E[1Yi≥1])

∣∣∣∣∣ ≥
1

4
F 0

]

We apply Bernstein Inequality with the parameters c = 1 and v = F 0, then P [∆c
3] ≤ 2 exp(−C1nF 0)

where C1 is a numerical constant.
2. We prove that ∆1 ∩∆3 ⊂ ∆2 ∩∆3. According to (9), on the set ∆1 ∩∆3:

‖t‖2
n ≥ 3

4
× 4

5
F̂0‖t‖2 =

3

5
F̂0‖t‖2

So inft∈Sm,t6=0
‖t‖2

n

‖t‖2 = min(Sp(Ĝm)) ≥ 3 bF0

5 thus ∆1 ∩∆3 ⊂ ∆2 ∩∆3.

This entails the result 2) from Proposition 62, in fact:

(∆c
2 ∩∆3) ∩∆1 = ∆c

2 ∩ (∆3 ∩∆1) ⊂ ∆c
2 ∩ (∆3 ∩∆2) = ∅

thus ∆c
2 ∩∆3 ⊂ ∆c

1. Besides we have immediatly ∆c
2 ∩∆3 ⊂ ∆3, so ∆c

2 ∩∆3 ⊂ ∆c
1 ∩∆3. ✷
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6.4 Proof of Proposition 63

Let x0 and x̂0 be in A such that:

‖h‖∞ = h(x0), ‖ĥD‖∞ = ĥD(x̂0)

Then,

ν̂n − ν ≤ (ĥD − h)(x̂0) = (ĥD − hD)(x̂0) + (hD − h)(x̂0) ≤
√
D sup

j=1,...,D
|âj − aj | + ‖h− hD‖∞

Similarly,

ν − ν̂n ≤ (h− ĥD)(x0) ≤ (h− hD)(x0) + (hD − ĥD)(x0) ≤ ‖h− hD‖∞ +
√
D sup

j=1,...,D
|âj − aj |

Hence |ν − ν̂n| ≤ ‖h− hD‖∞ +
√
D supj=1,...,D |âj − aj |. According to Assumption (15),

P [∆c
4] ≤ P

[
‖h− hD‖∞ +

√
D sup

j=1,...,D
|âj − aj | ≥

ν

4

]

≤ P




√
D sup

j=1,...,D
|âj − aj | ≥

ν

8
] ≤

D∑

j=1

P [
√
D|âj − aj | ≥

ν

8





Moreover, for every j = 1, . . . , D,

√
D(âj − aj) =

√
D

[
(1/n)

∑n
i=1 δiϕ

D
j (Yi)

‖ϕD
j ‖2

n

−
∫

A
ϕD

j (x)h(x)FY (x)dx

‖ϕD
j ‖2

F Y (x)

]

=

√
D

‖ϕD
j ‖2

n

1

n

n∑

i=1

[
δiϕ

D
j (Yi) −

∫

A

ϕD
j (x)h(x)FY (x)dx

]
+

√
D

∫

A

ϕD
j (x)h(x)FY (x)dx

[
1

‖ϕD
j ‖2

n

− 1

‖ϕD
j ‖2

F Y

]

Besides, on the set ∆1,

‖ϕD
j ‖2

n ≥ 3

4
‖ϕD

j ‖2
F Y

=
3

4

∫ j/D

(j−1)/D

DFY (x)dx ≥ 3F 0

4

and ∣∣∣∣
∫

A

ϕD
j (x)h(x)FY (x)dx

∣∣∣∣ ≤ ‖h‖F Y
‖ϕD

j ‖F Y
≤ ‖h‖F Y

Hence:

√
D|âj − aj |1∆1

≤ 4
√
D

3F 0

∣∣∣∣∣
1

n

n∑

i=1

[δiϕ
D
j (Yi) −

∫

A

ϕD
j (x)(h)FY (x)dx

∣∣∣∣∣+
√
D‖h‖F Y

∣∣∣∣∣
‖ϕD

j ‖2
F Y

− ‖ϕD
j ‖2

n

‖ϕD
j ‖2

F Y

‖ϕD
j ‖2

n

∣∣∣∣∣

≤ 4
√
D

3F 0

∣∣∣∣∣
1

n

n∑

i=1

(δiϕ
D
j (Yi) − E[δiϕ

D
j (Yi)])

∣∣∣∣∣+
√
D‖h‖F Y

42

32F
2

0

∣∣∣‖ϕD
j ‖2

F Y
− ‖ϕD

j ‖2
n

∣∣∣

Thus:

P [∆c
4 ∩∆1] ≤

D∑

j=1

P

[
4
√
D

3F 0

∣∣∣∣∣
1

n

n∑

i=1

(δiϕ
D
j (Yi) − E[δiϕ

D
j (Yi)])

∣∣∣∣∣ ≥
ν

16

]
+

D∑

j=1

P

[
√
D‖h‖F Y

42

32F
2

0

∣∣∣‖ϕD
j ‖2

F Y
− ‖ϕD

j ‖2
n

∣∣∣ ≥ ν

16

]

:=

D∑

j=1

(P1,j + P2,j) (27)
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P1,j and P2,j are upper bounded with Bernstein Inequality. For P1,j , the parameters b and v are the
following:

E[δ2i (ϕD
j )2(Yi)] =

∫

A

(ϕD
j )2(x)h(x)FY (x)dx ≤ ‖h‖∞,A := v, ‖δiϕD

j (Yi)‖∞ ≤
√
D := c

Hence, for every j ∈ {1, . . . , D},
P1,j ≤ 2 exp(−C n

D
) (28)

where C depends on (ν, ‖h‖∞,A, F 0). Let us upper bound P2,j . For every j ∈ {1, . . . , D},

P2,j = P

[
42
√
D‖h‖F Y

32F
2

0

∣∣∣∣∣
1

n

n∑

i=1

(

∫

A

(ϕD
j )2(x)1Yi≥xdx− E[

∫

A

(ϕD
j )2(x)1Yi≥xdx])

∣∣∣∣∣ ≥
ν

16

]

and

E

[(∫

A

(ϕD
j )2(x)1Yi≥xdx

)2
]
≤ 1 := v,

∥∥∥∥
∫

A

(ϕD
j )2(x)1Yi≥xdx

∥∥∥∥
∞

≤ 1 := c

Thus, with Bernstein Inequality we obtain

P2 ≤ 2 exp
(
−C n

D

)
(29)

where C depends on (ν, ‖h‖F Y
, F 0). Now inequalities (27), (28) and (29) entails the result of Proposition

63. ✷

7 Appendix

The following Inequality, called Bernstein Inequality, is proved in this form in Birgé and Massart (1998),
p366, Lemma 8.

Theorem 3 Let (X1, . . . , Xn) be independent random variables. Let us suppose that:

1

n

n∑

i=1

E[X2
i ] ≤ v,

1

n

n∑

i=1

E[(Xi)
l
+] ≤ l!

2
× v × cl−2

for every l ≥ 2. Let S = 1
n

∑n
i=1Xi − E[Xi].

1) For every ǫ > 0:

P [S ≥
√

2vx+ cx] ≤ exp(−nx), P [|S| ≥
√

2vx+ cx] ≤ 2 exp(−nx).
2) Similarly, for every ǫ > 0:

P [S ≥ ǫ] ≤ exp

(
− nǫ2

2(v + cǫ)

)
, P [|S| ≥ ǫ] ≤ 2 exp

(
− nǫ2

2(v + cǫ)

)
.

Theorem 4 Let F a set of uniformly bounded functions, which have a countable dense for the infinite
norm subspace. Let (X1, . . . , Xn) be independant random variables and:

Z = sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

[f(Xi) − E(f(Xi))]

∣∣∣∣∣

Let consider b, v and H such that:

b ≥ sup
f∈F

‖f‖∞, v ≥ sup
f∈F

1

n

n∑

i=1

V ar(f(Xi))

H ≥ E(Z)

Then for every θ > 1, there exist numerical constants C, C
′
, κ, κ′ such that:

E(Z2 − θH2)+ ≤ C
v

n
exp

(
−κnH

2

v

)
+ C

′ b2

n2
exp

(
−κ′nH

b

)

The above version of Talagrand Inequality is enunciated for example in Lacour (2008) (Section 6, Lemma
5).

19



References
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Birgé L, Massart P (1998) Minimum contrast estimators on sieves: exponential bounds and rates of

convergence. Bernoulli 4(3):329–375
Comte F, Brunel E (2005) Penalised contrast estimation of density and hazard rate with censored data.

Sankhya 67(3):441–475
Comte F, Brunel E (2008) Adaptive estimation of hazard rate with censored data. Comm Statist Theory

Methods 37(8-10):1284–1305
Huber C, MacGibbon B (2004) Lower bounds for estimating a hazard. Handbook of Statistics, Elsevier,

Amsterdam 23:209–226
Kaplan E, Meier P (1958) Non parametric estimation from incomplete observations. J Amer Statist

Assoc 53:457–481
Lacour C (2008) Adaptive estimation of the transition density of a particular hidden markov chain. J

Multivariate Anal 99(5):787–814
Muller H, Wang J (1994) Hazard rate estimation under random censoring with varying kernels and

bandwidth. Biometrics 50(1):61–76
Nelson W (1972) Theory and applications of hazard plotting for censored failure data. Technometrics

14(4):945–966
Patil P (1993) On the least squares cross validation bandwidth in hazard rate estimation. Ann Statist

21(4):1792–1810
Reynaud-Bouret P (2006) Penalized projection estimators of the Aalen multiple intensity. Bernoulli

12(4):633–661
Tanner M, Wong W (1983) The estimation of the hazard function from randomly censored data by the

kernel method. Ann Statist 11(3):989–993
Yandell B (1983) Nonparametric inference for rates with censored survival data. Ann Satist 11(4):1119–

1135

20


