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Manifold and Data Filtering on Graphs

Olivier Lézoray, Vinh-Thong Ta, Abderrahim Elmoataz

Université de Caen Basse-Normandie, GREYC UMR CNRS 6072, ENSICAEN,
Equipe Image, 6 Bd. Maréchal Juin, F-14050 Caen, France

Abstract. High-dimensional feature spaces are often corrupted by noise.
This is problematic for the processing of manifold and data since most
of reference methods are sensitive to noise. This paper presents pre-
processing methods for manifold denoising and simplification based on
discrete analogues of continuous regularization and mathematical mor-
phology. Both approaches enable to project the data onto a submanifold
with a graph generated by the data.

1 Introduction

In manifold and data processing, dimensionality reduction [1], clustering [2] and
classification [3] are key processes. In particular, methods based on differences on
graphs (e.g. the graph Laplacian) have became increasingly popular in machine
learning to perform any of the above-mentioned key processes. All these meth-
ods are based on the assumption that the data lies on a submanifold. However,
sampled data lies almost never exactly on the submanifold due to the noise scat-
tered around it. Graph based methods being sensitive to noise, it is essential to
denoise the manifold data [4]. This enables to project the initial noisy data, that
are scattered around the true manifold, onto a submanifold. In this paper, we
propose a family of weighted difference operators that lead to the formulation of
discrete analogues of continuous regularization and mathematical morphology on
graphs. These proposals can be used within the KDD process as a pre-processing
method that can ease the next steps (classification, visualization, ...).

2 Operators on weighted graphs

In this Section, we recall some basic definitions on graphs, and define difference,
divergence, gradients and p-Laplacian operators.

2.1 Preliminary notations and definitions

A weighted graph G = (V, E,w) consists in a finite set V = {v1,...,on} of N
vertices and a finite set £ C V x V of weighted edges. We assume G to be
undirected, with no self-loops and no multiple edges. Let (u,v) be the edge of
E that connects vertices u and v of V. Its weight, denoted by w(u,v), repre-
sents the similarity between its vertices. Similarities are usually computed by



using a positive symmetric function w : V x V. — RT satisfying w(u,v) = 0
if (u,v) ¢ E. The notation u ~ v is also used to denote two adjacent vertices.
We say that G is connected whenever, for any pair of vertices (u,v) there is
a finite sequence u = wug,u1,...,u, = v such that u; 1 is a neighbor of w;
for every ¢ € {1,...,n}. Let H(V) be the Hilbert space of real-valued func-
tions defined on the vertices of a graph G = (V, E,w). A function f : V — R
of H(V) assigns a real value f(v) to each vertex v € V. Clearly, the func-
tion f can be represented by a column vector f = [f(v1),...,f(vn)]T. By
analogy with functional analysis on continuous spaces, the integral of a func-
tion f € H(V'), over the set of vertices V, is defined as fV f =2y f. The space
H(V) is endowed with the usual inner product (f,h)y vy = > ,cy f(V)A(v),
where f,h : V — R. Similarly, let H(FE) be the space of real-valued functions
defined on the edges of G. It is endowed with the inner product (F, H)y g =
Yuwer Flu,v)H(u,v) = 32 v 320, F(u,v)H(u,v), where FH : E — R
are two functions of H(E). Let A be a set of connected vertices with ACV
such that for all u€A, there exists a vertex veA with (u,v)€E. We denote by
0T A and 0~ A, the external and internal boundary sets of A, respectively. For
a given vertex ueV, 9t A = {ueA° : Jve A with (u,v)eE} and 9~ A = {ueA :
Jve A® with (u,v)€E}, where A°=V \ A is the complement of A.

2.2 Difference operators

Let G = (V,E,w) be a weighted graph, and let f : V — R be a function
of H(V). The difference operator [5] of f, noted d : H(V) — H(E), is defined
on an edge (u,v) € E by: (df)(u,v) = w(u,v)/?(f(v) — f(u)). The directional
derivative (or edge derivative) of f, at a vertex v € V, along an edge e = (u,v),
is defined as: % = 0, f(u) = (df)(u,v). This definition is consistent with

the continuous definition of the derivative of a function: 0, f(u) = —9,f(v),
Oyf(v) = 0, and if f(v) = f(u) then 9,f(u) = 0. The adjoint of the dif-
ference operator, noted d* : H(E) — H(V), is a linear operator defined by
(df, H)yppy = (f,d*H)p vy, for all f € H(V) and all H € H(E). The adjoint
operator d*, of a function H € H(E), can by expressed at a vertex u € V by
the following expression: (d*H)(u) = 3, . w(u,v)/?(H(v,u) — H(u,v)). The
divergence operator, defined by —d*, measures the net outflow of a function of
H(E) at each vertex of the graph. Each function H € H(F) has a null divergence
over the entire set of vertices: ) . (d*H)(v) = 0. Other general definitions of
the difference operator have been proposed (see e.g. in [6]). However, the latter
operator is not null when the function f is locally constant and its adjoint is
not null over the entire set of vertices [7]. Based on the difference operator, we
define two new weighted morphological directional difference operators [8]. The
weighted morphological external and internal difference operator are respec-
tively: (d f)(u,v)=w(u,v)"/?(max(f(u), f(v)) — f(u)) = max(0, (dwf)(u,v))
and (dy, f)(u,v) = w(u,v)"?(f(u) — min(f(u), f(v))) = —min(0, (dwf)(u,v))
with (dy, f)(u,v)=(d} f)(v,u). The corresponding external and internal partial
derivatives are O f(u)=(d} f)(u,v) and 9, f(u)=(dy f)(u,v).



2.3 Gradients and norms

The weighted gradient operator of a function f € H(V), at a vertex u € V, is the
vector operator defined by (Vo f)(u) = [0y f(u) : v ~u]T = [0y, f(u),..., 0, f(u)]T,
V(u,v;) € E. The L,-norm of this vector represents the local variation of the
function f at a vertex of the graph. It is defined by:

(T F) )l = [ w2 pw)— s ] ()

v~

The local variation is a semi-norm which measures the regularity of a func-
tion around a vertex of the graph. Following this definition, we introduce two
new weighted morphological (internal and external) gradients based on the ex-
ternal and internal partial derivatives such as (Vif)(u):(ﬁfff(u))(u,v)eE. The
external gradient of a function is a directional difference operator defined as the
difference between an extensive operator and the function (a typical one being
the max), and similarly for the internal gradient [9]. In the sequel, we use the £,,-
norm of the weighted discrete morphological gradients for a given vertex ueV,
we have, with M+ = max and M~ = min,

ITER @I, = [3 wln o2 pr= (0, ) —f)] " @

v~Yu

For the L,,-norm, we have

I(VEN @)oo = max (w(u,0) /2| M (0, f(0)—f(w)]) - )

2.4 p-Laplace operator

Let p € (0, +00) be a real number. The weighted p-Laplace operator of a function
f € H(V), noted AP, : H(V) — H(V), is defined by:

AL f(u) = 5d° (I(Vu ) (@)l5(df) (u, 0)).- (4)

The p-Laplace operator of f € H(V), at a vertex u € V, can be computed
by:

AL f(u) = 3> v (wv)(f(uw) = f(v), (5)
with
¥ (1, 0) = w(e, V) ([(Va /) @)E + [(Vw ) (w)[[572). (6)

The p-Laplace operator is nonlinear, with the exception of p = 2. In this latter
case, it corresponds to the combinatorial graph Laplacian, which is one of the
classical second order operators defined in the context of spectral graph theory.
Another particular case of the p-Laplace operator is obtained with p = 1. In this



case, it is the weighted curvature of the function f on the graph. Finally, the
p-Laplacian matrix LP satisfies the following properties. (1) its expression is:

3D vh(vi k) if vi = v

VU,
LP(v: v:) —
( s J) 7%71{](1)7;71)]') if v; # v; and (vi,vj) ek

0 if ('Ui,’U]') ¢ E

(2) For every vector f(u), f1(u)LPf(u) = AP f(u). (3) LP is symmetric and
positive semi-definite. (4) L? has non-negative, real-valued eigenvalues 0 = A; <
Ao < --- < Ay. The p-Laplacian matrix can be used for manifold learning and
generalizes approaches based on the 2-Laplacian [1]. Therefore, a dimensionality
reduction can be obtained with an eigen-decomposition of the matrix LP.

3 p-Laplacian regularization on graphs

Let f9:V — R be a given function defined on the vertices of a weighted graph
G = (V, E,w). In a given context, the function f° represents an observation of a
clean function g : V — R corrupted by a given noise n such that f© = g+n. Such
noise is assumed to have zero mean and variance o2, which usually corresponds
to observation errors. To recover the uncorrupted function g, a commonly used
method is to seek for a function f : V — R which is regular enough on G,
and also close enough to fY. This inverse problem can be formalized by the
minimization of an energy functional, which typically involves a regularization
term plus an approximation term (also called fitting term). In this paper, we
consider the following variational problem [5]:

ngvf%l_I)lR{Eg(faf(J,)\):Ri(f)_F%Hf_fOH%}) (7)

where the regularization functional RF, : H(V) — R is the discrete p-Dirichlet

w

form of the function f € H(V): RE(f) = %Zuev [(Vwf)(@)|5. The trade-off
between the two competing terms in the functional E? | is specified by the fidelity
parameter A > 0. By varying the value of A, the variational problem (7) allows
one to describe the function f° at different scales, each scale corresponding to a
value of A. The degree of regularity, which has to be preserved, is controlled by

the value of p > 0.

3.1 Diffusion processes

When p > 1, the energy EP is a convex functional of functions of H(V).
To get the solution of the minimizer (7), we consider the following system of

equations %(uf;’\) = 0,Vu € V which is rewritten as: 65][%%) + M f(u) —

f%°u)) = 0, Vu € V. The solution of the latter system is computed by us-
ing the following property. Let f be a function in H(V'), one can easily prove

that ag}%g) = 2AP f(u), and the system is rewritten as 2AL f(u) + A(f(u) —




f%°u)) =0, VYu €V, which is equivalent to the following system of equations:
A+ ou Y (wv)) flu) =3, 0 v (u,v) f(0) = AfO(u). We use the linearized
Gauss-Jacobi iterative method to solve the previous system. Let ¢ be an iteration
step, and let f() be the solution at the step ¢t. Then, the method is given by the
following algorithm:

FO=r

fOY () = AfO(u) + 30 7{;:;(% v)f(t)(v), Yu € V. ®)
A + vau 71]; (u7 ’U)

It describes a family of discrete diffusion processes [5], which is param-
eterized by the structure of the graph (topology and weight function), the
parameter p, and the parameter \. At each iteration of the algorithm (8),
the new value f**+1(u) depends on two quantities: the original value f°(u),
and a weighted average of the filtered values of f*) in a neighborhood of w.
When A = 0 and p > 0, an iteration of the diffusion process given by f(+1 (u) =

S Gun (FO) FO), Yu € V with ¢y(f) = L@ vy 4) € B. Let Q

S Vo (u0)”

be the Markov matrix defined by Q(u,v) = ¢(u,v) if (u,v) € E and Q(u,v) =0
otherwise. Then, an iteration of the diffusion process (8) with A = 0 can be
written in matrix form as f0) = Qf® = Q® fO where Q is a stochastic
matrix (nonnegative, symmetric, unit row sum). An equivalent way to look at
the power of @ in the diffusion process is to decompose each value of f on the
first eigenvectors of @), therefore the diffusion process can be interpreted as a
filtering in the spectral domain [10].

4 Mathematical morphology on graphs

Mathematical morphology (MM) offers a wide range of operators to address var-
ious image processing problems. These operators can be defined in terms of al-
gebraic (discrete) sets or as partial differential equations (PDEs). Morphological
algebraic flat dilation § and erosion € of a function fO:R"—R are usually for-
mulated by: §5(f°)(x) = sup{f°(z+y) : yeB} and ep(f°)(z) = inf{f°(x+y) :
y€B} with B a compact convex symmetric set (called structuring element). By
using structuring sets B={x : ||z||,<1}, the general PDEs generating these flat
dilations and erosions are as follows [11]:

09
P v g=+19 11, ana

d=(f) _
ot

O f==IVfllp (9)

where f is a modified version of f°, V is the gradient operator, |.||, corresponds
to the £,-norm, and one has the initial condition 9;—¢ f=f". With different values
of p, one obtains different structuring elements: a rhombus for p=co, a disc with
p=2 and a square with p=1. Whatever the chosen formulation (algebraic or
PDEs), if MM is well defined for binary and gray scale images, there exists no
general extension for the processing of multivariate unorganized data sets. We



propose to consider a discrete version of continuous MM over weighted graphs
that naturally enables processing of multivariate data living on any domains [8].

4.1 Morphological gradients and algebraic operators

The previously defined external and internal gradients operate on any graph
structure. In the sequel, we show that in the particular case of a unweighted
(w=go) graph and with p=o0, our gradient formulations recover algebraic mor-
phological operators where the structuring element is provided by the graph
topology. The L,,-norms (3) of the proposed external and internal gradients
V7 and V,, recover the classical definition of algebraic morphological external

w

(0(f)(u)—f(v)) and internal (f(u)—e(f)(u)) gradients. Indeed, for the exter-
nal gradient [|[(V5)(u)lloe = max(max(0, £(v)—f(u))) = 6(F)(u)—F(u), and
similarly for the internal one |[(Vyf)(u)|lsc = max(|min(0, f(v)—f(uw))|) =
f(u)—e(f)(u). One can also prove the relation between graph boundary sets and
the weighted discrete morphological gradient norms (2) of the level set function
of f at vertex u€V [8]. Moreover, let the decomposition of f into its level sets
be denoted by f!=x(f—I) where y is the Heaviside function (a step function).
Then, one can prove the following relation [8], with f! = y(A'):

(V5 (wllp if w e oA

(Vo W)l if ue o~ AL (10)

II(wal)(U)II;F{

4.2 Dilation and erosion processes

Intuitively from definition (10), dilation over .4 can be interpreted as a growth
process that adds vertices from A to A. By duality, erosion over A can be in-
terpreted as a contraction process that removes vertices from 9~ .A. We define the
discrete analogue of PDEs-based dilation and erosion formulations and obtain
the following expressions over graphs. For a given initial function fCeH(V):
SN =0, f (u) =+ (V5 (), and ZBED=0, f(u)=—[|(V, f)(w)], VueV,
with the initial condition 9;—of=f° (f is a modified version of f°) and V
and V., are the weighted discrete morphological gradients. To solve these di-
lation and erosion processes, on the contrary to the PDEs case, no spatial dis-
cretization is needed thanks to derivatives that are directly expressed in a dis-
crete form. Then, by using discretization in time, and with the usual notation
fu,n)~f(u,nAt), the general iterative scheme for dilation and erosion, can be
defined at time n+1, for all w € V, as [8] f" T (u)=f"(u)+At|(VE ™) (w)lp
and fH (u)=f"(u)—At|| (V5 f™)(w)||,- The initial condition is f(®=f° where
fPeH (V) is the initial function defined on the graph vertices. If dilation is con-
sidered and with the corresponding gradient norms, the iterative scheme becomes

for 0<p<-+o0, /" () 2 f(u)+-At( 3 w(u, v} max (0, (/"(0)— () ")

and for p=oo, f"+(u) & 7 (u)+ At mas (w(u, v) /2 max (0, (£ (v) =" (w))).

v~YU



At each step of the algorithms, the new value at vertex w only depends on its
value at step n and the existing values in its neighborhood. The proposed di-
lation expression also recovers the classical algebraic flat morphological dilation
formulation over graphs. Indeed, in the case where p=oco with a constant dis-
cretization time At=1 and a constant weight function gg, the iterative scheme
becomes for ueV: f"*‘l(u):%lgic(f"(v),f"(u)). In that case, the structuring

element is provided by the graph topology.

5 Results

In this Section, we illustrate the abilities of regularization and mathematical
morphology processes on graphs for denoising and simplification of any func-
tion defined on a finite set V = {vy,--- ,un} of discrete data v; € R™. This is
achieved by constructing a weighted graph G = (V, E, w) and by considering the
function to be simplified as a function f© : V' — R™, defined on the vertices of G.
The simplification processes operate on vector-valued function with one process
per vector component. If not specified, all graphs are weighted with a Gaussian
kernel. Moreover, an ASF (Alternate Sequential Filter) is an iterative morpho-
logical filter that performs openings (de) and closings (ed)of increasing sizes.
Figure 1(a) presents a pairwise feature projection of the original Iris database
(f°: V — R*). With such real-world databases, some noise is present and data
smoothing is therefore of interest. A complete graph is considered. One can see
in Figure 1 the benefits of both regularization (Figure 1(b)) and morphological
(Figure 1(c)) processing: input points that belong to the same class tend to be
closer than in the original database: the submanifold where the data lies has
been recovered. This effect is illustrated by the results obtained with a standard
k-means classification on the original and the simplified versions: the denoising
pre-processing enables to increase the recognition rate. Typical manifolds being
image libraries, we also consider the USPS handwritten digit database for illus-
tration. Each digit is a 16 x 16 image which is considered as a vector of 256
dimensions. Let f? : V — R'6X16 he a mapping from the vertices of G to the
elements of the manifold. We consider a 10-NN graph constructed over the man-
ifold. Figure 2 presents results on a subset of digits from the USPS database.
For denoising (second row of Fig. 2), a Gaussian kernel is considered and for
simplification (first row of Fig. 2), w(u,v) =1 — M where dqy is the
maximum distance between two images. First row shows simplification results
on an original set of digits (Fig. 2(a)) with Morphological (Fig. 2(b)) and regu-
larization (Fig. 2(c)-(d)) processes. Second row shows regularization results for
denoising : an original set of digits (Fig. 2(e)) is corrupted with Gaussian noise
(Fig. 2(f) with o = 40) and denoised with regularization. Again, such manifold
denoising and simplification processes can be useful for classification purposes on
a noiseless submanifold extracted from a noisy manifold. Finally, we show results
of manifold denoising in conjunction with manifold learning. The original data
is a toroidal helix corrupted with Gaussian noise (¢ = 10). Figure 3 presents a
regularization result (p = 1, A = 0, t = 500) and a morphological ASF processing
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(2(b) with p = 1,



result (p =1, At = 0.005, t = 5) with a 20-NN graph. For each processing, are
provided the simplification result in the original space and a 2D-projection ob-
tained with an eigen-decomposition of the 1-Laplacian from the simplified data.
One can easily see the interest of the proposed methods that enable a better
manifold learning with the suppression of noise and with compression effects.
Once again, the submanifold where the data lies has been recovered whereas
this was not possible directly on the noisy data (see the projection obtained
directly on the noisy data set in Fig. 3(c)).

6 Conclusion

We proposed a general discrete framework for the filtering of manifolds and data
with p-Laplacian regularization and mathematical morphology. The proposed
filters can operate on any high dimensional unorganized multivariate data that
has been represented with a weighted graph. Both approaches are efficient to
denoise manifolds and data to project initial noisy data onto a submanifold to
ease dimensionality reduction, clustering and classification.
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