Cooperation between Human and Machine for Shop Scheduling Under Uncertainties

Guillaume Pinot Nasser Mebarki Jean-Michel Hoc

IRCCyN — UMR CNRS 6597
Nantes, France
firstname.lastname@irccyn.ec-nantes.fr

HOPS Conference 2008
Table of Contents

1. Introduction

2. Group Sequencing

3. The human-machine system of ORABAID for the reactive phase

4. A new human-machine system for the reactive phase

5. Conclusion
Table of Contents

1. Introduction

2. Group Sequencing

3. The human-machine system of ORABAID for the reactive phase

4. A new human-machine system for the reactive phase

5. Conclusion
Introduction

Group sequencing:

- is a scheduling method;
- describes a set of schedules;
- guarantees a minimal quality corresponding to the worst case.

A better human-machine system for the execution of the schedule can be done.
Introduction

Group sequencing:

- is a scheduling method;
- describes a set of schedules;
- guarantees a minimal quality corresponding to the worst case.

A better human-machine system for the execution of the schedule can be done.
Table of Contents

1. **Introduction**

2. **Group Sequencing**

3. The human-machine system of ORABAID for the reactive phase

4. A new human-machine system for the reactive phase

5. **Conclusion**
Group Sequencing:

- provides sequential flexibility during the execution of the schedule;
- guarantees a minimal quality corresponding to the worst case.

To manage sequential flexibility, usage of “groups of permutable operations.”
Group sequencing:

- provides sequential flexibility during the execution of the schedule;
- guarantees a minimal quality corresponding to the worst case.

To manage sequential flexibility, usage of “groups of permutable operations.”
Example: a Job Shop Problem

i: the index of the operations, $\Gamma^-(i)$: the set of the predecessors of O_i, m_i: the resource needed by O_i, p_i: the processing time needed by O_i.

A Job Shop Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma^-(i)$</td>
<td>\emptyset</td>
<td>${1}$</td>
<td>${2}$</td>
<td>\emptyset</td>
<td>${4}$</td>
<td>${5}$</td>
<td>\emptyset</td>
<td>${7}$</td>
<td>${8}$</td>
</tr>
<tr>
<td>m_i</td>
<td>M_1</td>
<td>M_2</td>
<td>M_3</td>
<td>M_2</td>
<td>M_3</td>
<td>M_1</td>
<td>M_3</td>
<td>M_1</td>
<td>M_2</td>
</tr>
<tr>
<td>p_i</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

A Solution to This Problem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Guillaume Pinot, Nasser Mebarki, Jean-Michel Hoc
Example: a Job Shop Problem

\(i\): the index of the operations, \(\Gamma^{-}(i)\): the set of the predecessors of \(O_i\),
\(m_i\): the resource needed by \(O_i\), \(p_i\): the processing time needed by \(O_i\).

A Job Shop Problem

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma^{-}(i))</td>
<td>(\emptyset)</td>
<td>{1}</td>
<td>{2}</td>
<td>(\emptyset)</td>
<td>{4}</td>
<td>{5}</td>
<td>(\emptyset)</td>
<td>{7}</td>
<td>{8}</td>
</tr>
<tr>
<td>(m_i)</td>
<td>(M_1)</td>
<td>(M_2)</td>
<td>(M_3)</td>
<td>(M_2)</td>
<td>(M_3)</td>
<td>(M_1)</td>
<td>(M_3)</td>
<td>(M_1)</td>
<td>(M_2)</td>
</tr>
<tr>
<td>(p_i)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

A Solution to This Problem

- \(M_1\): Operations 1 and 8
- \(M_2\): Operations 4, 2, and 9
- \(M_3\): Operations 7, 3, and 5
Execution of the Example

The Group Sequence

![Graph showing the group sequence]

The Corresponding Semi-Active Schedules

![Graphs showing the corresponding semi-active schedules]

Guillaume Pinot, Nasser Mebarki, Jean-Michel Hoc
Cooperation for Scheduling Under Uncertainties
Why is Group Sequencing Interesting?

Why is group sequencing interesting?

- proactive reactive method;
- flexibility on sequences;
- widely studied in the last twenty years:
 [Erschler and Roubellat, 1989, Wu et al., 1999, Artigues et al., 2005]
- no need to model the uncertainties;
- the method is able to absorb some uncertainties:
 [Wu et al., 1999, Esswein, 2003, Pinot et al., 2007];
- evaluation of the group sequence in the worst case in polynomial time for minmax regular objectives as C_{max} and L_{max}.
- evaluation of the group sequence in the best-case is feasible for any regular objective [Pinot and Mebarki, 2008].

A better human-machine system can be done for the reactive phase.
Why is Group Sequencing Interesting?

Why is group sequencing interesting?

- proactive reactive method;
- flexibility on sequences;
- widely studied in the last twenty years:
 [Erschler and Roubellat, 1989, Wu et al., 1999, Artigues et al., 2005]
- no need to model the uncertainties;
- the method is able to absorb some uncertainties:
 [Wu et al., 1999, Esswein, 2003, Pinot et al., 2007];
- evaluation of the group sequence in the worst case in polynomial time for \(\minmax \) regular objectives as \(C_{\text{max}} \) and \(L_{\text{max}} \).
- evaluation of the group sequence in the best-case is feasible for any regular objective [Pinot and Mebarki, 2008].

A better human-machine system can be done for the reactive phase.
Table of Contents

1. Introduction

2. Group Sequencing

3. The human-machine system of ORABAID for the reactive phase

4. A new human-machine system for the reactive phase

5. Conclusion
ORABAID method is:

- the first system using group sequencing;
- used in the ORDO software [Roubellat et al., 1995];
- the only system used in real manufacturing systems.
Description of the human-machine system

The human-machine system for the reactive phase is based on the free sequential margin:

- free margin adapted for group sequencing;
- easily computable;
- allow to monitor the satisfaction of the deadlines;
- it is recommended to execute the operation with the greatest margin.

<table>
<thead>
<tr>
<th></th>
<th>Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>-2</td>
</tr>
<tr>
<td>O_2</td>
<td>0</td>
</tr>
<tr>
<td>O_3</td>
<td>3</td>
</tr>
</tbody>
</table>
Description of the human-machine system

The human-machine system for the reactive phase is based on the free sequential margin:

- free margin adapted for group sequencing;
- easily computable;
- allow to monitor the satisfaction of the deadlines;
- it is recommended to execute the operation with the greatest margin.

<table>
<thead>
<tr>
<th></th>
<th>Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>-2</td>
</tr>
<tr>
<td>O_2</td>
<td>0</td>
</tr>
<tr>
<td>O_3</td>
<td>3</td>
</tr>
</tbody>
</table>
Analysis of the human-machine-system

Advantages:

- The system alerts the human when deadlines must not be satisfied;
- The human makes the decision.

Drawbacks:

- The system recommends a decision;
- The workload to analyze the different decision is very high;
- The human can became inactive.
Analysis of the human-machine-system

Advantages:
- The system alerts the human when deadlines must not be satisfied;
- The human makes the decision.

Drawbacks:
- The system recommends a decision;
- The workload to analyze the different decision is very high;
- The human can became inactive.
Table of Contents

1. Introduction
2. Group Sequencing
3. The human-machine system of ORABAID for the reactive phase
4. A new human-machine system for the reactive phase
5. Conclusion
Description of the human-machine system

Different indicators:

- free sequential margin;
- worst-case quality;
- best-case quality;
- processing time;
- etc.

<table>
<thead>
<tr>
<th></th>
<th>Margin</th>
<th>L_{WC}^{max}</th>
<th>L_{BC}^{max}</th>
<th>p_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>-2</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>O_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>O_3</td>
<td>3</td>
<td>-1</td>
<td>-2</td>
<td>7</td>
</tr>
</tbody>
</table>
Description of the human-machine system

Different indicators:

- free sequential margin;
- worst-case quality;
- best-case quality;
- processing time;
- etc.

<table>
<thead>
<tr>
<th></th>
<th>Margin</th>
<th>$L_{\text{WC}}^{\text{max}}$</th>
<th>$L_{\text{BC}}^{\text{max}}$</th>
<th>p_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1</td>
<td>-2</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>O_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>O_3</td>
<td>3</td>
<td>-1</td>
<td>-2</td>
<td>7</td>
</tr>
</tbody>
</table>
Goals of this system

To correct ORABAID’s drawbacks:

- The system does not recommend a decision;
- The machine exposes its knowledge to the human, which should help the human to make the decision;
- The human should became active.
Table of Contents

1. Introduction

2. Group Sequencing

3. The human-machine system of ORABAID for the reactive phase

4. A new human-machine system for the reactive phase

5. Conclusion
Conclusion

We have proposed a new human-machine system for the reactive phase of group sequencing:

- it corrects ORABAID’s drawbacks;
- it uses the best-case and the worst-case quality;
- the human should became active.

To validate this proposition, experiments will study different aspects:

- the implication of the operator in the decision;
- the effectiveness of the new decision support system in comparison with the other;
- the usage of the indicators by the operator.

These experiments will be done in collaboration with Clément Guérin and Jean-Michel Hoc.
Conclusion

We have proposed a new human-machine system for the reactive phase of group sequencing:

- it corrects ORABAID’s drawbacks;
- it uses the best-case and the worst-case quality;
- the human should became active.

To validate this proposition, experiments will study different aspects:

- the implication of the operator in the decision;
- the effectiveness of the new decision support system in comparison with the other;
- the usage of the indicators by the operator.

These experiments will be done in collaboration with Clément Guérin and Jean-Michel Hoc.
Thank you for your attention.
Bibliography I

